

University of Birmingham

Constant-time discrete Gaussian sampling
Karmakar, Angshuman; Roy, Sujoy Sinha; Reparaz, Oscar; Vercauteren, Frederik;
Verbauwhede, Ingrid
DOI:
10.1109/TC.2018.2814587

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Karmakar, A, Roy, SS, Reparaz, O, Vercauteren, F & Verbauwhede, I 2018, 'Constant-time discrete Gaussian
sampling', IEEE Transactions on Computers, vol. 67, no. 11, pp. 1561-1571.
https://doi.org/10.1109/TC.2018.2814587

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Final published version available via DOI: 10.1109/TC.2018.2814587

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Apr. 2024

https://doi.org/10.1109/TC.2018.2814587
https://doi.org/10.1109/TC.2018.2814587
https://birmingham.elsevierpure.com/en/publications/5c6f4170-d75d-4ad3-b39a-fdc7cb7653f7

Constant-time Discrete Gaussian Sampling
–authors’ version–

Angshuman Karmakar, Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren,
and Ingrid Verbauwhede

KU Leuven ESAT/COSIC and Imec
Kasteelpark Arenberg 10 bus 2452, B-3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be

Abstract. Sampling from a discrete Gaussian distribution is an indis-
pensable part of lattice-based cryptography. Several recent works have
shown that the timing leakage from a non-constant-time implementa-
tion of the discrete Gaussian sampling algorithm could be exploited to
recover the secret. In this paper, we propose a constant-time implemen-
tation of the Knuth-Yao random walk algorithm for performing constant-
time discrete Gaussian sampling. Since the random walk is dictated by
a set of input random bits, we can express the generated sample as a
function of the input random bits. Hence, our constant-time implemen-
tation expresses the unique mapping of the input random-bits to the
output sample-bits as a Boolean expression of the random-bits. We use
bit-slicing to generate multiple samples in batches and thus increase the
throughput of our constant-time sampling manifold. Our experiments on
an IntelR© i7-Broadwell processor show that our method can be as much
as 2.4 times faster than the constant-time implementation of cumulative
distribution table based sampling and consumes exponentially less mem-
ory than the Knuth-Yao algorithm with shuffling for a similar level of
security.

Keywords: Knuth-Yao, Constant-time sampling, Lattice-based cryptography,
Discrete Gaussian Sampling

1 Introduction

Public-key cryptography (PKC) eliminated one serious drawback of otherwise
highly efficient symmetric-key cryptography, namely requirement of key estab-
lishment among all the communicating parties or the existence of a central key
distribution authority. PKC overcomes this problem by disseminating a global
public-key and a secret private-key. The security of such public-key cryptosys-
tems are assured by underlying computationally hard problems. Since the dis-
covery of the Diffie-Hellman [DH76] key exchange protocol, the popularity and
utility of PKC has grown steadily over the past few decades. Currently, primi-
tives derived from RSA and ECC are used extensively for public-key cryptogra-
phy on a wide range of devices. In comparison to symmetric-key cryptography,

the major drawbacks of PKC are larger key sizes and slower running time. To
get the best of both worlds, contemporary security protocols use both schemes
in tandem for highly efficient and secure digital security solutions.

Unfortunately, large-scale quantum computers running Shor’s [Sho97] and
Proos-Zalka’s [PZ03] algorithms can solve the underlying hard problems of RSA
and ECC. In this scenario, lattice-based PKC [Reg04,Ajt96] has become an at-
tractive choice to provide digital security in the post-quantum world. The confi-
dence in security of such schemes arises from the fact that unlike RSA and ECC,
there is no known algorithm that can use quantum computers to efficiently solve
the underlying hard problems of lattice-based cryptography. Hard lattice prob-
lems like Learning with errors (LWE) [Reg04], Short Integer Solutions [Ajt96]
and their ring equivalents R-LWE, R-SIS [LPR10,Mic07] are some of the promi-
nent choices to build various lattice-based cryptography protocols. In fact, there
exists a wide variety of cryptography primitives that can be built on top of these
problems. Examples are, digital signature schemes [DDLL13,BLN+16,ABB+16],
public-key encryption [LPR10,LP11], key-exchange protocols [ADPS16,BCD+16],
identity-based encryption [GPV08,CHKP10,ABB10a,ABB10b], fully homomor-
phic encryption [BV11,BGV14,Bra12,Gen09] etc. The other features which make
lattice-based cryptography a suitable alternative are, proven worst case to av-
erage case reduction of lattice problems and somewhat simpler operations than
other PKC schemes.

LWE is a system of approximate linear equations with the secret key being
the solution of the system. LWE uses noise to hide its secret values, without
which the system can be easily solved using Gaussian elimination. This noise is
typically sampled from a discrete Gaussian distribution. Sampling from such a
distribution generally involves either storing a large table of precomputed values
or computing the exponential function to a very high precision (binomial sam-
pling in BLISS [DDLL13] avoids calculating exponential function by storing a
precomputed table and rejection sampling). Hence, Gaussian sampling accounts
for a non-negligible share of resources and computation time in a lattice-based
cryptography implementation. For example, in the case of BLISS [DDLL13]
and Lyubashevsky’s [Lyu12,WHCB13] signature scheme, the Gaussian sampling
alone takes about 35% and 50% of the total running time of the signature al-
gorithms respectively. Since the dawn of lattice-based cryptography, a lot of re-
search has been performed to reduce the storage and computational overhead of
sampling [Pei10,DN12,DDLL13,BCG+14,DG14,RVV14]. Yet the discrete Gaus-
sian sampler is arguably most vulnerable to side channel attacks in a lattice-
based cryptography implementations. Currently, as lattice-based cryptography
is becoming more efficient and being implemented in a wide variety of devices,
it is imperative to make the sampling secure against side channel attacks. Dif-
ferent methods have been proposed to make the sampling efficient and resource
friendly, but there is a lack of research to make the Gaussian sampling secure
against side-channel attacks.

This was not a cause for a serious concern as there was no attack available
that could efficiently exploit the side channel leakage information against the

cryptosystem. Recently, Bruinderink et al. [GBHLY16] has described a very ef-
fective side channel attack on the software implementation of the BLISS digital
signature scheme. They exploited the irregular cache memory access pattern of
the Gaussian sampler to extract information about the secret key and used the
LLL lattice reduction [LLL82] algorithm on this information to mount the attack.
The attack requires only 450 signatures to recover the secret key of the BLISS
signing algorithm. A prior work by Roy et al. [RRVV14] analyzed timing and
power leakage from discrete Gaussian sampling in the context of public-key en-
cryption and proposed a countermeasure based on random shuffling. Pessl [Pes16]
analyzed the shuffling-based countermeasure in detail and proposed a profiled
side channel attack that can recover the key by observing only 7,000 signatures.
The author proposed to use Gaussian convolution in conjunction with shuffling
to increase side channel resistance. Constant-time table scanning [BCNS15] or
the random shuffling methods can eliminate or mitigate the side channel leak-
age, but they come with a performance cost. We also note that, due to the side
channel vulnerability of discrete Gaussian sampling, currently there is a trend to
design lattice-based cryptography schemes that do not use Gaussian sampling in
the performance critical parts of the schemes [BLN+16,ABB+16]. These schemes
however require more arithmetic operations and a larger modulus for security.

1.1 Our Contributions

In this paper, we describe a method to sample from a discrete Gaussian distri-
bution securely1. Our contributions can be summarized as follows.

• Almost all of the currently known ‘efficient’ sampling algorithms use data-
dependent branches and hence their execution time varies depending on the
data. In this work, we avoid any data-dependent branching to achieve con-
stant time execution. More precisely, we analyze the Knuth-Yao discrete
Gaussian sampling [DG14] and observe a unique mapping between the out-
put sample values and the input random bits of the sampling algorithm. We
utilize this observation to express the output sample values as a Boolean
function of the input random bits. During sampling, each of these Boolean
functions are evaluated in constant-time to generate each sample, thus mak-
ing the sampling procedure a constant-time operation. This is described in
Section 3.1.

• In Section 3.2, we show how we can exploit a bit-slicing methodology to
generate samples in batches. This increases the throughput by the order of
the word length of a processor. This enhancement in performance is achieved
by carefully tweaking the way random input bits are stored and utilizing bit-
wise operators and the wide data path of modern processors.

• In Section 3.3, we analyze the constant-time behaviour of our sampler in
practice. We analyze the effect of a smart compiler on the constant-time
execution of our sampling routine. We also provide constant-time behaviour

1 Source codes available at https://github.com/Angshumank/const gauss

of our method on different levels of design abstraction at algorithm level,
instruction level, register-transfer (RT) level, logic level etc.

• In Section 4, we compare our method to other secure discrete Gaussian sam-
plers for a similar level of security. We provide an experimental comparison
of run times using a C implementation on a Intel R© i7-6600 Broadwell pro-
cessor. Additionally, we describe a method to split a discrete Gaussian dis-
tribution with large standard deviation into many smaller discrete Gaussian
distributions with smaller standard deviation.

• Finally in Section 5, we provide a side channel analysis of our sampling
algorithm.

2 Discrete Gaussian Sampling

In this section, we provide a brief discussion on discrete Gaussian sampling and
different methods to generate samples from such distribution.

2.1 Definition

The probability distribution function DZ,σ of a discrete Gaussian distribution
defined over Z with mean µ = 0 and standard deviation σ is defined as,

DZ,σ(X = z) =
1

S
e−z

2/2σ2

.

Here X is a random variable defined over Z and S is the normalization constant,
defined as,

S =

∞∑
x=−∞

e−x
2/2σ2

≈ σ
√

2π.

To generate samples over Z, it is sufficient to generate samples over Z+ and
use a single random bit to determine the sign due to the symmetry of discrete
Gaussian distribution across its mean.

Ideally, the support of a Gaussian distribution has a range (−∞,∞), but
in most practical applications it is neither feasible nor required to generate
samples from this range. Instead, tail-cut factor τ is used to generate sam-
ples from a smaller interval [−τσ, τσ], ignoring other values beyond this in-
terval that have very low probabilities of occurrence. Also, as the probabilities
of DZ,σ(x), x ∈ [−τσ, τσ] are real numbers, their binary expansions can be in-
finitely long. Therefore in practice, the probabilities are calculated only up to a
certain precision λ depending upon the requirement of the application. For most
lattice-based cryptographic applications the values of τ and σ are chosen as 12
and 128 respectively, such that the generated samples are statistically very close
to the ideal Gaussian distribution. Traditionally, statistical distance had been
used in the literature to measure this closeness. But recently the work of Bai et
al. [BLL+15] has shown that the value of τ can be reduced to as low as 6 using
the Rényi divergence as the closeness measure for some applications.

2.2 Sampling from a discrete Gaussian

Sampling from a continuous Gaussian distribution has a wide range of appli-
cations in different fields of natural science, social sciences, mathematics, and
engineering. Hence, it has been studied extensively for long time. Sampling
from a discrete Gaussian distribution is a comparatively less studied topic.
Since the start of their use in lattice-base cryptography, several methods have
been proposed to sample from a discrete Gaussian distribution. Some of them
are rejection sampling [DN12], cumulative distribution table (CDT) based sam-
pling [Pei10], discrete Ziggurat sampling [BCG+14], Knuth-Yao sampling [DG14],
and Bernoulli sampling [DDLL13]. Among these methods, the rejection sampling
does not require any storage of precomputed tables but requires many random
bits and many repetitions. Hence, it does not perform very well in practice. Al-
most all other methods use precomputed tables and binary search for efficient
sampling. Here we discuss CDT sampling and Knuth-Yao sampling as these
two methods can be more efficiently [HKR+16] instantiated as leakage-resistant
sampling algorithm than others.

The CDT based sampling: The CDT based sampling precomputes a cu-
mulative distribution function (CDF) table T for i ∈ [−τσ, τσ] according
to the given discrete Gaussian distribution with λ bits of precision, such that
T [i+1]−T [i] = Dσ(i). The sampling phase of the algorithm is basically a search
operation on the CDF table T . First, a random r ∈ [0, 1) is generated then
the table T is searched to find an s, such that T [s + 1] ≥ r > T [s]. If such an
s is found, it is returned as the sample. To reduce the storage requirement for
the sampling, only the interval [0, τσ] ∈ Z+ needs to be searched, as explained
in Section 2.1. To improve the efficiency, binary search or improved versions of
binary search such as binary search with guide table [PDG14,DB15] are used.
However, in such methods the irregular table access pattern of binary search
makes the sampling process vulnerable to cache-timing attacks which was used
by Bruinderink et al. [GBHLY16].

The Knuth-Yao sampling The Knuth-Yao [KY76] sampling algorithm was
proposed to generate samples from any source with a known probability distri-
bution. The sampling algorithm uses a rooted binary tree which in this context
is also known as a discrete distribution generation (DDG) tree. The DDG tree
is constructed from the probability matrix, which is a matrix constructed from
the samples in the support of the distribution and their corresponding binary
expanded probabilities up to a certain precision. The probability matrix and the
DDG tree are related as follows: the number of leaf nodes in the DDG tree at
the ith level is equal to the Hamming weight of the ith column of the probability
matrix. Each leaf node of the DDG tree corresponds to a sample in the sample
space. An example of the probability matrix and the corresponding DDG tree is
shown in Fig. 1 for an arbitrary toy distribution with a sample space S consisting
of only four samples.

1

2

3

0 1 1 0

0 1 0 1

0 0 1 0

0 0 1 1

0
p

p

p

p

I

21

1
0

0

1
0

1

2 3

0

I I

1
0

1

0

1

0

R

1

I
I

0

Fig. 1. A Probability matrix and the DDG tree corresponding to it. The random bits
{0, 1} are used to traverse the tree starting from the root.

The sampling operation is a random walk on the DDG tree. The random walk
starts from the root and at each non-leaf node a random bit is used to determine
the direction of the random walk in the left or right sub-tree. The random walk
stops when it hits a leaf node and the corresponding sample is returned. Here,
the non-constant running time and branching during the random walk expose
the cache vulnerability of the sampling operation.

Dwarakanath and Galbraith [DG14] first adapted the Knuth-Yao algorithm
to sample from a discrete Gaussian distributions. Their work was later extended
by Roy et al. [RVV14] with a more simplistic design methodology and reduced
memory requirement. We refer the interested readers to their work for further
details.

2.3 Previous works

As noted in Section 1, there has not been much research on the construction
of constant-time Gaussian samplers, largely because of non-existence of efficient
side-channel attacks. However, the existing non constant-time Gaussian samplers
can be used for secure Gaussian sampling by applying some simple countermea-
sures. In this section we briefly revisit them.

Constant-time table access The table-based Gaussian samplers use binary
search for efficiency, which also makes them vulnerable to timing attacks. These
algorithms can be converted to secure sampling algorithms by replacing the bi-
nary search with constant-time linear search of the whole table. This removes
the cache-weakness of the binary search. But this countermeasure does not per-
form very well in practice. Linear search of the whole table incurs a significant
penalty in performance. Bos et al. [BCNS15] used this method for a leakage-
resistant Gaussian sampling in their key-exchange scheme.

Shuffling Constant-time table access for Knuth-Yao sampling is more com-
plicated and inefficient than the other table-based sampling methods. Roy et
al. [RRVV14] proposed a method to mitigate the problem of side-channel leak-
age of the Knuth-Yao sampler using extra memory. Their method caches the
first k columns of the probability matrix in a table with 2k entries. The table
entries are either a sample value or an intermediate position in the DDG tree.
The sampling operation of this algorithm can be divided in a secure and a non-
secure part. In the secure part, the algorithm generates a k bit random index
and looks for the entry in the table. If the entry is a sample value, then it is
returned. In the non-secure part, if the table entry holds a position in the DDG
tree, then a random walk is commenced from that position to find a sample. In
this scenario, the algorithm leaks the absolute values of the samples due to the
difference in timing to find a sample. As a second countermeasure, the authors
suggest a random permutation of the leaked and non-leaked samples after the
sampling to obfuscate the locations of the samples from the attacker. Also, as the
security of this method depends on the number of columns cached, the memory
requirement increases exponentially with an increase in the levels of security.

For the sake of completeness, we should also mention here that it is possible
to create a constant-time Knuth-Yao sampler by scanning the probability matrix
table fully for each sample using Alg.1 in [RVV14]. But, in this case the number
of items to be scanned is very large and the performance becomes poor. We
discuss this further in Section. 4.

Fixed step binary search Howe et al. [HKR+16] proposed a fixed step binary
search for secure Gaussian sampling. In their proposal, the binary search always
runs for O(log(n)) steps where n is the size of the table, irrespective of whether
the sample has been found in a previous step or not. While this method may
work for some specific platforms, it is not a generic solution for constant-time
sampling. The binary search will leak secrets on a wide variety of platforms due
to irregular memory access patterns.

3 Constant-time Knuth-Yao sampling

In this section, we analyze the Knuth-Yao sampling algorithm. We describe
our observation on correlation between samples and input random bits. Based
on this observation we propose a constant-time Knuth-Yao discrete Gaussian
sampling. We also propose an optimization scheme to increase the throughput
of our sampling algorithm. We conclude the section with an analysis of our
constant-time sampler on different levels of execution.

Choice of sampling algorithm At this point, we describe our rationale for
choosing the Knuth-Yao algorithm for constant-time sampling. During our ini-
tial investigation for a constant-time Gaussian sampler, we found two possible
methods to devise a constant-time sampler. One is the simple constant-time lin-
ear table search, the other method is to express each sample as a function of

input bits and then execute the function in constant-time to calculate each sam-
ple. The former method is a well known method and has been used before. But,
there is no precedence in the literature of the latter method for constant-time
sampling. For the second method we require a well defined mapping from the in-
put random bits to the output samples. We found that due to the random-walk
nature of Knuth-Yao sampling it is easier to find such a mapping (explained
later) and hence a function that can be executed efficiently to find samples from
the input random bits. We also stress that we do not claim that such an efficient
functions cannot be derived from other sampling algorithms. Further research in
this field may yield such efficient functions from other sampling algorithms too.

Other reasons for choosing the Knuth-Yao algorithm are its efficiency and
low entropy consumption. The Knuth-Yao and CDT (or its variants) are very
popular choices for implementation of lattice-based cryptographic schemes due to
their very efficient performance across different platforms. Howe at al. [HKR+16]
has also recommended Knuth-Yao and CDT for constant-time discrete Gaussian
sampling.

3.1 Our observation: mapping random bits to samples

As explained in Section 2.2, the Knuth-Yao sampling is a random walk that
starts from the root of a DDG tree and terminates when it hits a terminal
node (Fig. 1). At each node, a random bit is used to select the sub-tree which
will be explored in the next step. Hence, the path from the root of the tree to
each terminal node is determined by a unique bit string. As each terminal node
corresponds to a sample in the sample space, there exists a mapping from the
set of random bit strings to the sample space.

Clearly, this mapping is many-to-one as shown in Fig. 2. For example in
Fig. 1, sample 0 is returned when the bit strings are 01 or 110. Or, if the random
bits are extracted from random bit strings of length 4 then sample 0 is returned
when the bit string is 01xx or 110x, where x can be either 0 or 1. Using the above
observation, we can formulate the bits si of the sample s as a binary function
of the random bit strings (r = r0 · · · rn−1) as Eq. (1), assuming the samples can
have maximum m bits and the probability matrix has n columns.

s0 = f0(r0, r1, · · · , rn−1)

s1 = f1(r0, r1, · · · , rn−1)

...

sm−1 = fm−1(r0, r1, · · · , rn−1)

(1)

To calculate a bit si of a sample, the respective binary expression f i ap-
plies the corresponding set of binary operators on the input random bit string
(r0r1 · · · rn−1) irrespective of its value. Hence, for any ith bit si of the sample,
the computation time ti is always the same for any random input bit-string r.
As an illustration, the toy distribution given in Fig. 1, the sample space has

 .

 .

f
i

r

r

r
0

1

0

1

n−1

Fig. 2. Mapping f i : {0, 1}n → {0, 1} from set of random bit strings to the bits of
samples

only 4 samples, hence m = 2 and n = 4. All possible input of bit-string of
length n = 4 bits and their corresponding output sample for this distribution
are shown in Table 1.

r0 r1 r2 r3 s1 s0 r0 r1 r2 r3 s1 s0
0 0 0 0 0 1 1 0 0 0 1 1
0 0 0 1 0 1 1 0 0 1 1 1
0 0 1 0 0 1 1 0 1 0 1 0
0 0 1 1 0 1 1 0 1 1 1 0
0 1 0 0 0 0 1 1 0 0 0 0
0 1 0 1 0 0 1 1 0 1 0 0
0 1 1 0 0 0 1 1 1 0 1 0
0 1 1 1 0 0 1 1 1 1 0 1

Table 1. Input-Output table for the arbitrary distribution in Fig. 1

Using Karnaugh map minimization, we can calculate the sample bits (s0, s1)
as,

s0 = r̄0r̄1 ∨ r0r̄1r̄2 ∨ r0r1r2r3

s1 = r0r̄1 ∨ r0r1r2r̄3

It is worth noting that to ensure constant-time sampling, all the binary operators
should be fully applied in the order specified in Eq. (1) for each sample regardless
of the input random bit string. We use a bit-slicing methodology and bit-wise
operators for this purpose. This will be explained in Section 3.3.

Each sample can thus be generated in constant-time by computing each of
its bits in constant-time. Unlike other Gaussian sampling methods, this method
neither requires a large precomputed table nor expensive computations. However,
this method requires a larger program memory to store the formulae f i.

3.2 Batching the sampling process

Bit-slicing is a Single Instruction Multiple Data (SIMD) operation to improve
the efficiency of a programme by exploiting data level parallelism. Starting from

Biham’s implementation of DES [Bih97], cryptographers have been using this
method to speed up the execution of their algorithms for long time. Also, imple-
mentations using bit-slicing offers some immunity against side-channel attacks.
Earlier, this method has been used for fast and side-channel secure AES imple-
mentations [KS09,RSD06].

In this section, we describe a method to speed up our sampling by generating
multiple samples in a batch using bit-slicing. We utilize bit-wise Boolean oper-
ators on full processor words to achieve this. As shown in Eq. (1), each sample
bit can be written as a function of n random bits. In the simplest approach, we
can store the n random bits in dn/we variables, where w is the word length of
the processor and compute the sample bits by extracting the random bits from
variables as required. This way of generating sample bits is very inefficient and
has a very low throughput.

However, using an efficient storage of random bits we can greatly improve
the throughput. Let’s assume, we want to generate k samples. So according to
Eq. (1), we need nk bits. To store these bits efficiently such that we can use
bit-slicing, we take n variables each of which stores k bits. The bit j ∈ [0, k− 1]
of the ith variable i ∈ [0, n − 1] represents the input random bit ri for sample
jth as in Eq. (1). In other words, the ith variable stores all the ith input random
bits to generate k samples (Fig. 3). We can then apply the bit-wise operators on
these variables as indicated by Eq. (1). Alternatively, we can rewrite Eq. (1) as

s′0 = f0(var0, var1, · · · , varn−1)

s′1 = f1(var0, var1, · · · , varn−1)

...

s′m−1 = fm−1(var0, var1, · · · , varn−1)

(2)

Where each variable s′t contains the tth sample bits st, t ∈ [0,m− 1] of the
k samples. These variables are then used to extract the output sample bits to
construct k samples. Here, evidently the maximum value of k is the word size w
of the processor.

Therefore, using bit-wise Boolean operations and efficiently organizing the
storage of input random bits, we can generate w samples simultaneously. This
is explained in Fig. 3.

In Table 2, we show the performance of our bit-sliced sampler (σ ≈ 6.15543)
on an 2.66 GHz Intel R© i7-6600 Broadwell processor (w = 64) for different levels
of precision

3.3 Analyzing the constant-time execution

We ensure constant-time execution of the Boolean expressions by executing them
till the end, i.e. not terminating them early depending on the data. Consider the
following toy example where we compute

o = (a) ∧ (b ∨ c). (3)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0
r 1

r
0

0

r

r

k−1

1

0

r
1

1

r
1

k−1

. . .

r

r

r
n−1
k−1

1

n−1

n−1

0

0

0 1 n−1

f

f

0

f
1

0

00

1 1

k−1

0

k−1

. . .

0

sample
1

sample
0

sample
k−1

var var var

k

m−1

m−1

m−1

m−1

m−1

s

0
s

s

s’s’

s

s

s

Fig. 3. Efficient storage of random bits and sample bits for bit-slicing. Here rji repre-
sents ith input random bit of jth sample. Similarly, sji represents ith output bit of jth

sample.

Precision λ 64 96 128

Probability of not finding a sample 2−59 2−91 2−122

Clock-cycles
(excluding random number generation) 4543 7548 11814

Table 2. Time to generate samples for different precision.

Here a, b and c are random bits. If Eq. 3 is computed on a hypothetical 1-bit
machine, then a smart compiler could minimize the computation time by ignoring
the computation of (b∨c) whenever a = 0. In that case the implementation would
not be constant-time.

Now consider a bit-sliced implementation (as explained in Section 3.2) on a
64-bit processor. Here, 64-bit random integers A, B, and C can be considered
as vectors of 64 random bits. Hence the computation of O = (A) ∧ (B ∨ C)
using 64-bit ‘bitwise’ operations would compute all the 64 bits of O in parallel.
Computation of B ∨C becomes unnecessary only when all the bits of A become
zero, which happens with probability 2−64. A smart compiler would never insert
data-dependent branches inside bitwise operations as it would be counterpro-
ductive. Nevertheless, a developer can even write the code in assembly to ensure
no data-dependent branching by compiler.

Secondly, we analyze the timing behaviour of our approach at the circuit-
level abstraction. In Fig. 4 we show a register-gate-level architecture diagram
for computing O = (A)∧ (B ∨C). The output of any ith AND gate would settle

0
c b a c b a

oo
63 0

00636363

Fig. 4. Circuit-level abstraction of O = (A) ∧ (B ∨ C)

early if its input ai is zero. But the register oi that stores the final result will get
updated only after the next clock-edge transition. Since clock frequency of gate-
level circuits is determined by the worst case propagation delay corresponding
to the longest critical path, all of oi are updated simultaneously and indepen-
dently of input data. Hence, our approach is constant-time at the algorithm-level,
instruction-level, and register-transfer-level, but it is non-constant-time at the
gate-level and transistor-level.

4 Performance and comparison

In this section, we compare our method with the CDT based constant-time
algorithm using a C implementation. For the performance measurement, we use
a discrete Gaussian distribution with standard deviation σ ≈ 6.15543. In the
next section, we justify our choice of this standard deviation.

4.1 Splitting the Gaussian distribution

The BLISS-I [DDLL13] signature scheme uses a standard deviation σ = 215.
However, as memory requirement to store the precomputed table increases with
increase in σ, sampling from a Gaussian distribution with such a large standard
deviation is difficult due to large memory requirement. Also, due to the large
precomputed tables, generating samples securely is highly inefficient. Pöppelman
et al. [PDG14] described a method to split this large standard deviation into
two Gaussian distributions with smaller standard deviation and later combin-
ing them to create a distribution with large standard distribution. They used
Kullback-Liebler divergence, which is Rënyi divergence of order 1 [BLL+15] in-
stead of the more usual notion of statistical distance to show that the distribution

Algorithm
Time (in clockcycles)

λ = 64 λ = 96 λ = 128

Excluding pseudo-random
number generation

CDT algorithm 11092 − 28231

Full table KY scan† 11048 19683 31775

Our algorithm 4543 7548 11814

Including pseudo-random
number generation

CDT algorithm 19160 − 42181

Full table KY scan† 11150 19836 31979

Our algorithm 12660 17783 26214

Table 3. Comparison of clock cycles for different constant time sampling with similar
probability of leakage for σ ≈ 6.15543 to generate 64 samples on an 2.66 GHz intel i7-
6600 Broadwell processor using only one core. SHAKE-128 extended output function
has been used for pseudo-random number generation.
† Time to generate one sample only.

created in this way is very close to the actual distribution.We extend their work
by splitting the Gaussian distribution further in 4 smaller distributions.

We discuss the method by Pöppelman et al. very briefly here. To generate
a sample x ← Dσ, two samples x1, x2 ← Dσ1 are generated, and combined as
x1 + k1x2. The σ, σ1 and k1 are related as σ1 = σ√

1+k21
, for σ = 215, k1 = 11

and σ1 ≈ 19.5. The Kullback-Leibler divergence of the sampled data created in
this way from the actual distribution is ≤ 2−128. We split the standard deviation
one more level. We split σ1 such that σ2 = σ1√

1+k22
. Consequently, to generate

a sample x ← Dσ we generate 4 samples x1, x2, x3, x4 ← Dσ2
and combine

them as x = (x1 + k2x2) + k1(x3 + k2x4).
We experimentally checked that setting τ1 = 14 and k2 = 3 produces a

Gaussian distribution with σ2 ≈ 6.15543 which has the desired divergence i.e
less than 2−128 from a Gaussian distribution with σ = 215.

For more details on closeness measures and their impact on security, we refer
the reader to [MW17,PDG14,Pei10].

4.2 Performance

Our fully constant time sampling algorithn i.e precision λ = 128, takes 11814
clock cycles to generate 64 samples from σ ≈ 6.15543 on an Intel R© i7-6600
Broadwell processor running at 2.66 GHz. Hence, to generate 64 samples from
the Gaussian distribution with σ = 215, used in BLISS-I [DDLL13], we need
4 × 64 = 256 samples from σ ≈ 6.15543 i.e 11814 × 4 = 47256 clock cycles

or approximately 738 clock cycles to generate a single sample. If we include the
cost to generate the pseudo-random numbers using SHAKE-128 standardized in
FIPS-202 [oS15], our algorithm takes 26214 clock cycles to generate 64 samples
with λ = 128 and σ ≈ 6.15543 or approximately 1638 clock cycles to generate
a single sample with σ = 215. Our high level implementation in C is only
optimized by -O3 optimization of gcc. For efficiency, the Boolean functions f i

in Section 3.1 used to generate samples should be minimized. We used the logic
minimization tool ESPRESSO [BSVMH84] for this purpose.

As mentioned in Section 2.3, non-constant time methods can be converted
to timing-attack resistant sampling methods using different countermeasures,
which sacrifice their efficiency for security. Also, Howe et al. [HKR+16] has com-
pared and analyzed such constant-time instantiations of different sampling algo-
rithms. Their work shows that Knuth-Yao sampling with shuffle and constant-
time cumulative distribution table (CDT) based methods are the most efficient
for constant-time sampling. In this section, we compare our method with two of
these methods for a similar probability of leakage.

The constant-time CDT sampler accesses all the elements of the CDF table
for each sample. However, for a fair comparison with our method, we provide
performance of CDT sampler for different levels of precision. For precision levels
smaller than 128 instead of accessing the full table for each sample, we let the
sampling method scan a part of the table corresponding to the level of precision.
For instance, in our previous example Gaussian distribution with σ ≈ 6.15543
precision λ = 64, we search only in an interval of [0−39] or [0−6.5σ]. Since the
CDT method performs comparisons between the random string and the table
entries, we use either 64-bit or 128-bit comparisons taking into account the 64-bit
word length of the processor.

As mentioned in Section 3.1, it is also possible to instantiate a constant-time
Knuth-Yao sampling by accessing all the elements of a probability matrix for
each sample using the bit-scanning algorithm described in [RVV14]. But, the
performance of this method is very poor as to generate a single sample it has to
scan a large number of table entries. For example, in the case of our Gaussian
distribution with σ ≈ 6.15543, this method has to scan 6648 table entries to
produce a single sample. We refer to this method as ‘Full Table Scan KY‘.

We implemented all these methods in the C and compiled with -O3 flag
in gcc-5.4 on a laptop with intel core-i7-Broadwell processor running at 2.66
GHz with turboboost and hyperthreading disabled and using only one core. The
results are shown in Table 3.

The Knuth-Yao sampler with shuffling proposed by Roy et al. [RRVV14] is
another method to prevent information leakage from the sampler. The method
is described briefly in Section 2.3. To compare it with our method for a similar
probability of leakage with our sampler with λ = 64, we need k = 64 which
requires an enormous O(264) memory and a massive overhead for linear searching
the table. Moreover, Bruinderink et al. [GBHLY16] suggest that this method
only increases the complexity of their atack. Peter Pessl [Pes16] exploited this

weakness of the sampler to break the BLISS signature scheme with an increased
number of signatures.

Note on memory requirement In our implementation the Boolean expres-
sions are stored in the program memory. To implement the base sampler with
128-bit precision, the Boolean equations have total 18K AND, 5K OR and 11K
NOT operations. Since this method does not require any table, no data memory
is spent for storing tables. In our implementation we generate all the random
bits together and store them in 128 integers of size 64 bits. But it is possible
to reduce the data memory to only 7 integers by generating the randomness on
demand.

5 Evaluation

The implementation from Section 3 follows best-practice guidelines for constant-
time code: constant program flow (no conditional branches), no secret-dependent
memory accesses, and no usage of integer division nor multiplication operations.
However, the fact that the high-level code looks constant time is no guarantee
for the actual execution being constant time. Any piece in the tool chain may
introduce a source of timing variability: in an extreme case, a very clever compiler
would substitute the whole constant-time sampler with a faster, non constant-
time one. Compilers and COTS architectures are currently designed to optimize
for speed, code size, energy or power, but not security.

Thus, we resort to actual measurements to evaluate whether the resulting
executable code runs in constant time on our platform or not. The evaluation of
this section is empirical in nature and thus is bounded to the specific architecture,
compiler and platform used.

5.1 Methodology

To assess timing variability we use leakage detection tests. Leakage detection
tests were introduced by Coron, Naccache and Kocher [CKN00,CNK04] shortly
after the introduction of DPA [KJJ99] and were targeted towards hardware side-
channel evaluations. Nowadays, this technique has been proven to be useful also
for timing variability evaluation. In this section, we follow the methodology and
test code from [RBV17].

Leakage detection for PRNGs Generally speaking, we want to assess whether
or not an adversary gets any advantage in distinguishing output samples from
timing side-channel information. For that, we will deploy timing leakage detec-
tion tests to detect dependency between the execution time of the sampling
procedure and input value to the Gaussian sampler. If the test fails to detect
any dependency, the implementation is deemed secure. Note that the opposite

outcome (there is detected leakage) is a necessary, but not sufficient, condition
for an attack to work.

We design the timing leakage detection test as follows. We define two classes
based on the input seed to the Gaussian sampler (that is, the input seed is
treated as secret, and we aspire to detect any leakage dependent on this secret
value). The two classes are defined as this: one class corresponds to a fix seed
value; the other class is defined as a random seed value (fix-vs-random test).
This choice, in contrast to a fix-vs-fix test, is expected to capture a broad set of
leakages [DS16].

5.2 Platform

We perform the following experiments on the same platform from Section 4.2.
We note that cycle counts are performed with the high-resolution Time Stamp
Counter (RDTSC instruction).

7350 7400 7450 7500 7550 7600 7650 7700 7750
clock cycles

0

0.2

0.4

0.6

0.8

1

cd
f

Fig. 5. Timing distribution cdfs for two classes in a fix-vs-random timing leakage de-
tection test.

The first implementation is the constant-time variant of Section 3.2. This
version does not early abort and is meant to be constant time by design. We
carry the evaluation to confirm that this is actually the case, i.e., the compiler or
any other micro-architectural components do not introduce any source of timing
variability.

In Fig. 5 we plot the empirical cumulative distribution functions for both
timing distributions, corresponding to the two classes on input values (fix or
random). The two distributions are actually indistinguishable and their cdfs
overlap. We can see that the distributions are centered around 7450 cycles and
there is a small class-independent variability (≈ 100 cycles). This measurement
noise could be caused by spurious interruptions by the operating system, or by
the processor itself (for example, due to branch mis-predictions). The leakage
detection t-test statistic does not surpass the threshold of ±4.5 and hence does
not detect any leakage with up to 6 million iterations of the bitsliced sampling
process. Various pre-processing options were explored with identical results.

We also perform a Kolmogorov-Smirnov (KS) test. The advantage is that
it may detect that two distributions are different even if they share the same
mean. The value of the statistic is 0.000625 which is lower than the cutoff value
0.001282. Thus, the KS test cannot reject the null hypothesis that both distri-
butions are identical.

6 Conclusion and Discussion

In this paper, we present a constant-time version of the Knuth-Yao sampling
algorithm. We also perform optimization it to make the sampling algorithm
many times faster than existing leakage resistant discrete Gaussian sampling
algorithms. These optimizations do not require any special hardware and can be
implemented on most modern processors.

We are aware that though this method does not require large data memory
to store large precomputed tables, it requires a larger program memory than
other methods, which is not so much problem for desktop computers as it is
for devices with very limited resources. Future research will try to reduce the
program memory by possibly tweaking the minimization procedure of Boolean
functions or devising encoding schemes to reduce the storage of program memory.
These methods may sacrifice its efficiency to some extent but will be suitable
for devices with limited resources.

There are some simple optimizations that could be applied to make the
method more efficient. For example, as our method does not require frequent
external-memory accesses and has a high degree of parallelism, it can be ex-
ploited to design fast constant-time discrete Gaussian sampling on multi-core
processors. Also, minimizations of the Boolean functions has a direct impact
on the efficiency of the sampling algorithm. Our current minimization using
ESPRESSO is not optimal and uses only bitwise AND, OR and NOT opera-
tions. There is a possibility to use different tools to get a better minimization of
the Boolean functions, which will immediately translate into a faster sampling
process. Also, we can see from our results in Table 3 that generating pseudo-
random numbers using SHAKE-128 takes a significant portion of the running
time of the whole sampling operation. It will be interesting to test the per-
formance of the sampler using different pseudo-random number generators. We
leave this for further research.

In this work our focus was a proof of concept implementation and we have
not focused on the optimization of the Boolean equations. In the future we would
investigate efficient encoding techniques for optimizing the memory requirement.

Comparison with [MW17]

A concurrent work by Micciancio and Walter [MW17] proposes an algorithm
that can sample from a discrete Gaussian distribution with arbitrary standard
deviation. The algorithm uses convolution in a recursive fashion to generate
samples from the target distribution by combining several samples from a fixed

and small ‘base’ distribution. The technique is generic because it can sample from
discrete Gaussian distributions with arbitrary standard deviations and centers.
If the base sampler is constant time then sampling from the target distribution
can be performed in constant time. However, the authors make no effort to make
the base sampling operation constant-time and remarks that substantial amount
of design and implementation effort would be required to make their algorithm
constant-time (see Sec. 6.3 of [MW17]). In our work we show a methodology to
perform sampling from the ‘base’ distribution in constant time. In our opinion
these two works complement each other and [MW17] could use our methodology
to achieve truly constant-time discrete Gaussian sampling.

7 Acknowledgements

This work was supported in part by the Research Council KU Leuven: C16/15/058.
In addition, this work was supported in part by the Flemish Government, by the
Hercules Foundation AKUL/11/19, and by the European Commission through
ICT programme under contract through the Horizon 2020 research and innova-
tion programme under contract No H2020-ICT-2014-644371 WITDOM, H2020-
ICT-2014-644209 HEAT, H2020-ICT-2014-645622 PQCRYPTO and Cathedral
ERC Advanced Grant 695305. Angshuman Karmakar was funded by Erasmus
Mundus scholarship.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe
in the standard model. In Henri Gilbert, editor, Advances in Cryptology –
EUROCRYPT 2010: 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, French Riviera, May 30
– June 3, 2010. Proceedings, pages 553–572. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[ABB10b] Shweta ”Agrawal, Dan Boneh, and Xavier” Boyen. Lattice basis delegation
in fixed dimension and shorter-ciphertext hierarchical ibe. In Proceedings
of the 30th Annual Conference on Advances in Cryptology, CRYPTO’10,
pages 98–115, Berlin, Heidelberg, 2010. Springer-Verlag.

[ABB+16] Sedat Akleylek, Nina Bindel, Johannes Buchmann, Juliane Krämer, and
Giorgia Azzurra Marson. An efficient lattice-based signature scheme
with provably secure instantiation. In David Pointcheval, Abderrah-
mane Nitaj, and Tajjeeddine Rachidi, editors, Progress in Cryptology
– AFRICACRYPT 2016: 8th International Conference on Cryptology
in Africa, Fes, Morocco, April 13-15, 2016, Proceedings, pages 44–60.
Springer International Publishing, Cham, 2016.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - a new hope. In Proceedings of the 25th USENIX
Security Symposium, pages 327–343, 2016.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended ab-
stract). In Proceedings of the Twenty-eighth Annual ACM Symposium on
Theory of Computing, STOC ’96, pages 99–108, New York, NY, USA,
1996. ACM.

[BCD+16] Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig, Va-
leria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take
off the ring! practical, quantum-secure key exchange from lwe. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, pages 1006–1018, New York, NY, USA, 2016.
ACM.

[BCG+14] Johannes Buchmann, Daniel Cabarcas, Florian Göpfert, Andreas Hülsing,
and Patrick Weiden. Discrete ziggurat: A time-memory trade-off for sam-
pling from a gaussian distribution over the integers. In Revised Selected
Papers on Selected Areas in Cryptography – SAC 2013 - Volume 8282,
pages 402–417, New York, NY, USA, 2014. Springer-Verlag New York,
Inc.

[BCNS15] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key
exchange for the tls protocol from the ring learning with errors problem.
In 2015 IEEE Symposium on Security and Privacy, pages 553–570, May
2015.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Trans. Comput.
Theory, 6(3):13:1–13:36, July 2014.

[Bih97] Eli Biham. A fast new des implementation in software. In Eli Biham, edi-
tor, Fast Software Encryption: 4th International Workshop, FSE’97 Haifa,
Israel, January 20–22 1997 Proceedings, pages 260–272. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997.

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Ste-
infeld. Improved security proofs in lattice-based cryptography: Using the
rényi divergence rather than the statistical distance. In Tetsu Iwata and
Jung Hee Cheon, editors, Advances in Cryptology – ASIACRYPT 2015:
21st International Conference on the Theory and Application of Cryptology
and Information Security,Auckland, New Zealand, November 29 – Decem-
ber 3, 2015, Proceedings, Part I, pages 3–24. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2015.

[BLN+16] Paulo S. L. M. Barreto, Patrick Longa, Michael Naehrig, Jefferson E. Ri-
cardini, and Gustavo Zanon. Sharper ring-lwe signatures. Cryptology
ePrint Archive, Report 2016/1026, 2016. http://eprint.iacr.org/2016/
1026.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switch-
ing from classical gapsvp. In Reihaneh Safavi-Naini and Ran Canetti, ed-
itors, Advances in Cryptology – CRYPTO 2012: 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
pages 868–886. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[BSVMH84] Robert King Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T. Mc-
Mullen, and Gary D. Hachtel. Logic Minimization Algorithms for VLSI
Synthesis. Kluwer Academic Publishers, Norwell, MA, USA, 1984.

[BV11] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic en-
cryption from (standard) lwe. In 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, pages 97–106, Oct 2011.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees,
or how to delegate a lattice basis. In Henri Gilbert, editor, Advances in
Cryptology – EUROCRYPT 2010: 29th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, French Riv-

iera, May 30 – June 3, 2010. Proceedings, pages 523–552. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[CKN00] Jean-Sébastien Coron, Paul C. Kocher, and David Naccache. Statistics
and secret leakage. In Financial Cryptography, volume 1962 of LNCS,
pages 157–173. Springer, 2000.

[CNK04] Jean-Sébastien Coron, David Naccache, and Paul C. Kocher. Statistics
and secret leakage. ACM Trans. Embedded Comput. Syst., 3(3):492–508,
2004.

[DB15] Chaohui Du and Guoqiang Bai. Towards efficient discrete gaussian sam-
pling for lattice-based cryptography. In 2015 25th International Confer-
ence on Field Programmable Logic and Applications (FPL), pages 1–6,
Sept 2015.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO 2013: 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, pages 40–56. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2013.

[DG14] Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from
discrete gaussians for lattice-based cryptography on a constrained de-
vice. Applicable Algebra in Engineering, Communication and Computing,
25(3):159–180, 2014.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, Nov 1976.

[DN12] Léo Ducas and Phong Q. Nguyen. Faster gaussian lattice sampling us-
ing lazy floating-point arithmetic. In Xiaoyun Wang and Kazue Sako,
editors, Advances in Cryptology – ASIACRYPT 2012: 18th International
Conference on the Theory and Application of Cryptology and Information
Security, Beijing, China, December 2-6, 2012. Proceedings, pages 415–432.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[DS16] François Durvaux and François-Xavier Standaert. From improved leakage
detection to the detection of points of interests in leakage traces. In Marc
Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EU-
ROCRYPT 2016 - 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-
12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes in Computer
Science, pages 240–262. Springer, 2016.

[GBHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval
Yarom. Flush, gauss, and reload – a cache attack on the bliss lattice-
based signature scheme. In Benedikt Gierlichs and Axel Y. Poschmann,
editors, Cryptographic Hardware and Embedded Systems – CHES 2016:
18th International Conference, Santa Barbara, CA, USA, August 17-19,
2016, Proceedings, pages 323–345. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2016.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stan-
ford University, 2009. crypto.stanford.edu/craig.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Proceedings of the
Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08,
pages 197–206, New York, NY, USA, 2008. ACM.

[HKR+16] J. Howe, A. Khalid, C. Rafferty, F. Regazzoni, and M. O’Neill. On practical
discrete gaussian samplers for lattice-based cryptography. IEEE Transac-
tions on Computers, PP(99):1–1, 2016.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99,
19th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes
in Computer Science, pages 388–397. Springer, 1999.

[KS09] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant aes-
gcm. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009: 11th International Workshop Lau-
sanne, Switzerland, September 6-9, 2009 Proceedings, pages 1–17. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[KY76] D. Knuth and A. Yao. Algorithms and Complexity: New Directions and
Recent Results, chapter The complexity of nonuniform random number
generation. Academic Press, 1976.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4):515–534, Dec 1982.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for
lwe-based encryption. In Aggelos Kiayias, editor, Topics in Cryptology –
CT-RSA 2011: The Cryptographers’ Track at the RSA Conference 2011,
San Francisco, CA, USA, February 14-18, 2011. Proceedings, pages 319–
339. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances
in Cryptology – EUROCRYPT 2010: 29th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, French
Riviera, May 30 – June 3, 2010. Proceedings, pages 1–23. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012: 31st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cambridge, UK, April 15-
19, 2012. Proceedings, pages 738–755. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and ef-
ficient one-way functions. computational complexity, 16(4):365–411, 2007.

[MW17] Daniele Micciancio and Michael Walter. Gaussian sampling over the in-
tegers: Efficient, generic, constant-time. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017: 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August
20–24, 2017, Proceedings, Part II, pages 455–485. Springer International
Publishing, Cham, 2017.

[oS15] National Institute of Standards and Technology. 2015. Sha-3 standard:
Permutation-based hash and extendable-output functions. FIPS PUB 202,
2015.

[PDG14] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-
based signatures on reconfigurable hardware. In Lejla Batina and Matthew
Robshaw, editors, Cryptographic Hardware and Embedded Systems –
CHES 2014: 16th International Workshop, Busan, South Korea, Septem-

ber 23-26, 2014. Proceedings, pages 353–370. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014.

[Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In
Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010: 30th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010.
Proceedings, pages 80–97. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

[Pes16] Peter Pessl. Analyzing the shuffling side-channel countermeasure for
lattice-based signatures. In Orr Dunkelman and Somitra Kumar Sanad-
hya, editors, Progress in Cryptology – INDOCRYPT 2016: 17th Interna-
tional Conference on Cryptology in India, Kolkata, India, December 11-
14, 2016, Proceedings, pages 153–170. Springer International Publishing,
Cham, 2016.

[PZ03] J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for
elliptic curves. eprint arXiv:quant-ph/0301141, January 2003.

[RBV17] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. Dude, is my code
constant time? In 2017 Design, Automation & Test in Europe Conference
& Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 2017,
page 14, 2017.

[Reg04] Oded Regev. New lattice-based cryptographic constructions. volume 51,
pages 899–942. ACM, New York, NY, USA, November 2004.

[RRVV14] Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Compact and side channel resistant discrete gaussian sampling.
Cryptology ePrint Archive, Report 2014/591, 2014. https://eprint.

iacr.org/2014/591.pdf.
[RSD06] Chester Rebeiro, David Selvakumar, and A. S. L. Devi. Bitslice imple-

mentation of aes. In Proceedings of the 5th International Conference on
Cryptology and Network Security, CANS’06, pages 203–212, Berlin, Hei-
delberg, 2006. Springer-Verlag.

[RVV14] Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. High
precision discrete gaussian sampling on fpgas. In Revised Selected Papers
on Selected Areas in Cryptography – SAC 2013 - Volume 8282, pages 383–
401, New York, NY, USA, 2014. Springer-Verlag New York, Inc.

[Sho97] Peter W. Shor. Polynomial time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM J. Sci. Statist. Com-
put., 26:1484, 1997.

[WHCB13] Patrick Weiden, Andreas Hülsing, Daniel Cabarcas, and Johannes Buch-
mann. Instantiating treeless signature schemes. Cryptology ePrint
Archive, Report 2013/065, 2013. https://eprint.iacr.org/2013/065.

pdf.

