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1. Introduction  
 

Studying the coupled vibration of pile-soil interaction 
systems is of great significance for geomechanics, soil 
dynamics and civil engineering. In recent decades, more 
attention has been directed to the dynamic vibration of piles 
embedded in soil subjected to vertical excitation( Han Das 
2011, Biswas 2013, Sinha 2015). In the dynamic system of 
pile-soil interaction, a number of simplified models have 
been developed by researchers, which require less 
numerical consumption compared with the FE models in 
frequency domain. The Winkler model has been extensively 
employed due to its simplicity, in which soil layers are 
represented by equivalent spring-dashpot elements (Shadlou 
2014). However, the Winkler model has limitations when 
describing the mechanisms associated with wave 
propagation within the pile–soil system( Nogami 1987, Han 
1992, Anoyatis 2012). Novak et al.(1978)presented a plane-
strain model and considered the soil as a series of linear 
visco-elastic thin layers with hysteretic-type damping. In 
fact, the wave propagation in the horizontal direction is not 
considered in the plane strain model. Subsequently, 
Mylonakis (2001) investigated possible reasons for 
unsatisfactory performance of Novak's model. Thus, Hu et 
al.(2004) extended the pile-soil system by accounting for 
both the radial and vertical displacement of the surrounding 
soil layer, in which the surrounding soil is modeled as a 
three-dimensional axisymmetric continuum. Wu et 
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al.(2014,2016) developed a new pile-soil model to take 
account of the wave propagation effect based on a fictitious 
soil pile method. Furthermore, the effect of liquid-saturated 
media on the pile-soil interaction has been investigated by 
several researchers (Fattah 2017). Zhou et al.(2009), Zheng 
et al.(2015) and Cai and Hu (2010)examined the dynamic 
behavior of a foundation in a saturated media subjected to 
transient vertical loading by adopting Biot's theory. Based 
on the theory of porous media, proposed by De Boer et 
al.(1990), some substantial developments have also been 
made by Liu et al.(2009), Yang and Pan (2010) and Cui et 
al.(2016,2018). 

The soil surrounding the pile in the above studies of the 
pile-soil system is assumed to be a radially homogeneous 
medium. In practice, however, there may exist a disturbed 
zone in the soil with radial inhomogeneity immediately 
surrounding the pile due to construction disturbance(Novak 
1990, Dotson 1990, Vaziri 1993, Ghazavi 2013). Novak and 
Sheta (1980) investigated the vertical and torsional 
vibration of a footing in radially inhomogeneous soil by 
developing a simple massless boundary zone model. 
Subsequently, Veletsos and Dotson (1986,1988) proposed 
an extended boundary zone model accounting for the inertia 
effect of the mass and investigated the vertical and torsional 
vibration of foundations in this weakened inhomogeneous 
media. In order to eliminate the wave reflection from the 
interface with the boundary zone, Han and Sabin (1995) 
proposed a simplified model for this weakened boundary 
zone without any reflective effect, in which the material 
modulus and damping coefficient were assumed to vary 
parabolically. In addition, EI Naggar (2000) proposed a 
method of investigating the strengthening effect on the 
complex stiffness function of the soil layer by dividing the 
boundary zone into concentric annular sub-zones. However, 
Yang et al. (2009) found that EI Naggar’s model had 
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limitations when estimating the complex stiffness, which 
assumed each sub-zone to be modeled as multiple springs 
connected in series. Hence, Wang et al. (2012) proposed a 
new model to consider the continuity of displacement and 
stress at the sub-zone interface by combining it with the 
complex stiffness method. Subsequently, Li et al. (2016)  

extended Wang's model to analyze the vertical vibration of 
a large-diameter monopile in radially inhomogeneous 
material.  

Recently, different types of pipe piles have been 
extensively applied in civil engineering. Unlike solid piles, 
both the effects of the outer and inner soil on the pile shaft 
should be considered to analyze the dynamic interaction 
behavior of the pile and soil. Some substantial 
developments of piles embedded in radially homogeneous 
soils have been made by some investigators. For example, 
Ding et al.(2011) derived an analytical solution for the 
vibration characteristics of large-diameter pipe piles in a 
visco-elastic soil under vertical excitation. This was used to 
investigate the effect of vibratory modes on the high-
frequency wave components of low strain testing 
considering the material damping as viscous type. 
Subsequently, Zheng et al. (2016a, 2016b) derived an 
analytical solution for the vertical dynamic response along 
the cross-section of pipe piles in homogeneous visco-elastic 
soil accounting for the three-dimensional wave effect and 
viscous-type damping. Moreover, Ding et al. (2014,2015) 
proposed a new model to describe the wave propagation in 
a large-diameter pipe pile under an axial point load by using 
Winkler's model with a viscous-type damping in the 
surrounding soil. As for studies on the dynamic behavior of 
pipe piles in radially homogeneous soil, Li et al.(2017)  

derived an analytical solution for the dynamic impedance at 
the head of large-diameter pipe piles in a soil with radial 
inhomogeneity by using a hysteretic-type damping model.  

It is noted that most of the aforementioned studies 
employ hysteretic-type damping to represent the material 
damping, which is independent of frequency, and it has 
limitations in describing the dynamic response of related 
problems subjected to non-harmonic loads in the time 
domain. In contrast, the viscous-type damping is suitable 

for describing the dynamic response of pile vibrations 
subjected to generalized modes of dynamic load in the time 
domain(Nogami 1976, Militano 1999). 

Based on an extensive review of the literature, it is 
evident that little work has been devoted to the dynamic 
response of pipe piles in a visco-elastic soil with radial 
inhomogeneity accounting for viscous-type damping. The 
main purpose of this paper is to propose a new mechanical 
model for the vertical dynamic response of a pipe pile 
considering the radial inhomogeneity of longitudinally 
layered visco-elastic soil by extending Novak’s plane-strain 
model and complex stiffness method based on viscous-type 
damping. In addition, the corresponding analytical solutions 
for the dynamic impedance, the velocity admittance and the 
reflected signal of the wave velocity at the pile head are 
determined and verified by the comparison with existing 
solutions. An extensive parametric analysis has also been 
performed to discuss the effects of shear modulus, viscous 
damping coefficient, the coefficient of degree of 
disturbance, the weakening or strengthening range of the 
surrounding soil and the longitudinal soft or hard 
interbedded layer on the velocity admittance and the 
reflected signal of the wave velocity at the pile head. 

 
2. Mechanical model 

 
The following assumptions are employed in this paper. 
(1) The pile is linear elastic with a circular cross-

section and the soil beneath the pile toe is simplified as a 
Kelvin-Voigt model. 

(2) The outer surrounding soil of the interaction 
system consists of two annular zones, an inner disturbed 
zone and an outer undisturbed zone with semi-infinity.  

(3) The inner annular zone of disturbed soil is divided 
into a series of sub-zones. For a given layer, the soil 
properties within different annular sub-zones are radially 
inhomogeneous. 

(4) The frequency-dependent viscous-type damping is 
used to describe the inside and outside soil of pipe pile. 

The plug effect is not considered in the model, which is 
suitable for cast-in-situ pipe pile.

  
(a) (b) 

Fig. 1 Mechanical model 
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The deformations of the pile and surrounding soil are 
small. The equilibrium of shear stress and the continuity of 
displacement are both satisfied at the interfaces between 
pipe pile, adjacent annular zones and sub-zones of the 
surrounding soil. 

The mechanical model of the pile-soil interaction system 
is shown in Fig.1(a) and (b). The pile-soil system is divided 
into m layers or segments numbered 1, 2, . . ., i, . . ., m from 
the toe of the pile to the pile head. The thickness of the ith 
soil layer is il , and the depth of the upper interface of the 
ith soil layer is ih . The inner and outer radius of the ith pile 
segment are 0ir , 1ir , respectively. The radius and radial 
thickness of the disturbed zone within the ith soil layer are 

)1( +nir and ib , respectively. The inner disturbed zone is 
subdivided into n concentric sub-zones numbered 1, 2, ..., 
j , ..., n along the radial direction. The radius of the interface 
between the (j-1)th and jth sub-zones within the ith soil 
layer is represented by ijr .  

The undisturbed zone of the surrounding soil is 
homogeneous, isotropic and visco-elastic with viscous-type 
damping. Within the disturbed zone of the ith layer, ( )rGij  
and ( )rijη  are given by the expressions (1) and (2). 
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where ijG , ijη are the shear modulus and viscous 
damping coefficient of the jth annular sub-zone within the 
ith layer, respectively. )(rfi  denotes the parabolic 
variation of the material properties within the disturbed 
zone of the ith layer (Han 1995, EI Naggar 2000, Wang 
2012). The shear modulus and viscous damping coefficient 
of each sub-zone are considered to be homogeneous, and 
can be determined by Eqns. (1) and (2). 

The mechanical coefficients of the Kelvin-Voigt model 
are represented by δp and kp,. The uniform distributed 
excitation at the pile head is denoted by )(tp . 

Based on Novak’s plane-strain model (Novak 1978), the 
governing equation for the jth inner annular sub-zone of 
disturbed zone within the ith layer of outer soil is given by 
Eqn. (3).  

1 1 1

1 1
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2 2
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where ( )tru S
ij ,1  represents the vertical displacement of the 

jth annular sub-zone within the ith layer of the disturbed 

soil. ijG , ijη and ijρ denote the shear modulus, the viscous 
damping coefficient and the mass density of the jth annular 
sub-zone within the ith layer of the disturbed zone, 
respectively. 

Similarly, the governing equation for the ith layer of 
inside soil can be expressed as  

0 0 0
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where ( )tru S
i ,0  denotes the vertical displacement of inner 

soil within the ith layer. 0iρ , 0iG  and 0iη  are the mass 
density, the shear modulus and the viscous damping 
coefficient of the ith layer of inner soil. 

The governing equation for the ith pile segment is 
expressed as  

0 12 2
0 1

2 2

( , ) 2 2 ( , )S SP P P
i i i i i i i

P P P P P
i i i i i

u z t r f r f u z t
z E A E A E t

π π r∂ ∂
− − =

∂ ∂
 (5) 

where ( )tzu p
i ,  denotes the vertical displacement of the ith 

pile segment. P
iρ , p

iE and P
iA are the mass density, the 

Young’s modulus and the cross-sectional area, respectively, 
of the ith pile segment. 0S

if and 1S
if are the shear stresses 

exerted by the inner soil and surrounding soil on the ith pile 
segment, respectively. 

The following assumptions are also used in this paper. 
The displacement continuity and shear stress equilibrium 

at the interface between the pile shaft and the inner soil are 
written as  

( )0
0 0( , ) ,S P

i i i iu r t u r t=  (6a) 

( )0 0

0i

S S
i i r rf rτ ==  (6b) 

The displacement at the outermost zone of the outer soil 
diminishes at infinity within the ith layer can be expressed 
as  

( )
1

1lim ( , ) 0S
i nr

u r t+→∞
=  (7) 

The displacement continuity and shear stress equilibrium 
conditions at the interface between the pile shaft and the 
surrounding soil are given as  

( )1
1 1 1( , ) ,S P

i i i iu r t u r t=  (8a) 

( )1 1

11 i

S S
i i r rf rτ == −  (8b) 

The boundary condition at the pile head is 

0
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where p
mE  and p

mA  are the Young’s modulus and the cross-
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sectional area of the mth pile segment, respectively. 
The boundary condition at the pile toe is 

1 1
1 p 1 p

( , ) ( , )
( ( , ) )

P P
P P

z H

u z t u z tE k u z t
z t

δ
=

∂ ∂
= − +
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 (10) 

where p
1E  and p

1A are the Young’s modulus and the cross-
sectional area of the first pile segment, respectively. 

 
3. Solutions of the governing equations 

 
3.1 Vibration of the surrounding soil 
 
Applying the Laplace transform to Eq.(3) yields 

1 1 1
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where 1 ( , )S
ijU r s is the Laplace transform of 1 ( , )S

iju r t . 
After rearranging the terms in Eq.(11), then Eq.(12) is 

obtained as 
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+
. 

The general solution of Eq.(12) can be obtained as 

1 1 1 1 1
0 0( , ) ( ) ( )S S S S S

ij ij ij ij ijU r s A K q r B I q r= +  (13) 

where 
1

0 ( )S
ijI q r  and 1

0 ( )S
ijK q r  are the modified Bessel 

functions of the first and second kinds of zero order, 
respectively. 1S

ijA  and 1S
ijB  are undetermined coefficients. 

According to the boundary conditions and the continuity 
of displacement at the interfaces between sub-zones, the 
recursion formula of the vertical stiffness can be easily 
given by  
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the corresponding derivation for 1S
ijKK  is expressed in the 

Appendix I. 
3.2 Vibration of the inner soil 

 
Applying the Laplace transform to Eq.(4) yields 
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where 0 ( , )S
iU r s is the Laplace transform of 0 ( , )S

iu r t . 
After rearranging the terms in Eq.(15), then Eq.(16) is 

obtained as 
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The general solution of Eq.(16) is given by  
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where 0S
iA and 0S

iB are undetermined coefficients. 
The displacement of inner soil is a limited value if r=0, 

namely, ( ) ∞<
→0

,0

r

S
i tru . Hence, 0S

iA =0. 

Then, Eq.(17) can be reduced to 
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Applying the Laplace transform to Eq.(6a) and 
combining with Eq.(18) leads to 
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where ( , )P
iU r s is the Laplace transform of ( , )P

iu r t .  

 
3.3 Vibration of the pipe pile 
 
Performing the Laplace transform to Eq. (5) and 

combining with Eq.(14) and (19) gives 
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The general solution for Eq.(20) 
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where i i ilα α= ， P
iC and P

iD  are undetermined coefficients. 
By using the recursion method of the transfer function, 

the complex impedance of the vertical displacement at the 
pile head is derived as  

( )
( )0 1

1
m

m
P P P P
m m m mmP P

m mz h
m m m

E A E A
Z Z

l l
α β
β= =

− − −
=

+
′=  (22) 



 
Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation 

where 11
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mZ ′ can be further rewritten as 

iP
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where rK and iK denote the true stiffness and the equivalent 
damping, respectively. 

The corresponding derivation for the complex 
impedance of the vertical displacement is expressed in the 
Appendix II.  

The frequency response function of the vertical 
displacement at the pile head can be easily given by  
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Given s=iω ( 12 −=i )，the frequency response function 
of the vertical velocity at the pile head can obtained as  
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where vH ′  is a dimensionless frequency response function 
of the vertical velocity at the pile 

head， P P P
m m mV E ρ= ， cTθ ω= ， P

c mT H V= ，

m m
P

mt l V= ， m m ct t T= . 
Taking a transient semi-sine wave ( )Tt ≤≤0  as the 

transient excitation applied on the pile head, the time-
domain function of the velocity response at the pile head 
can be derived by inverse Fourier transform:  
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and T are the excitation amplitude and impulse width, 
respectively; cT T T′ = denotes the dimensionless impulse 
width; ( )P iω  is the Fourier transform of ( )p t . 
 
 
4. Results and discussions 

 
In this section, numerical results are presented to 

demonstrate the validity of the obtained analytical solutions 
and to investigate the vertical dynamic response of a pipe 
pile embedded in longitudinally layered visco-elastic soil 

with radial inhomogeneity. It is observed that stable 
solutions can be derived if the number of the annular sub-
zones n >10, by EI Naggar (2000) and Wang et al. (2012). 
To accurately describe the variation of radial 
inhomogeneity and reduce wave reflection from the 
interfaces of adjacent sub-zones, the number of the annular 
sub-zones n is taken as 20 in the following analyses. It 
follows the assumption that the shear velocity ijV  varies 
linearly from the outer undisturbed zone to the first sub-
zone of the disturbed zone along the radial direction for the 
ith layer. Hence, the corresponding soil shear modulus 

ijijij VG ρ2=  changes in a quadratic sense. The variation in 
the viscous damping coefficient ijη is also assumed to 
change quadratically from the outer undisturbed zone to the 
first sub-zone of the disturbed zone along the radial 
direction within the ith layer. In addition, the coefficient of 
degree of disturbance within the ith layer iξ is defined as 

)1(1)1(1 ++ == niiniii GG ηηξ =Vi1/Vi(n+1) (27) 

Unless otherwise specified, the following parameter 
values are used: 0ir =0.38m, 1ir =bi=0.5m, 

P
iρ =2500kg/m3, P

iE =25GPa; H=6m, kp=1000kN/m3, 

δp=100kN.s/m2, 32000kg/m=ijρ , Vi(n+1)=50m/s, 
ηi(n+1)=10kN.s/m2, iξ =2.0, m=5, n=20. The shear 
modulus 0iG and the viscous damping coefficient 0iη of the 
inner soil are identical with the corresponding parameters of 
the first annular sub-zone within the ith layer. 

 
4.1 Comparison with existing solutions 
 
The complex impedance solution expressed in Eq.(23) 

can be reduced to describe the vertical vibration of a pipe 
pile in homogeneous soil by setting 1→iq . Therefore, 
based on the same parameters, the solution of P

mZ ′  can be 
verified by comparing it with the existing solution of Ding 
et al. (2009). It is illustrated in Fig. 2 that the present 
solution of complex impedance with different values of pile 
length H is in very good agreement with that proposed by 
Ding et al. (2009). The solution of P

mZ ′  can also be 
reduced to describe the vertical vibration of a solid pile 
embedded in radially inhomogeneous soil by setting 

00 →ir . It is noted that a viscous-type damping is adopted 
for the present solution, which is different from the 
hysteretic-type damping used for the solution of Yang et al. 
(2009). To perfectly match the parameters, the effect of 
material damping is not considered in the following 
comparison with the existing solution of Yang et al. (2009) 

as shown in Fig. 3. It is clear that the present solution with 
different values of pile length H agrees well with the 
solution of Yang et al. (2009). Therefore, the accuracy of 
the present solution is validated with these independent 
comparisons.  

http://www.so.com/link?url=http%3A%2F%2Fdict.youdao.com%2Fsearch%3Fq%3Dquadratically%26keyfrom%3Dhao360&q=quadratically&ts=1512840607&t=6ee8d6bbba1ad58bf311cd0c53c6319
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Fig. 2 Comparison of the complex impedance in reduced form (qi→1) with the solution in Ding et al. (2009) 
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Fig. 3 Comparison of the complex impedance in reduced form (ri0→0) with the solution in Yang et al. (2009) 
 
4.2 Parametric study and discussion 
 
4.2.1 Effect of disturbance degree for radial inhomogeneity 
The surrounding soil of pipe pile is radially 

inhomogeneous due to construction disturbance. The 
coefficient of degree of disturbance within the ith 
layer iξ (i=1, 2, ... , 5) is defined by Eq.(27). It is indicated 
that the soil layer is weakened due to construction 
disturbance within the disturbed zone if 1<iξ . While, the 
soil layer is strengthened within the disturbed zone if 

1>iξ . Different coefficients of degree of disturbance 
corresponding to weakening cases W1-W4 are given in 
Table 1. In particular, case W4 indicates that the 
surrounding soil is radially homogeneous without 
construction disturbance. Figure 4 shows the effect of soil 
weakening within the disturbed zone due to construction 
disturbance corresponding to cases W1-W4 listed in Table 
1. It can be observed that the degree of weakening of the 
surrounding soil due to construction disturbance has an 
obvious effect on the dynamic response at the pile head. 
Specifically, with the degree of weakening of the disturbed 
zone increasing, the oscillation amplitudes and resonance 
frequencies of the velocity admittance, and the amplitudes 
of the reflected signal increase. Different coefficients of 
degree of disturbance corresponding to the strengthening 
cases S1-S4 are given in Table 2. The coefficients of degree 

of disturbance for a homogeneous surrounding soil are 
applied in case S1. The effect of soil strengthening within 
the disturbed zone due to construction disturbance 
corresponding to cases S1-S4 is depicted in Fig. 5. It can be 
observed that the dynamic response at the pile head depends 
significantly on the degree of strengthening of the 
surrounding soil due to construction disturbance. In 
contrast, with the degree of strengthening of the disturbed 
zone increasing, the oscillation amplitudes and the 
resonance frequencies of the velocity admittance, and the 
amplitudes of the reflected signal decrease. 

 
Table 1 Coefficients of degree of disturbance corresponding 
to weakening cases W1-W4 

Case ξ1 ξ2 ξ3 ξ4 ξ5 
W1 0.60 0.55 0.50 0.45 0.40 
W2 0.80 0.75 0.70 0.65 0.60 
W3 1.0 0.95 0.90 0.85 0.80 
W4 1.0 1.0 1.0 1.0 1.0 

 
Table 2 Coefficients of degree of disturbance corresponding 
to strengthening cases S1-S4 

Case ξ1 ξ2 ξ3 ξ4 ξ5 
S1 1.0 1.0 1.0 1.0 1.0 
S2 1.2 1.15 1.10 1.05 1.0 
S3 1.4 1.35 1.30 1.25 1.2 
S4 1.60 1.55 1.50 1.45 1.40 
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Fig. 4 Effect of soil weakening on the dynamic response at the pile head 
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Fig. 5 Effect of soil strengthening on the dynamic response at the pile head 
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Fig. 6 Effect of the weakening zone of the surrounding soil on the dynamic response at the pile head 
 
 
4.2.2 Effect of disturbance zone for radial inhomogeneity 
Fig. 6 shows the effect of the weakening zone of the 

construction disturbance on the velocity admittance and the 
reflected signal of wave velocity at the pile head. The 
corresponding coefficients of degree of disturbance for an 
inhomogeneous surrounding soil are applied in case W1. 
The weakening zone of the surrounding soil ib (i=1, 2, ... , 5) 

is taken as the values proportional to the outer radius 1ir of 
the pipe pile, in which ib =0 means that the surrounding soil 
is homogeneous in the radial direction. It can be seen that 
the oscillation amplitudes of the velocity admittance and the 
reflected signal increase with an increase in the weakening 
zone of the surrounding soil. In contrast, the change in the 
resonance frequencies of the velocity admittance can be 
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practically ignored when ib  is increasing. Furthermore, 
the more the weakening zone of surrounding soil, the 
corresponding effect on the dynamic response is less at the 
pile head. 

Fig. 7 shows the effect of the strengthening zone of the 
surrounding soil on the velocity admittance and the 
reflected signal of wave velocity at the pile head. The 
corresponding coefficients of degree of disturbance for an 
inhomogeneous surrounding soil are applied in case S4. 

This indicates that the oscillation amplitudes of the velocity 
admittance and the reflected wave signal increase with a 
decrease in the strengthening zone of the surrounding soil. 
In contrast, the effect of the strengthening zone on the 
resonance frequencies of the velocity admittance can also 
be practically ignored. In addition, the larger the 
strengthening zone of the surrounding soil, the 
corresponding effect on the dynamic response is less at the 
pile head.
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Fig. 7 Effect of the strengthening zone of the surrounding soil on the dynamic response at the pile head 
 
 
4.2.3 Effect of longitudinal interbedded layer 
 
It is assumed that there exists a longitudinal interbedded 

layer (e.g. layer 3) in which the shear wave velocity is 
different from that in the corresponding sub-zone of the 
other layers, that is, the velocity ratio of shear wave is 
defined as ijj VV3=λ (i=1, 2, 4, 5; j=1, 2, ... , 20). If 

1λ < , layer 3 is a soft interbedded layer compared with the 
other layers; if 1λ > , then a hard layer exists. Fig. 8 shows 
the effect of longitudinal soft or hard interbedded layer on 
the velocity admittance and the reflected signal of the wave 

velocity at the pile head. It can be seen that the longitudinal 
soft or hard interbedded layers have little effect on the 
resonance frequency of the velocity admittance and the 
reflected wave at the pile head. In contrast, the oscillation 
amplitudes of the velocity admittance decrease with the 
increasing λ . Moreover, it is also shown that the signal 
phase of the reflected wave from the soft interbedded layer 
( 1λ < ) is identical to that reflected from the pile toe. As for 
the case with a hard interbedded layer ( 1λ > ), the reflected 
wave signal from the interbedded layer displays an opposite 
signal phase to that reflected from the pile toe.
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(a) velocity admittance (b) reflected signal 
Fig. 8 Effect of longitudinal interbedded layer on the dynamic response at the pile head 

 
 
 

5. Conclusions 
 

A new mechanical model for the vertical vibration of a 
pipe pile embedded in longitudinally layered visco elastic 
soil with radial inhomogeneity is proposed by extending 
Novak’s plain strain model and complex stiffness method to 
consider viscous-type damping. The corresponding 
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analytical solutions for the dynamic impedance, the velocity 
admittance and the reflected signal of the wave velocity at 
the pile head are also derived and subsequently verified by 
comparing it with existing solutions.  

The results of an extensive parametric analysis are then 
presented to investigate the effects of shear modulus, 
viscous damping coefficient, coefficient of degree of 
disturbance, weakening or strengthening zone of the 
surrounding soil and longitudinal soft or hard interbedded 
layers on the velocity admittance and the reflected signal of 
wave velocity at the pile head. The parametric analysis 
show that: 

• with increasing elastic modulus of the pipe pile, the 
oscillation amplitudes and the resonance frequencies of 
velocity admittance increase, but the amplitudes of the 
reflected wave signal decrease; 
• the larger the viscous damping coefficient, the less 
the oscillation amplitudes and the resonance frequencies 
of the velocity admittance, and the amplitudes of the 
reflected wave signal become; 
• the oscillation amplitudes and the resonance 
frequencies of velocity admittance, and the amplitudes 
of the reflected wave signal decrease with an increase in 
the coefficient of degree of disturbance (strengthening 
or weakening); 
• the oscillation amplitudes of the velocity admittance 
and the reflected wave signal increase with an increase 
in the weakening zone and a decrease in the 
strengthening zone of the surrounding soil, respectively. 
Furthermore, the effect of the disturbance (strengthening 
or weakening) zone on the resonance frequencies of the 
velocity admittance can be practically ignored. 
The proposed model and obtained analytical solutions 

provide extensive scope of application, compared with the 
relevant existing solutions. The present solutions can also 
be reduced to analyze the vertical vibration problem of a 
solid pile in a visco-elastic soil with radial inhomogeneity 
and pipe piles embedded in radially homogeneous visco-
elastic soil described in previously related studies. In 
addition, the obtained solution can be conveniently further 
extended to investigate the vertical vibration problem of a 
pipe pile embedded in finite soil layers or in poro-visco-
elastic half-space, by combining it with different functions 
of complex stiffness of the soil beneath the pile toe. 

 
Appendix I Derivation for computing 1S

ijKK   
Performing the Laplace transform to Eq.(7) and 

substituting into Eq.(13) yields 
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The vertical shear stress of the undisturbed zone within 
the ith layer can be expressed as 
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Thus, the vertical complex stiffness at the interface 
between the disturbed zone and the undisturbed zone within 
the ith layer can be conveniently given by  
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The shear stress of the jth annular sub-zone within the 
ith layer is expressed as 
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Therefore, the vertical complex stiffness at the outer 
boundary ( ( )1i jr r += ) of the jth sub-zone within the ith layer 
are written as the following form 
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Following a similar procedure as above, the vertical 
complex stiffness at the inner boundary ijrr = of the jth 
sub-zone within the ith layer is obtained by 
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Appendix II Derivation for computing P

iZ   
The dynamic impedance function of the vertical 

displacement at the pile toe is written as the following 
expression： 
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where 0h H= . 
Thus, the dynamic impedance of the vertical 

displacement at the pile head of the first pile segment is 
expressed as  
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Combining Eq.( AP2-1) and (AP2-2) yields 
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Similarly, the dynamic impedance function of the 
vertical displacement at the pile head of the ith pile segment 
is written as： 
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