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Abstract

In this report we propose a scheme to perform homomorphic evaluations of arbitrary depth with the assistance of a special
module recryption box. Existing somewhat homomorphic encryption schemes can only perform homomorphic operations until the
noise in the ciphertexts reaches a critical bound depending on the parameters of the homomorphic encryption scheme. The classical
approach of bootstrapping also allows for arbitrary depth evaluations, but has a detrimental impact on the size of the parameters,
making the whole setup inefficient. We describe two different instantiations of our recryption box for assisting homomorphic
evaluations of arbitrary depth. The recryption box refreshes the ciphertexts by lowering the inherent noise and can be used with
any instantiation of the parameters, i.e. there is no minimum size unlike bootstrapping.

To demonstrate the practicality of the proposal, we design the recryption box on a Xilinx Virtex 6 FPGA board ML605
to support the FV somewhat homomorphic encryption scheme. The recryption box requires 0.43 ms to refresh one ciphertext.
Further, we use this recryption box to boost the performance of encrypted search operation. On a 40 core Intel server, we can
perform encrypted search in a table of 216 entries in around 20 seconds. This is roughly 20 times faster than the implementation
without recryption box.

Keywords. Homomorphic encryption, FV, lattice-based cryptography, ring-LWE, polynomial multiplication, number theoretic
transform, hardware implementation

I. INTRODUCTION

For many years the construction of a fully homomorphic encryption (FHE) scheme was an open problem in cryptography.

FHE enables computations on encrypted data without the need for decryption and a practical realization of FHE would allow

users to outsource computations to an untrusted cloud server. In 2009 Gentry [12] constructed the first fully homomorphic

encryption (FHE) scheme by using ideal lattices. Gentry’s FHE scheme uses a somewhat homomorphic encryption scheme

(SHE) combined with a mechanism known as bootstrapping. An SHE scheme can be used to compute on the encrypted data,

but each operation increases the noise inherent in the ciphertexts. Once the noise reaches a certain threshold that depends on

the parameters of the scheme, decryption will fail. The bootstrapping operation is used to publicly “refresh” a noisy ciphertext

and repeated application enables evaluations of arbitrary depth. However, bootstrapping is only possible if the parameters of the

SHE are chosen large enough to accommodate for the bootstrapping operation, thereby also slowing down the actual function

evaluation.

Though Gentry’s scheme offered homomorphic function evaluation of any depth, the performance of the scheme is really

impractical. Since 2010 many researchers have improved the performance of FHE [3], [4], [7], [26], [11], [13], [14], [18] by

using the (ring) learning with errors (ring-LWE) problem or the NTRU problem. Though the performance of FHE schemes

has improved orders of magnitude compared to Gentry’s first FHE scheme, their practicality still remains rather low. The main

problem is that the bootstrapping operation is tremendously slow, e.g. for [6] it takes 172 seconds on an Intel Core-i7 processor.

Hence it is not yet possible to deploy FHE in cloud computations. Even somewhat homomorphic encryption schemes that can

evaluate functions of small complexity take a large amount time. For e.g., evaluation of one SIMON-64/128 decryption on

encrypted data takes more than an hour on a 4-core Intel Core-i7 processor [16].

Our solution is to bypass this costly bootstrapping operation using a third party recryption box that is instantiated in two

different setups. In the first setup the recryption box uses a key switching technique that allows the cloud server to convert a

ciphertext encrypted under user’s public key into a ciphertext encrypted under box’s public key. With this the box performs

a decryption using its own private key and then a re-encryption using user’s public key. Naturally the large noise in the

encrypted data is eliminated. In the second setup a multiparty computation scheme is used: noisy ciphertexts are decrypted

among multiple parties, and then reencrypted again. This re-encryption operation gives a freshly encrypted data with limited

noise as the shared multiparty decryption operation removes the large noise inherent in the ciphertexts. During the execution
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of an application on encrypted data, the cloud performs the homomorphic operations, and then sends the dirty ciphertexts to

the third party recryption box (or boxes). Although in this report we instantiate the recryption box on an FPGA, we note it is

possible to implement it in a trusted execution environment or using specialized instructions such as SGX, assuming sufficient

countermeasures are taken against physical attacks.

In the field of cryptographic implementations, hardware accelerators have been used to speedup cryptographic computations.

Since the existing homomorphic schemes are very costly, several hardware architectures to speed up homomorphic evaluations

have been proposed. In [10] an ASIC implementation of the Gentry-Halevi FHE scheme was presented. In a 90 nm CMOS

technology, the FHE architecture computes encryption, decryption, and bootstrapping operations in 18.1ms, 16.1ms, and 3.1s

respectively and consumes less than 30 million gates. The architecture uses a number theoretic transform (NTT) based million

bit multiplier to speedup computation. We see that even with an ASIC architecture, the bootstrapping operation is quite slow.

To accelerate SHE schemes, three different hardware accelerators [22], [20], [9] have appeared at CHES 2015. The accelerators

use ring-LWE based SHE schemes and outperform their software counterparts by orders of magnitude; but still they take a

reasonably large amount of time to evaluate functions of small complexity. The main problem is that, to support even a small

multiplicative depth such as 9, the polynomial ring needs to have a degree 16,384 and a modulus size of 512 bit [20]. This

makes the polynomial arithmetic costly. The size of the polynomial ring increases rapidly with the complexity of the function.

In this report we implement the recryption box on a Xilinx Virtex 6 FPGA board ML605. The board comes with a powerful

FPGA and a high speed Gigabit Ethernet communication interface. The recryption box is connected to the cloud computer over

the internet using the Ethernet interface. During a recryption operation, the cloud computer sends noisy (masked) encrypted

data to the recryption box, which then returns refreshed encrypted data. To know the effect of the recryption box model on

the run time, we have implemented encrypted search as the target application. In an encrypted search, clients send encrypted

queries to the search engine, and the search engine returns encrypted results. Neither the search engine, nor the other parties

come to know about the client’s search queries. We show that with the usage of the recryption boxes we could reduce the

encrypted search time by an order of magnitude.

The report is organized as follows. Section II provides the basic mathematical background of the LWE and ring-LWE

problems, describes the FV somewhat homomorphic encryption scheme and the basic arithmetic operations. The next section

describes the recryption box and its instantiations. In Section IV, an encrypted search algorithm is designed to benefit from

the recryption box. Section V gives implementation details of the recryption box and describes the optimization techniques.

Implementation results are provided in Section VI. The final section draws conclusions and discusses the possible future works

in this direction.

II. BACKGROUND

In this section we present a brief mathematical overview of the learning with errors (LWE) problem, its ring version

ring-LWE, and the FV somewhat homomorphic encryption scheme.

A. The LWE and ring-LWE Problem

The LWE problem was introduced by Regev [21] in 2005. Its hardness can be reduced to the hardness of classical problems

on lattices and can be parametrized by the dimension n of the lattice, an integer modulus q and an error distribution, which

is typically taken as a discrete Gaussian distribution X over Z.

The LWE problem is defined as follows. A secret vector s of dimension n is chosen uniformly in Z
n
q . Then samples

are produced by selecting uniform random vectors ai and error terms ei from the error distribution X and by computing

bi = 〈ai, s〉+ ei ∈ Zq . The LWE distribution As,X over Zn
q × Zq is defined as the set of tuples (ai, bi). In the decision LWE

problem the solver tries to distinguish with non-negligible advantage between the samples drawn from As,X and the same

number of samples drawn uniformly from Z
n
q ×Zq . In the search LWE problem the solver tries to compute s. The number of

samples is restricted to a polynomial in n for both the decision and search versions of the LWE problem.

The ring-LWE problem is a ring based version of the LWE problem and was introduced by Lyubashevsky, Peikert and

Regev in [17]. Computations are performed in a polynomial ring Rq = Zq[x]/〈f(x)〉, where f(x) is an irreducible polynomial

of degree n. The ring-LWE problem is more efficient for constructing cryptosystems than the original LWE problem since

the key size and computational complexity are no longer quadratic in n. The ring-LWE distribution on Rq × Rq consists

of polynomial tuples (ai(x), bi(x)), where the coefficients of ai are chosen uniformly from Zq and bi(x) is computed as a

polynomial ai(x) · s(x) + ei(x) ∈ Rq . Here s ∈ Rq is the secret polynomial, and ei is the error polynomial sampled from

an n-dimensional error distribution X . In some cases, e.g: for 2k-power cyclotomics, this error distribution can be taken as

the product of n independent discrete Gaussians, but in general X is more complex. One can construct s by sampling the

coefficients from X instead of sampling uniformly without any security implications [17]. An elegant public key encryption

scheme was constructed in [17] based on the ring-LWE problem. The encryption scheme performs simple polynomial arithmetic

such as polynomial multiplications, additions and subtractions, along with sampling from a discrete Gaussian distribution with

a small parameter. Readers may follow [17] for detailed description of the encryption scheme, and [19], [24], [8] for the

implementation techniques.
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B. The FV Scheme

The FV somewhat homomorphic encryption scheme [11] works in the polynomial ring R = Z[x]/(f(x)) with f(x) = Φd(x),
the d-th cyclotomic polynomial of degree n = ϕ(d). A plaintext is an element in the ring Rt for some small modulus t. Generally

t is taken as 2. A ciphertext in this scheme consists of two elements in the ring Rq where q is the large modulus. The key

generation and the encryption operations in the FV scheme require sampling from two probability distributions defined on R,

namely χkey and χerr respectively. The security of the scheme is determined by the degree n of f , the size of q, and by the

probability distributions. Following [17] one may sample the key and the error polynomials from a common distribution χ.

Typically χ is a discrete Gaussian distribution with a small standard deviation. However in practice some authors take the key

as a polynomial with coefficients from a narrow set like {−1, 0, 1}. In the following part of this section we explain some of

the functions that are used to describe the FV algorithm.

WordDecompw,q(a):: This function is used to decompose a ring element a ∈ Rq in base w by splicing each coefficients of

a. For l = ⌈logw(q)⌉, this function returns ai ∈ R with coefficients in (−w/2, w/2], where a =
∑l−1

i=0 aiw
i.

PowersOfw,q(a):: This function scales an element a ∈ Rq by the different powers of w. It is defined as PowersOfw,q(a) =
(awi)l−1i=0. The two functions can be used to perform a polynomial multiplication in Rq as

〈WordDecompw,q(a), PowersOfw,q(b)〉 = a · b mod q .

This expression has advantage in reducing the noise during homomorphic multiplications, as the first vector contains small

elements (in base w).

The FV scheme uses an encryption scheme and three additional functions Add, Mult, and ReLin to perform function

evaluations homomorphically on the encrypted data. In the following part of this section we describe the functions used in the

FV scheme. For details of the functions, interested readers are referred to the original paper [11].

1) ParamsGen(λ): For a given security parameter λ, choose a polynomial Φd(x), ciphertext modulus q and plaintext

modulus t, and distributions χerr and χkey . Also choose the base w for WordDecompw,q(·). Return the system parameters

(Φd(x), q, t, χerr , χkey, w). Following [11] we use a uniform signed binary distribution for χkey . Additionally we set

the plaintext modulus t = 2.

2) KeyGen(Φd(x), q, t, χerr , χkey , w): Sample polynomial s from χkey , sample a← Rq uniformly at random, and sample

e← χerr. Compute b = [−(as+e)]q. The public key consists of two polynomials pk = {b, a} and the secret key is sk = s.

The scheme uses another key called relinearisation key or rlk in the function ReLin. This key is computed as follows:

first sample a← Rl
q uniformly, then sample e ← χl

err, and then compute rlk = {rlk0, rlk1} = {[PowersOfw,q(s
2)−

(e+ a · s)]q, a} ∈ {R
l
q, R

l
q}.

3) Encrypt(pk,m): First encode the input message m ∈ Rt into a polynomial ∆m ∈ Rq with ∆ = ⌊q/t⌋. Next sample

the error polynomials e1, e2 ← χerr, sample u uniformly from the signed binary distribution, and, compute the two

polynomials c0 = [∆m + bu + e1]q ∈ Rq and c1 = [au + e2]q ∈ Rq . The ciphertext is the pair of polynomials

c = {c0, c1}.
4) Decrypt(sk, c): First compute a polynomial m̃ = [c0 + sc1]q. When t = 2, recover the plaintext message m by a

decoding the coefficients of m̃. This decoding operation checks if the coefficient is in (q/4, 3q/4) for a 1 bit and a 0

bit otherwise.

5) Add(c1, c2): For two ciphertexts c0 = {c0,0, c0,1} and c1 = {c1,0, c1,1}, return c = {c0,0 + c1,0, c1,0 + c1,1}.
6) Mult(c1, c2, rlk): Compute c̃mult = {c0, c1, c2} where c0 = [⌊ tq · c1,0 · c2,0⌉]q, c1 = [⌊ tq · (c1,0 · c2,1 + c1,1 · c2,0)⌉]q , and

c2 = [⌊ tq · c1,1 · c2,1⌉]q . Next call the function ReLin(c̃mult, rlk).
7) ReLin(c̃mult, rlk): Compute a relinearised ciphertext c′ = {[c0+〈WordDecompw,q(c2), rlk0〉]q, [c1+〈WordDecompw,q(c2), rlk1〉]q}.

In our applications, we encrypt only one bit in one ciphertext. The encrypted bit remains in the least significant coefficient

of the ciphertext polynomial. Note that in this setting, we encode only one bit, and not a polynomial, during an encryption.

During a decryption we decode the least significant coefficient of m̃.

C. Basic Arithmetic Operations

In this report we implement the recryption box that performs only the decryptions and encryptions. From Section II-B

we see that the main operations in the FV encryption and decryption are polynomial addition, multiplication and discrete

Gaussian sampling. For multiplications of large polynomials, we use the number theoretic transform (NTT) algorithm due to

its low time complexity [2]. For the discrete Gaussian sampling, we use the Knuth-Yao random walk method [15]. In the

next subsections, we briefly describe the NTT based polynomial multiplication algorithm and the Knuth-Yao discrete Gaussian

sampling algorithm.

The Number Theoretic Transform: or NTT is a Fast Fourier Transform (FTT) where the roots of unity are from a finite ring

Zq . Since the roots of the unity are in Zq , all computations are performed on integers. In an n-point NTT with n a power of

two, the input polynomial a(x) =
∑n−1

j=0 ajx
j ∈ Z[x] is evaluated in the n points x = ωi

n, where i = 0, . . . , n− 1 and ωn is a

primitive n-th root of unity in the ring. The result of the polynomial evaluation is NTT([aj ], ωn) = [a(ω0
n), a(ω

1
n), . . . , a(ω

n−1
n )]
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Input: Polynomial a(x) ∈ Zq [x] of degree n− 1 and n-th primitive root ωn ∈ Zq of unity

Output: Polynomial A(x) ∈ Zq[x] = NTT(a)

begin1

A← BitReverse(a);2

for m = 2 to n by m = 2m do3

ωm ← ωn/m
n ;4

ω ← 1 ;5

for j = 0 to m/2 − 1 do6

for k = 0 to n− 1 by m do7

t← ω ·A[k + j + m/2] ;8

u← A[k + j] ;9

A[k + j] ← u + t ;10

A[k + j + m/2]← u− t ;11

ω ← ω · ωm ;12

end13

Algorithm 1: Iterative NTT Algorithm from [5]

. A straightforward evaluation of the input polynomial in the n-points will result in a quadratic complexity algorithm. The

evaluation is done in θ(n log n) time by utilizing a special property of the primitive root of unity in the NTT algorithm. An

NTT can be computed in both recursive and iterative manner. For efficient implementation, the iterative version is more popular

[19], [24], [8]. In Algorithm 1, we have shown an in-place iterative version of the NTT algorithm [5].

In line 2 the coefficients of the input polynomial a are rearranged using the function call BitReverse(a). Next, three nested

loops with loop variables m, j, and k compute new coefficients from the old coefficients. In the outer j-loop, powers of the

primitive roots are assigned to a variable ω. The variable is known as the twiddle factor. In the innermost loop, two coefficients

are processed at a time. This part of the algorithm is known as the butterfly operation. New values of the twiddle factor are

computed in the loop with the variable j. More details of the algorithm are available in [5]. The inverse transform is known

as the inverse NTT. It can be computed simply as 1
nNTT(·, ω

−1
n ).

Multiplication of two polynomials in the NTT domain is simply a coefficient wise multiplication of the two polynomials.

Hence use of NTT leads to a fast polynomial multiplication algorithm. The two input polynomials are first mapped into NTT

domain. Then the two polynomials are multiplied coefficient wise. In the end, an inverse NTT is performed to get back the

result of the polynomial multiplication. The (reduced) multiplication of two polynomials a and b can be computed easily in

the ring Sq = Zq[x]/(x
n − 1) as follows:

c = NTT−1ωn

(

NTTωn(a) ∗ NTTωn(b)
)

(1)

Here ∗ denotes coefficient-wise multiplication.

Efficient Multiplication in Rq: If we consider a polynomial multiplication in Rq = Zq[x]/〈f(x)〉 where 〈f(x)〉 is an

arbitrary reduction polynomial of degree n, then the first step is a normal polynomial multiplication over Zq . The result of

this multiplication is a polynomial of degree 2n − 2. Next the result is reduced modulo 〈f(x)〉 to get the modular reduced

result in Rq. Since the result of the normal polynomial multiplication over Zq has a degree 2n− 2, the multiplication requires

computation of 2n point NTTs [5].

One can do much better if the polynomial ring Rq possesses a special structure. For example, if the irreducible polynomial is

f(x) = xn +1 and n = 2k, then one can use a technique known as the negative wrapped convolution to get the f(x)-reduced

result directly. Moreover, with the negative wrapped convolution technique, one needs to compute only n point NTTs instead

of 2n point NTTs. There are some minor overheads due to the precomputations and postcomputations that are required for the

negative wrapped convolution [24].

Discrete Gaussian Sampling using the Knuth-Yao Random Walk: In the FV encryption operation, the noise polynomials

e1 and e2 are constructed from a discrete Gaussian distribution χerr. For our implementation, the parameter of the discrete

Gaussian distribution is small. In [15] Knuth and Yao proposed a random walk algorithm to sample from a constant discrete

distribution. This algorithm stores the probabilities of the sample points in binary representation, and then generates a binary

tree on-the-fly from the bits of the probabilities. The binary tree is called the Discrete Distribution Generating (DDG) tree.

The DDG tree consists of intermediate nodes and terminal nodes. The terminal nodes lie on the right hand side of any level

of the DDG tree and contain the sample points. During a sampling operation, a random walk starts from the root of the tree

and uses a random bit to jump to the next level of the tree. When the random walk hits a terminal node of the DDG tree, the

algorithm stops and the value of the terminal node is output as the result of the sampling process. Detailed descriptions about

the implementations techniques can be found in [25]. The Knuth-Yao random walk algorithm is very efficient for implementing

compact and fast discrete Gaussian sampler architecture when the parameter of the distribution is small.

III. INSTANTIATIONS OF THE RECRYPTION BOX

In this section, we describe two possible instantiations of the recryption box and analyze their security and ease of use.

In all cases, the parameters of the scheme become independent of the minimum size required for bootstrapping, resulting in

faster homomorphic evaluations overall. We also consider possible applications of the setup described in this report.
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Most homomorphic encryption schemes (including FV) admit an operation called key switching. Key switching allows

to transform a ciphertext encrypted under one public key, into a valid ciphertext encrypted under a different public key.

More in detail: assume the recryption box has its own private/public key pair (sr, br, ar) and the i-th user’s keypair is

(si, bi, ai). The user can then compute the key switching key as follows: he samples a vector u of l elements uniformly

from χkey (in our case a signed binary distribution), and two vectors e1 and e2 of l elements from χerr. Next he computes

the key switching key {ksk0i ,ksk1i} = {PowersOfw,q(si) + u · br + e1 ∈ Rl
q,u · ar + e2 ∈ Rl

q}. The {ksk0i ,ksk1i}
together with {bi, ai} is sent to the cloud. The cloud uses the key switching key to switch a ciphertext {c0i , c1i} encrypted

under the user’s public key to a valid ciphertext {c0r , c1r} encrypted under the box’s public key as follows: {c0r , c1r} =
{〈WordDecompw,q(c1i),ksk0i〉 + c0, 〈WordDecompw,q(c1i),ksk1i〉. Before sending the ciphertext {c0r , c1r} to the box, the

cloud additively masks it (using the fact that the scheme is additively homomorphic) to obtain {c′0r , c
′
1r}. The ciphertext

{c′0r , c
′
1r} together with user’s public key {bi, ai} is sent to the box, who decrypts it using its own private key and freshly

encrypts it using the user’s public key. The resulting ciphertext c̃i is then sent back to the cloud, who removes the additive

mask it added before.

For the above setup to offer any security at all, the following assumptions have to be made: firstly, we assume that both the

box and cloud are honest but curious. In particular, the cloud has to apply a random mask before sending the ciphertext to

the box such that it cannot recover the underlying plaintext. And in turn, the box has to execute the encryption correctly by

choosing random error polynomials. Secondly, we assume that the cloud and box do not collude, e.g. the key switching key

{ksk0i ,ksk1i} should not be given to the box since it would allow the box to derive the private key of the user. The advantage

of this setup clearly is that a single recryption box can deal with many users. The downsides are the slightly stronger security

assumptions and the extra operations involved such as key switching and additive masking by the cloud.

The second instantiation does not rely on a key switching key and makes it much more difficult for the cloud and the

recryption box to collude by using a threshold scheme to split the secret key over several parties and using a distributed

decryption protocol. The secret key can be split using a th out of n Shamir threshold sharing over the ring Rq. The i-th
party receives a share sri ∈ Rq that equals the evaluation of a random polynomial p(x) of degree th − 1 in a public value

ai ∈ Rq assigned to each party (one could sometimes even take ai = i), i.e. sri = p(ai). The secret key s of the user can

then be obtained as s = p(0), and it is clear that any set of th valid shares allows to recover s using for instance Lagrange

interpolation. Denote the i-th Lagrange multiplier (for the set of th contributors) by λi =
∏

j 6=i aj/(aj − ai), then s can be

recovered as s =
∑

i λisri . Denote by s̃ri the scaled share λisri , then s can be simply recovered as s =
∑

i s̃ri . The main

advantage of using Shamir secret sharing is that it defines a ring homorphism between Rq,+, · and Rth
q ,+, ·. In particular, any

algebraic expression in Rq can be recovered from executing the same expression on each of the th shares and reconstructing

the result using interpolation.

The distributed decryption protocol will work in two steps. In the first step, for a given ciphertext (c0, c1) each party

computes di = s̃ri · c1 + ei where ei is a Gaussian distributed error polynomial. Note that recovering s̃ri from di is hard

since this corresponds precisely to the ring-LWE problem, so one party cannot recover another party’s share. The shares di
are then distributed over an encrypted channel to the other parties. In the second step, each party adds the shares to recover

c1 · s+ e. Now the end-party (or any party) then recovers the message m as m = ⌊ tq · [c0 + s · c1 + e]q⌉ ∈ Rt and returns a

fresh encryption of m as the final result. Since the end-party recovers the message m, it is required that the server additively

masks the message before sending it to the recryption boxes. The security of the system now relies on the fact that not more

than th− 1 parties collude with the cloud server and that the cloud server uses additive masking.

IV. ENCRYPTED SEARCH

To know the effect of the proposed recryption box in real life, we have implemented encrypted search as the target application.

The reason behind this particular choice is mainly because of its future prospects. In an encrypted search, a client sends an

encrypted keyword to the search engine and then the search engine returns the search-response in an encrypted format to

the client. Due to its encrypted nature, the search engine remains oblivious of the search keyword. Such an encrypted search

application is possible when the encryption scheme is homomorphic.

In the search engine, the search results are stored in unencrypted format in a table (as table entries) indexed by the numeric

representations of the search keywords. During an encrypted search, a client’s encrypted keyword is compared with the

encryptions of the table indexes, and then the comparison results are used to perform arithmetic on the encryptions of the table

entries. Since the search table is in unencrypted format, the search engine needs to encrypt the entire table under the public

key of the client in order to perform homomorphic operations. However in reality the search engine needs to encrypt only two

bits instead of the entire table. The client sends her public key along with the encrypted keyword to the search engine. Next,

the search engine encrypts bit-0 and bit-1 using the public key of the client and constructs encryptions of the search table

indexes and the entries by simply replacing the plaintext bits with the encryptions of bit-0 and bit-1. After the completion

of the search operation, the result is an encryption of the search result that is associated with the search keyword. The total

amount of data exchange between the client and the search engine is: the public key of the user, the homomorphic encryption

of the search keyword, and the homomorphic encryption of the search result.
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Input: Encrypted search keyword K = {kl−1 . . . k0} and the client’s public key pk
Output: Encrypted search result R = {rp−1 . . . r0}
begin1

e0 ← enc(0, pk);2

e1 ← enc(1, pk);3

R← {e0, . . . , e0};4

for index = 0 to 2l − 1 do5

C ← {eindexl−1
, . . . , eindex0

} ; /* enc. of index */6

T ← {add(kl−1, cl−1), . . . , add(k0, c0)};7

b← t0;8

for i = 1 to l − 1 do9

b← mul(b, ti);10

D ← table[index];11

for i = 0 to p− 1 do12

if di = 1 then13

ri ← add(ri, b) ; /* i-th bit of R */14

end15

Algorithm 2: Linear encrypted search

Input: w-bit chunk of encrypted keyword K = {kw−1 . . . k0} and client’s public key pk
Output: Precomputation table precomp[] with 2w entries

begin1

e0 ← enc(0, pk);2

e1 ← enc(1, pk);3

for index = 0 to 2w − 1 do4

C ← {eindexw−1
, . . . , eindex0

};5

T ← {add(kw−1, cw−1), . . . , add(k0, c0)};6

b← t0;7

for i = 1 to w − 1 do8

b← mul(b, ti);9

precomp[index]← b;10

end11

Algorithm 3: Precomputation in linear search

There are several algorithms to search in a plaintext database. The most efficient ones such as binary search or half-interval

search [27] have logarithmic complexity. But in the case of an encrypted search, the search algorithm has linear complexity

as it does not see the search term in plaintext and thus has to go through all of the database entries. A linear encrypted search

operation is shown in Algorithm 2. The table to be searched is represented as an array of 2l elements and the elements are

accessed using the l-bit index variable. We assume that the table entries (i.e. the search data in any location) are of p bit. The

encrypted search keyword K is a string of l ciphertexts ki. In the start phase, the algorithm computes the encryptions e0 and

e1 of bit-0 and bit-1 respectively (line 2 and 3), and then initializes the accumulator R to a string of p encryptions of bit-0

(line 4). Next, in the search phase the for-loop goes through all the indexes of the table. In line 6 the algorithm constructs

an encryption of the one’s complement of index (i.e. index) in the variable C by concatenating the encryptions of the bits

of index. Next the algorithm adds the encrypted one’s complement of the index with the encrypted keyword and obtains T ,

and then cumulatively multiplies the l encrypted bits of T to get a single encrypted bit b (lines 8-10). Note that b will be an

encryption of bit-1 only for the loop index that is equal to the unencrypted search keyword; otherwise b will be an encryption

of bit-0. Now the algorithm fetches the table entry and stores it in the variable D. In the next part of the loop, the algorithm

adds b for each nonzero bits di of D with the encrypted bits ri of the accumulator R. Note that only when the unencrypted

search keyword matches with the index of the search table, this b is an encryption of bit-1, and hence an encryption of the

associated search result is added with the R; for all other indexes, encryptions of zeros are added with the accumulator. In

this way when the for-loop covers all the indexes of the search table, we get an encryption of the search result in R.

Faster linear search on encrypted data

The most costly part in Algorithm 2 is the homomorphic multiplication of the l encrypted bits of T in lines 8 to 10. We

reduce the number of homomorphic multiplications with the help of a window based pre-computation technique shown in

Algorithm 3. With a window size w, the given encrypted keyword is split into l/w chunks. For simplicity let us assume that

l is a multiple of w. Then for each chunk of the encrypted keyword, a pre-computation table is constructed. The algorithm

considers all 2w w-bit indexes: first an encryption of the one’s complement of the index is added to the keyword-chunk to obtain

T , and then the w encrypted bits in T are multiplied together to obtain the ciphertext b. Next b is stored in the precomputation

table.

The search algorithm 4 uses the pre-computation tables to speedup computation. The loop index is split into l/w chunks in

lines 4-5, and then the pre-computation tables corresponding to the chunks are accessed in line 6 to perform the cumulative

multiplications in line 9. In comparison to Algorithm 2 this algorithm reduces the number of homomorphic multiplications

6



Input: Encrypted search keyword K = {kl−1 . . . k0} and the client’s public key pk
Output: Encrypted search result R = {rp−1 . . . r0}
begin1

R← {e0, . . . , e0};2

for index = 0 to 2l − 1 do3

for i = 0 to l/w − 1 do4

chunki ← {indexiw+w−1 . . . indexiw} ;5

b← precomp0[chunk0];6

for i = 1 to l/w − 1 do7

temp← precompi[chunki];8

b← mul(b, temp);9

D ← table[index];10

for i = 0 to p− 1 do11

if di = 1 then12

ri ← add(ri, b);13

end14

Algorithm 4: Precomputation assisted linear encrypted search

within the search loop by a factor w. The new algorithm requires additional memory to store the 2w l
w precomputed table

entries.

V. IMPLEMENTATION

In this report we implement a fast architecture for the proposed recryption box and then use this box to assist an encrypted

search engine running on a server machine. The search algorithm is written in high level C and the recryptio box is implemented

as a hardware module running on Xilinx ML605 board. The search engine performs homomorphic evaluations on the encrypted

data. When the number of homomorphic evaluations reaches the maximum depth supported by the parameter set of the

homomorphic encryption scheme, the search engine blinds the encrypted data and then sends it to the recryption box over a

Gigabit Ethernet channel. After a recryption, fresh encrypted data is sent back to the search engine.

A. Parameter set used in the implementation

We use the FV scheme [11] as the homomorphic encryption scheme. We target fastest computation time and at least 90-

bit security. Since the computation time of the FV homomorphic encryption scheme has almost a quadratic-complexity with

respect to the multiplicative depth, we chose a parameter set that supports the minimum multiplicative depth, i.e. the depth

one. Following [16] we set the dimension of the polynomial ring Rq to n = 1024, the modulus q to a 40-bit integer, and the

parameter s of the discrete Gaussian distribution to 11.32. This parameter set has 96-bit security [1].

B. Algorithmic optimizations for efficient architecture

The basic computations in the FV encryption and decryption are discrete Gaussian sampling, polynomial addition and

multiplication, and decoding-encoding. Among the arithmetic operations, polynomial multiplication is the costliest one. We

use the NTT algorithm 1 to perform polynomial multiplication in the most efficient way. For the chosen parameter set, integer

arithmetic operations are performed with respect to a 40-bit modulus q. To achieve faster processing through parallelization,

we use the Chinese Remainder Theorem (CRT) to split 40-bit arithmetic into two parallel 20-bit arithmetic operations. We

take the modulus q as a product of two 20-bit primes q0 = 878593 and q1 = 890881. Since both q0 and q1 are congruent to 1

modulo 2n, we use the negative-wrapped convolution for faster NTT computation. With the application of CRT each operation

modulo q during a polynomial arithmetic turns into two parallel 20-bit operations modulo q0 and q1. Note that the security of

the encryption scheme does not get affected by this choice for q.

This parallel nature of the algorithm is very useful since the underlying hardware platform is also parallel. Hence two

computation threads modulo q0 and q1 run in parallel. Beside this parallel processing, there is an another advantage of splitting

the computation into two half-sized integers. Xilinx Virtex 6 FPGAs have fast but small 25×18 DSP multipliers. Hence a

20-bit coefficient can be easily processed by the small DSP multipliers (with some additional logic elements). Moreover smaller

integer size is also very helpful to keep a pair of coefficients of a residue polynomial in one BRAM address and reduce the

memory access overhead by using Algorithm 2 of [24] for the memory efficient NTT computation (shown in the Appendix).

We need only one 36K BRAM slice to store a residue polynomial with two coefficients in one address.

Though CRT allows parallel processing, it has the overhead of inverse-CRT computation whenever the computation demands

arithmetic in modulo q. For the proposed recryption box, inverse-CRT is required only during the decoding phase of the FV

decryption operation. This is because the decoding operation needs to compare the coefficients with q/4 and 3q/4. However,

for our application this inverse-CRT computation is actually not a major overhead since we only need to decode the least

significant coefficient of the ciphertext polynomial, and it is known that the remaining coefficients decode to zeros. This is

because of the fact that we encrypt only one bit in a ciphertext using the FV homomorphic scheme, and the encrypted bit

remains in the least significant coefficient of the ciphertext. Hence we compute the inverse CRT only once. Note that all of

the remaining arithmetic operations in the FV encryption and decryption can be performed on the CRT-represented shares.
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Fig. 1. Architecture of The Recryption Box

C. Architecture

The internal architecture of the processor part of the recryption box is shown in Fig. 1. The processor has two symmetric

polynomial arithmetic and logic units (PALUs) for performing residue arithmetic modulo q0 and q1 in parallel. The PALUs are

designed following the footprint of the compact ring-LWE encryption architecture proposed in [24]. Each PALU is connected

to a memory file that keeps the residue polynomials.

1) PALUs: Each PALU has modular multiplier, modular addition and subtraction circuits to perform arithmetic operations

on the input coefficients during a polynomial operation. The integer multipliers inside the modular multipliers are implemented

using DSP multipliers. For the modular reduction of the integer multiplication result, we have used window based modular

reduction technique. This modular reduction technique does not depend on the choice of the 20-bit prime modulus and is thus

generic. The critical path of the PALU is through the modular multiplier and then through the addition (or subtraction) circuit.

We split the critical path in almost equal delay sections using pipelines and achieve high operating frequency.

During an NTT computation on a residue polynomial, the control logic follows the memory efficient NTT (Algorithm 5 in

Appendix) and processes two coefficient-pairs (A[k+ j +m/2], A[k+ j]) and (A[k+m+ j +m/2], A[k+m+ j]) (i.e. four

coefficients) simultaneously excluding the last loop.

In this architecture we do not store the fixed twiddle factors, and instead compute them on the fly during an NTT operation.

The small ω-ROM stores the log(n) twiddle factors ωm (line 4 in algorithm 1) to generate the new twiddle factors (line 12).

The modular multiplier circuit is reused for computing coefficient wise multiplications, and the modular addition/subtraction

circuit is reused for coefficient wise addition/subtraction operations during polynomial arithmetic.

D. Inverse CRT

The inverse CRT combines two residues and computes the coefficient modulo q. Let a0 and a1 be the two residues. Then

the equation for the inverse CRT computation is shown below.

a = [a0 · q
−1
1 ]q0 · q1 + [a1 · q

−1
0 ]q1 · q0 mod q (2)

In the above computation [q−11 ]q0 , q1, [q−10 ]q1 , and q0 are constants. Hence we store these constants in the PALUs. The PALU

for the residue q0 computes [a0 · q
−1
1 ]q0 · q1 part of Eq. 2 and the other PALU computes the remaining part. The first PALU

computes in two steps: first it computes [a0 · q
−1
1 ]q0 using the modular multiplier, then it multiplies this 20-bit result with

q1 to get the 40-bit integer multiplication result [a0 · q
−1
1 ]q0 · q1. The other PALU associated with the modulus q1 computes

[a1 · q
−1
0 ]q1 · q0 in a similar way. These two 40-bit outputs from the two PALUs are added together using the adder in the

Inverse CRT block (Fig. 1). Next the 41-bit addition result is reduced by the 40-bit q by performing one subtraction. The

Decode-Encode block in Fig. 1 compares the inverse CRT output with q/4 and 3q/4 and then encodes the coefficient to either

0 or q/2. Note, that this inverse CRT is performed only once as we need to decode-encode only the least significant coefficient

in the FV decryption.
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E. The Memory

The memory of the recryption box consists of two independent memory files (Fig. 1) for the two PALUs. Each of the two

memory files contains six RAM blocks M0, M1, M2, M3, M4 and M5, each containing 512 words. The coefficients of residue

polynomials are kept as pairs in these RAM words. Each of these six RAM blocks consumes one 36K BRAM slice. During

a recryption operation, the box’s share of the client’s secret key is loaded in M0, and the clients public key is loaded in M1

and M2. Since these keys are constants for a client, they are kept in the NTT domain to avoid unnecessary computation.

In the decryption phase, RAM blocks M3 and M4 are used to store the two polynomials c0 and c1 of the ciphertext. Hence

a forward NTT of M3 is computed followed by a coefficient-wise multiplication of M0 and M3, and then the result is stored

in M3. Next an inverse NTT is computed on M3 and this ends the polynomial multiplication in the multiparty decryption

operation.

During the encryption phase, the encoded message is kept in M3. The noise polynomial e1 is generated in M4, then added

with the encoded message and finally the result is kept in M3. Another noise polynomial u is generated in M5. The two

polynomial multiplications pk0 · u and pk1 · u are kept in M4 and M5.

F. The Discrete Gaussian Sampler

The DGS uses the Knuth-Yao algorithm [15] to generate the samples. The sampler is based on the hardware architectures

proposed in [25], [24], [23] and designed for the discrete Gaussian distribution parameter 11.32. The precision and tail bounds

of the designed sampler architecture satisfy a statistical distance of 2−90 from the accurate discrete Gaussian distribution. The

probability bits of the sample points are stored in the Probability ROM in Fig. 1 in a column-wise manner. During a Knuth-Yao

random walk, the probability bits are scanned bit-by-bit using a register ScanReg. The random walk needs random bits and the

bits are supplied by a set of true random number generators (TRNGs). Since the speed of the sampling operation is critical for

the encryption operation, the sampler architecture follows the lookup table method from [24] to reduce the number of cycles.

This lookup table method uses the fact that the probability of hitting a sample point is large in the beginning of a Knuth-Tao

random walk. Hence, the lookup tables store the outcomes of the random walks for all possible strings of random bits of small

length. During the sampling operation, a string of random bits is used to address the lookup tables. With large probability,

the lookup operation outputs a sample point. If the lookup operation fails to output a sample point, then the slow bit-by-bit

scanning of the probability bits from the Probability ROM is performed. We use two lookup tables following [24] and the

failure probability of a lookup operation is only 0.0016. We keep a set of nine parallel TRNGs to supply the random bits.

G. The Ethernet Communication Unit

The Xilinx ML605 development board has a single physical networking interface which is wired to the FPGA. This FPGA has

four Embedded Tri-Mode Ethernet MAC cores [29] which are present in the silicon of the FPGA (hard-cores). To incorporate

such a core in the design, the Xilinx CORE Generator is used to provide wrapper files which help to configure and interface

the Ethernet MAC. Because high throughput is required and all the wiring between the physical interface (PHY) and the MAC

on the FPGA are present, the Gigabit media-independent Inteface (GMII) is used.

Using the wrapper files (as generated by the Xilinx IPCore tool) to interface the hard-core MAC provides an easy-to-use

interface, consisting of four signals: the data vector (8-bit wide), a data-valid signal, a data-user, and the data-last signal. For

a more detailed explanation on these signals and their usage, the reader is referred to the Xilinx documentation [29], [28].

VI. RESULTS

We have implemented the encrypted search (Algorithm 4) as the target application for performance evaluation. The search

algorithm is a software program written using high-level C with GMP library for long integer arithmetic, and runs on a powerful

server that has Intel(R) Xeon(R) CPU E5-2687W v3 with 40 cores running at 3.10GHz. During an encrypted search operation,

the search engine, i.e. the server machine sends noisy ciphertexts to the third party recryption boxes over a gigabit Ethernet

channel. The recryption boxes are implemented on Xilinx FPGA boards ML605. This board comes with a powerful Virtex 6

FPGA and a gigabit Ethernet for external communication [30].

In this implementation, we have restricted the size of the search table to 216 entries. Thus the index of the search table has

16 bit width. We use an 8-bit window size in Algorithm 4. With this window size, the index variable in Algorithm 4 consists

of two chunks, and hence only one homomorphic multiplication is required per iteration of the search loop. This is also very

helpful in reducing the network traffic between the search engine and the recryption boxes, because the parameter set of the

homomorphic scheme supports only one multiplication, and with only one multiplication per iteration of the search loop, the

search engine does not need to refresh its encrypted data. The recryption boxes are required only during the precomputation

phase of the encrypted search operation (Algorithm 3). Since this precomputation phase has a very small computation overhead

with respect to the actual search loop, the network communication overhead is not a big issue.

The high level software implementation takes 21 seconds to perform one encrypted search operation. To know the actual

effect of the proposed recryption box assisted encrypted search model, we have also implemented an encrypted search software
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TABLE I
AREA OF THE RECRYPTION BOX ON XILINX VIRTEX-6 XC6VLX240T-1FF1156 FPGA

Component Resource Used Avail. Percentage

Recryption box Slice Registers 2,684 301,440 0.9 %
Slice LUTs 3,379 150,720 2.3 %
BlockRAM36k 12 416 2.9 %
DSP48 4 768 0.5 %

Processor Slice Registers 1,848 301,440 0.6 %
Slice LUTs 2,751 150,720 1.8 %
BlockRAM36k 12 416 2.9 %
DSP48 4 768 0.5 %

TABLE II
LATENCIES AND TIMINGS AT 125 MHZ

Operation Clocks Time

NTT 7181 0.0575 ms
INTT 9910 0.0793 ms
Coefficient wise add 1032 0.0083 ms
Coefficient wise mul 1040 0.0083 ms
Gaussian sampling 1080 0.0086 ms
Inverse CRT 28 0.0002 ms

Decryption 19191 0.153 ms
Encryption 34385 0.275 ms

Recryption † 53576 0.428 ms
† The recryption box is instantiated in the first mode (i.e. with key switching)

or in the second mode (threshold sharing) with th = 1.

that does not use the recryption boxes. The parameter set for this implementation supports the full multiplicative depth of

the encrypted search, and has polynomial dimension n = 4096, modulus size 141 bits, and Gaussian distribution parameter

s = 11.32. The security analysis following [1] gives 96 bit security for this parameter set. The software takes 6 minutes and 40

seconds to perform an encrypted search on the same server machine, which is roughly 20 times slower than with the recryption

box.

We have used mixed Verilog and VHDL to describe the recryption box architecture and have compiled the architecture using

the Xilinx ISE 14.7 tool with a constraint file. The area requirements of the recryption box architectures are shown in Table

I. The processor part of the recryption box consumes around 1.8% of the slice LUTs and 0.6% of the registers available in

the FPGA. For the recryption box architectures, the additional area requirement is mostly due to the Ethernet wrapper and the

small components that are used to perform the communication between the FPGA and the computer.

The latencies of different operations are shown in Table VI. In the design constraint file the operating frequencies of the

clocks were set to 125MHz; both the Ethernet wrapper and the arithmetic unit run at 125 MHz, but using different clock

domains. From the table we see that the most computation intensive operations are NTT and INTT. A decryption operation

computes one NTT, one coefficient wise multiplication and one INTT, one coefficient wise addition, inverse CRT followed

by a decode-encode of one coefficient. Thus it takes around 0.153 ms. An encryption computes additional discrete Gaussian

sampling operations and thus takes slightly more amount of time that the decryption operation. One recryption operation is

basically a decryption followed by an encryption and thus takes around 0.428 ms, excluding the cost of data transfer between

the FPGA and the host computer. To know the overall time (data exchange + computation) of one recryption operation, we

measured the actual timing from the FPGA board using a counter, and found this to be 0.6 ms.

To get a sense of comparison with the actual bootstrapping operation, we consider the FHE implementation on an Intel

Core i7 processor running at 3.4GHZ in [6]. The authors in [6] implement the FHE scheme over integers and choose a very

large parameter set to support the bootstrapping operation. One bootstrapping operation requires 172 s to refresh encrypted

data. In comparison, using the proposed single-processor recryption box we can refresh a ciphertext in only 0.6 ms; this is

roughly 2.8 × 105 times faster than the bootstrapping operation in [6]. Moreover the efficiency gain is not only restricted to

the cleaning of the encrypted data. The large parameter set used in [6] also slows down the homomorphic multiplication and

addition operations. One homomorphic multiplication in [6] takes 0.72 s; whereas for our parameter set it takes roughly 11

ms on a single core running at 3.1 GHZ.

VII. CONCLUSIONS AND FUTURE WORK

In this report we have proposed a recryption box model to assist fully homomorphic function evaluation. This recryption box

is used to bypass the costly bootstrapping operation and achieve an order of magnitude speedup in homomorphic evaluation

time. We described two possible instantiations of the recryption box and analyzed their security and ease of use. In our opinion,

the main advantage of the recryption box is that the costly bootstrapping mechanism is no longer required, and therefore with

this we can reduce the parameters of the somewhat homomorphic encryption scheme and achieve near practical evaluation
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time. We demonstrated the soundness of our proposal by implementing a recryption box assisted encrypted search that achieves

nearly twenty times speedup with respect to an implementation that does not use a recryption box.

We see several possibilities to improve the proposed work. In this work we designed the architecture for the recryption

algorithm. In real life situations, the recryption box should have strong countermeasures against side channel and fault attacks.

This is because the recryption box stores a share of the private key and performs partial decryptions using this share. Beside

this, we could accelerate the encrypted search algorithm by designing dedicated hardware accelerators for the search engine.

This will be specially helpful since the time for a homomorphic operation can be reduced by an order of magnitude using

hardware accelerators.
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[20] T. Pöppelmann, M. Naehrig, A. Putnam, and A. Macias. Accelerating homomorphic evaluation on reconfigurable hardware. Cryptology ePrint Archive,

Report 2015/631, 2015. http://eprint.iacr.org/.
[21] O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In Proceedings of the thirty-seventh annual ACM symposium

on Theory of computing, STOC ’05, pages 84–93, New York, NY, USA, 2005. ACM.
[22] S. S. Roy, K. Jarvinen, F. Vercauteren, V. Dimitrov, and I. Verbauwhede. Modular hardware architecture for somewhat homomorphic function evaluation.

Cryptology ePrint Archive, Report 2015/337, 2015. http://eprint.iacr.org/.
[23] S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede. Compact and side channel secure discrete gaussian sampling. Cryptology ePrint Archive,

Report 2014/591, 2014. http://eprint.iacr.org/.
[24] S. Sinha Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede. Compact ring-lwe cryptoprocessor. In L. Batina and M. Robshaw, editors,

Cryptographic Hardware and Embedded Systems CHES 2014, volume 8731 of Lecture Notes in Computer Science, pages 371–391. Springer Berlin
Heidelberg, 2014.

[25] S. Sinha Roy, F. Vercauteren, and I. Verbauwhede. High Precision Discrete Gaussian Sampling on FPGAs. In Selected Areas in Cryptography – SAC

2013, Lecture Notes in Computer Science, pages 383–401. Springer Berlin Heidelberg, 2014.
[26] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers. In H. Gilbert, editor, Advances in Cryptology

— EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 24–43. Springer, 2010.
[27] L. F. Williams, Jr. A modification to the half-interval search (binary search) method. In Proceedings of the 14th Annual Southeast Regional Conference,

ACM-SE 14, pages 95–101, New York, NY, USA, 1976. ACM.
[28] Xilinx. LogiCORE IP Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC wrapper (ug800), 3 2011. http://www.xilinx.com/support/documentation/ip\

documentation/ug800\ v6\ emac.pdf.

11



[29] Xilinx. Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC (ug368), 3 2011. http://www.xilinx.com/support/documentation/user\ guides/ug368.pdf.
[30] Xilinx. ML605 Hardware User Guide, 2012. http://www.xilinx.com/support/documentation/boards\ and\ kits/ug534.pdf.

APPENDIX

Input: Polynomial a(x) ∈ Zq [x] of degree n− 1 and n-th primitive root ωn ∈ Zq of unity

Output: Polynomial A(x) ∈ Zq[x] = NTT(a)

begin1

A← BitReverse(a); /* Coefficients are stored in the memory as proper pairs */2

for m = 2 to n/2 by m = 2m do3

ωm ← m-th primitiveroot(1) ;4

ω ← squareroot(ωm) or 1 /* Depending on forward or backward NTT */ ;5

for j = 0 to m/2 − 1 do6

for k = 0 to n/2− 1 by m do7

(t1, u1)← (A[k + j + m/2], A[k + j]) /* From MEMORY[k+j] */ ;8

(t2, u2)← (A[k + m + j + m/2], A[k + m + j]) /* MEMORY[k+j+m/2] */ ;9

t1 ← ω · t1 ;10

t2 ← ω · t2 ;11

(A[k + j + m/2], A[k + j])← (u1 − t1, u1 + t1) ;12

(A[k + m + j + m/2], A[k + m + j])← (u2 − t2, u2 + t2) ;13

MEMORY [k + j] ← (A[k + j + m], A[k + j]) ;14

MEMORY [k + j + m/2]← (A[k + j + 3m/2],A[k + j + m/2]) ;15

ω ← ω · ωn ;16

m← n ;17

k← 0 ;18

ω ← squareroot(ωm) or 1 /* Depending on forward or backward NTT */ ;19

for j = 0 to m/2− 1 do20

(t1, u1)← (A[j + m/2], A[j]) /* From MEMORY[j] */ ;21

t1 ← ω · t1 ;22

(A[j + m/2], A[j])← (u1 − t1, u1 + t1) ;23

MEMORY [j]← (A[j + m/2], A[j]) ;24

ω ← ω · ωm ;25

end26

Algorithm 5: Iterative NTT : Memory Efficient Version [24]
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