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Distal Regulatory Elements and DNA Motifs Can Be 
Used to Build Gene Regulation Networks
The regulation of transcription in development is coordinated by 
specific combinations of different transcription factors (TFs) 
that cooperate in the activation of gene promoters and their dis-
tal cis-regulatory elements. TFs coordinate many of the func-
tions and fates of cells, from development to proliferation and 
differentiation, and in response to external signals. Any interfer-
ence in TF-driven developmental programs can potentially trig-
ger the onset of tumorigenesis. TFs are grouped into distinct 
classes based on their DNA-binding domains (DBDs),1 and 
whole families of TFs typically share essentially identical DNA-
binding motifs. The activation of gene expression by distal regu-
latory elements involves cooperation between multiple TFs and 
chromatin modifiers that form large multi-protein complexes 
that replace nucleosomes, generating accessible open chromatin 
regions.2 Gene regulation networks (GRNs) involve the binding 
of TFs to each other’s genes as well as to downstream targets and 
can be inferred by identifying the motifs for TF families within 
specific subsets of open chromatin regions representing potential 
cis-regulatory elements.3 Such elements are typically defined as 
DNase I hypersensitive sites (DHSs) using either DNase I or 
transposase (ATAC) to probe accessible regions.2,4 The interac-
tions between specific TFs and their target genes form specific 
regulatory nodes within the GRNs that define cell types and 
their stages of differentiation. Rapid advances in next-generation 

sequencing and computational modeling together with the rap-
idly increasing volume of genome-wide data deposited on public 
databases provide opportunities for high-quality construction of 
TF networks. Direct approaches, such as chromatin immuno-
precipitation with sequencing (ChIP-Seq),5 enable the identifi-
cation of sites bound by specific individual TF family members 
in living cells and provide valuable insights into gene regulation 
mechanisms.

Subtype-Specific Gene Regulatory Networks in 
Acute Myeloid Leukemia
Acute myeloid leukemia (AML) is a cancer that develops in a 
step-wise manner via the accumulation of different classes of 
DNA mutations starting in blood stem cells that go on to form 
pre-leukemic cells that eventually progress to AML.6 The evo-
lution of cancer cells typically follows the course of either 
mutations in epigenetic modifiers, such as DNMT3A, TET2, 
or IDH1/2, which can promote clonal expansion of stem cells,7 
or mutations in genes controlling differentiation, such as 
RUNX1 and CEBPA, followed by mutations in signaling mol-
ecules such as RAS family genes, and cytokine receptors that 
include KIT and FLT3, which activate RAS to promote prolif-
eration and block apoptosis.8 Signaling mutations, such as 
FLT3-Internal Tandem Duplication (ITD), typically cause con-
stitutive signaling activation, whereas TFs usually acquire loss 
or change of function mutations.
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ABSTRACT: Acute myeloid leukemia (AML) is a highly heterogeneous cancer associated with different patterns of gene expression determined 
by the nature of their DNA mutations. These mutations mostly act to deregulate gene expression by various mechanisms at the level of the 
nucleus. By performing genome-wide epigenetic profiling of cis-regulatory elements, we found that AML encompasses different mutation-
specific subclasses associated with the rewiring of the gene regulatory networks that drive differentiation into different directions away from 
normal myeloid development. By integrating epigenetic profiles with gene expression and chromatin conformation data, we defined pathways 
within gene regulation networks that were differentially rewired within each mutation-specific subclass of AML. This analysis revealed 2 major 
classes of AML: one class defined by mutations in signaling molecules that activate AP-1 via the mitogen-activated protein (MAP) kinase 
pathway and a second class defined by mutations within genes encoding transcription factors such as RUNX1/CBFβ and C/EBPα. By identifying 
specific DNA motifs protected from DNase I digestion at cis-regulatory elements, we were able to infer candidate transcription factors bound to 
these motifs. These integrated analyses allowed the identification of AML subtype-specific core regulatory networks that are required for AML 
development and maintenance, which could now be targeted in personalized therapies.
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It was previously established that AML gene expression 
profiles cluster according to the mutation subclass,9 but the 
GRNs underlying these patterns were unknown. To crack this 
code, it was necessary to delve into the nucleus and determine 
what specific classes of TFs were associated with which DNA 
motifs within deregulated cis-regulatory elements. We initially 
pioneered this approach by focusing on AML associated with 
single classes of mutation. For both FLT3-ITD10 and t(8;21)11 
AML, we identified common sets of distal elements and occu-
pied TF motifs associated with specific patterns of aberrant 
gene expression. For FLT3-ITD AML, chronic mitogen- 
activated protein (MAP) kinase signaling led to the activation 
of genes bound by the AP-1 and RUNX1 TFs. In the case of 
t(8;21) AML, the RUNX1-ETO fusion protein acted as a 
repressor to block the expression of C/EBPα target genes and, 
thereby, differentiation to macrophage lineage cells.

Our recent AML study by Assi et al12 was more ambitious 
and used multiple types of analyses and data to identify TF 
networks in several different mutation subtypes of AML and 
then compared them with each other. Previous studies of gene 
regulation have designated many of the features of TF net-
works and developed technology to study them. Kang et al13 
described a TF network mapping algorithm based on gene 
expression data named as NetProphet 2.0, which combined 
different expression-based network models for better results. 
This algorithm accounts for the fact that TFs with similar 
DBDs with similar amino acid sequences are likely to bind 
similar sets of target genes. It also identified motifs that are 
present in the promoters of target genes and distinguished 
likely target genes from unlikely target genes to improve the 
network map. Parra et  al14 developed the web server 
“INSECT” to predict the occurrence of cis-regulatory mod-
ules which control gene expression using position weight 
matrices (PWMs) to search for TF motifs within a certain 
distance relative to the transcription stat sites (TSS) for 
groups of genes. Kulkarni et al15 also used the PWM approach 
to predict TF regulators and construct gene regulatory net-
works in Arabidopsis. Ramirez et al16 integrated the ATAC-
Seq and RNA-Seq data to generate dynamic gene regulatory 
networks using time course data from the human HL60 cell 
line model of myeloid differentiation. Goode et  al17 inte-
grated data from RNA-Seq, DNaseI-Seq, and ChIP-Seq for 
histone marks and TFs to show that multiple dynamic 
changes to TF networks take place during the differentiation 
of embryonic stem cells into macrophages. A common feature 
of such studies is combining gene expression data with either 
TF motif searches using PWMs13 or using TF binding sites 
identified by ChIP-Seq experiments. One limiting feature of 
these studies is that they typically define TF networks using 
cell line models. More limited studies have been based on 
primary AML samples, mostly using gene expression data 
only, such as The Cancer Genome Atlas (TCGA) study18 and 
the Valk et al9 study.

Assi et al12 determined how the disruption of specific TF 
function and aberrant signaling leads to an altered specific pat-
tern of aberrant chromatin programming and changes in gene 
expression in AML. To achieve this task, it was necessary to 
integrate multiple types of genome-wide data. We addressed 
this question by performing a comprehensive set of genome-
wide analyses on transcriptome by RNA-Seq, digital footprint-
ing by DNaseI-Seq, and chromatin conformation capture data. 
This study used a cohort of 32 AML samples obtained from 
highly purified populations of undifferentiated cells compris-
ing at least 90% leukemic blasts from AML patients with dis-
tinct TF and signaling molecule mutations to define the 
mechanisms of AML-subtype-specific regulatory circuitries. 
To eliminate potentially confounding samples with a signifi-
cant level of subclonal populations, we also ensured that the 
allelic frequency of each mutation was close to the 50% level 
expected for a clonal population, or 100% where both alleles 
were mutated. Acute myeloid leukemia samples were compared 
with non-malignant CD34+ mobilized peripheral blood stem 
cells (PBSCs) and to published data from progenitor cells at 
different stages of lineage commitment.19

Figure 1 provides an overview of the AML-mutation-
specific TF network pipeline used by Assi et al. In step A of 
Figure 1, high-depth DNaseI-Seq data (an average of more 
than 200 million sequence reads) were generated from all 32 
AML samples, with several samples for each mutation-specific 
subset. An all-inclusive high-confidence set of ~128 000 distal 
DHS peaks was then defined by first merging the aligned reads 
from all samples prior to peak calling. This approach was 
designed to maximize the precision and sensitivity of peak 
detection and flatten the background noise, thereby greatly 
reducing the levels of both false-negative and false-positive 
DHS detection. Using this approach, we detected a median of 
~32 000 distal DHSs per sample and normalized the data using 
the value for the peaks ranked by size at 16 000 which was close 
to the median in each case. Unsupervised hierarchical cluster-
ing was then performed using the same set of 400-bp windows 
for all 128 000 regions in each sample. This analysis revealed 
that just 7 classes of mutations allowed the patients to be 
divided into 3 major subsets, and additional minor subsets 
sharing very similar DNaseI-Seq profiles (step A in Figure 1). 
Surprisingly, these profiles were defined based on signaling and 
TF gene mutations alone, whereas commonly mutated epige-
netic regulators, such as DNMT3A, TET2, and IDH1/2, had 
essentially no impact on driving specific patterns of gene 
expression. This was perhaps unsurprising given that, appar-
ently, normal clonal hematopoiesis can arise driven by such 
mutations.7 By also comparing the AML-specific chromatin 
profiles with different types of progenitor cells,19 we demon-
strated that these cells were not simply blocked at a specific 
stage of myeloid differentiation but were rewired in different 
directions altogether, acquiring different identities. The 
BLUEPRINT consortium, using a different patient cohort, 
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recently reached similar conclusions and identified 2 major 
subsets defined by either (1) NPM1 or FLT3 mutations or (2) 
RUNX1 or splicing factor mutations.20 Interestingly, splicing 
factor mutations were also prominent in the RUNX1 mutation 
cluster identified by Assi et al.

In step B of Figure 1, the DNaseI-Seq data were further 
processed to identify the occupied TF motifs using the 
Wellington digital footprinting algorithm,21 as used in our pre-
vious FLT3-ITD and t(8;21) AML analyses,10,11 but not in 
most other AML studies. As an additional vital step in the 
quality control for DNaseI-Seq, we first determined what 
sequence depth was required to achieve consistent and reliable 
footprinting data. We initially noticed that sequence depth 
alone was a poor predictor of how much data were needed to 
efficiently detect footprints (Figure 2A), presumably due to 
variations in background noise. In contrast, the median number 
of reads present in the peaks was a much better indicator, with 
a peak content of ~700 reads being needed for the detection of 
an average of 1 footprint per peak (Figure 2B). For 5 AML 
samples where footprint detection was initially inefficient, we 
were able to increase the sequencing depth (to 190-280 million 

reads) to a point where we could detect in the order of 1 foot-
print per peak (Figure 2C).

As most TFs within the same family recognize essentially 
identical DNA sequences, we needed to compile a non-redun-
dant database of representative motifs covering each TF family. 
Transcription factor network analyses can otherwise be con-
founded by the fact that different TF-specific PWMs get 
defined for individual TF family members when, in reality, they 
bind to the same DNA motif, and different PWMs even get 
defined for the same factor. As typified by a few representative 
members in Figure 2D, the entire ETS family could be con-
densed down to the point where all ETS factors recognized the 
same motif, except for PU.1, which has a distinctive motive. 
Using this approach, we compiled a list of 80 PWMs that 
accounted for all the binding sites for the 284 TF genes that 
were expressed in any of the AML samples or in PBSCs 
included in this study (Supplementary Table 1). This table can 
now be used by others constructing similar networks.

In steps C and D of Figure 1, RNA-Seq and promoter 
capture HiC data were used to infer functional connections 
between TF footprints in DHSs and the active genes they 

Figure 1. Overview of the AML mutation-specific TF network pipeline. Global mapping of DHSs allows for the identification of discrete subsets of DHSs 

associated with specific classes of mutations. High-read depth DNaseI-Seq can be used to infer occupancy of TF motifs within DHSs. Parallel RNA-Seq 

data can be used to identify which potential specific TF family members are likely to be bound to the occupied TF motifs. Regulatory networks can then be 

constructed using promoter capture HiC data to infer which DHSs and TFs are likely to be regulating which active genes. AML indicates acute myeloid 

leukemia; DHS, DNase I hypersensitive site; TF, transcription factor.

https://journals.sagepub.com/doi/suppl/10.1177/1176935119859863
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control. In the absence of HiC data, other GRN studies are 
obliged to simply associate DHSs with the nearest genes. In 
our hands, only 50% of promoter-DHS interactions were in 
fact with the nearest gene. We began by showing that 85% of 
distal DHSs exhibited interactions with at least 1 promoter. 
For the other 15%, we fell back to pairing DHSs with the 
nearest gene. For those DHSs that were deregulated in an 
AML-specific manner, we did find that ~70% of them inter-
acted with the nearest promoter. Finally, in step E of Figure 1, 
we combined footprinting, TF gene expression, and, where 
possible, promoter capture HiC data to construct TF net-
works in different AML subtypes by linking occupied bind-
ing motifs within TF genes to the specific TF families 
recognizing these motifs. Figure 3 summarizes a subset of the 
most significant interactions defined by this approach. These 
networks were further validated using siRNA-mediated 
knock-down of the expression of critical TF genes in AML 
cells. Most significantly, the AP-1 TF family formed a promi-
nent regulatory node in all the AML subsets, and the expres-
sion of a dominant negative form of AP-1 was sufficient to 
block both FLT3-ITD and t(8;21) AML tumor formation in 
mice.12

To add an extra level of complexity to the network analy-
ses, we also determined which different TFs frequently 
cooperate with each other in AML-type-specific patterns. 
We therefore searched for significant co-localizing occupied 
motifs within 50-bp windows. This analysis showed that 
motif occupancy patterns are highly AML type-specific. 
Different AML-subtype-specific TF networks were identi-
fied, highlighting a number of TF genes that form regulatory 
nodes in AML-subtype-specific TF networks of upregulated 
TF genes that change expression at least threefold compared 
with normal cells and appear to have AML-specific path-
ways and roles.

In conclusion, this study integrated multiple types of data to 
identify the major AML subtype-specific TF networks. It 
showed that a specific subset of leukemic drivers is primarily 
responsible for controlling the regulatory phenotypes by creat-
ing specific TF regulatory and signaling networks that are dif-
ferent from those in normal cells. It highlighted a number of 
aberrantly upregulated TF genes, such as FOXC1 and POU4F1, 
which appear to have AML subtype-specific roles, some of 
which were validated as potential therapeutic targets. Moreover, 
our data contain many downstream effector genes regulated by 

Figure 2. Optimization of data used to construct regulatory networks. (A-C) Efficient identification of occupied motifs using Wellington requires high-read 

depth DNaseI-Seq data. Due to the variability between DNaseI-Seq data sets, the read depth alone is insufficient to predict the depth of sequencing 

required to reliably predict footprints (A). In contrast, the median DHS peak volume is a more reliable guide, with a peak volume of ~700 being able on 

average to allow identification of 1 footprint per peak. Because Wellington is based on statistical probabilities, the likelihood of identifying footprints also 

increases in the proportion to overall sequence depth (C). (D) The linking of expressed TFs with their DNA motifs is critically dependent on knowing which 

motifs are likely to be bound by which TFs. Such analyses are often confounded by the overabundance of different motifs ascribed to the same factor, or 

ascribed to individual family members that bind to the same motifs. We circumvented this problem by identifying single representative motifs that can be 

associated with entire subgroups of TFs which bind the same motifs and splitting TF families into subsets based on any substantial differences in PWMs. 

(D) Illustration of this process using annotated HOMER22 and JASPAR motifs to identify similarities and differences among motifs for ETS family TFs. 

HOMER motifs are taken from http://homer.ucsd.edu/homer/motif/HomerMotifDB/homerResults.html and JASPAR motifs are taken from http://jaspar.

genereg.net/. DHS indicates DNase I hypersensitive site; PWM, position weight matrix; TF, transcription factor.

http://homer.ucsd.edu/homer/motif/HomerMotifDB/homerResults.html
http://jaspar.genereg.net/
http://jaspar.genereg.net/
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these TFs, which represent a rich resource of potential drug 
targets. We believe that, based on our study, personalized medi-
cine in AML has now become a step closer.
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