UNIVERSITY BIRMINGHAM University of Birmingham Research at Birmingham

The economic case for prevention of population vitamin D deficiency

Aguiar, Magda; Andronis, Lazaros; Pallan, Miranda; Högler, Wolfgang; Frew, Emma

DOI: 10.1038/s41430-019-0486-x

License: None: All rights reserved

Document Version Peer reviewed version

Citation for published version (Harvard):

Aguiar, M, Ándronis, L, Pallan, M, Högler, W & Frew, E 2019, 'The economic case for prevention of population vitamin D deficiency: a modelling study using data from England and Wales', *European Journal of Clinical Nutrition*. https://doi.org/10.1038/s41430-019-0486-x

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

Aguiar et al (2019), The economic case for prevention of population vitamin D deficiency: a modelling study using data from England and Wales, European Journal of Clinical Nutrition.

The version of record can be accessed online at: https://doi.org/10.1038/s41430-019-0486-x and https://www.nature.com/articles/s41430-019-0486-x and https://www.nature.com/articles/s41430-0486-x and https://www.nature.com/articles/s41430-048

© The Authors

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

1	The economic case for prevention of population vitamin D
2	deficiency: a modelling study using data from England and Wales
3	Aguiar, M ^{1,2} , Andronis L ^{1,3} , Pallan M ¹ , Högler W ^{4,5} , Frew E ¹
4	
5	¹ Institute of Applied Health Research, University of Birmingham, Birmingham, B15 2TT,
6	UK.
7	² Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences,
8	University of British Columbia, BC, Vancouver, V6T 1Z3, Canada
9	³ Population, Evidence and Technologies, Division of Health Sciences, University of
10	Warwick, Coventry, CV4 7AL
11	⁴ Department of Paediatrics and Adolescent Medicine, Faculty of Medicine, Johannes Kepler
12	University, Linz, A-4040, Austria
13	⁵ Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15
14	2TT, UK
15	
16	Sources of Support: College of Medical and Dental Sciences, University of Birmingham,
17	UK
18	Corresponding author: Dr Emma Frew, Institute of Applied Health Research, University of
19	Birmingham, Birmingham, B15 2TT. Email: <u>e.frew@bham.ac.uk</u> ; Tel: +44(0)121 414 3199.
20	Word count: 3,417
21	Number of figures: 2
22	Number of tables: 3
23	Supplementary material data submitted: Yes
24	Running title: Cost-effectiveness of preventing population VDD

25 Abstract

26

Background: Vitamin D deficiency (VDD) affects the health and wellbeing of millions
worldwide. In high latitude countries such as the United Kigdom (UK), severe complications
disproportionally affect ethnic minority groups.

30 Objective: To develop a decision-analytic model to estimate the cost-effectiveness of
 31 population strategies to prevent VDD.

32 Methods: An individual-level simulation model was used to compare: (I) wheat flour 33 fortification; (II) supplementation of at-risk groups; and (III) combined flour fortification and 34 supplementation; with (IV) a 'no additional intervention' scenario, reflecting the current 35 Vitamin D policy in the UK. We simulated the whole population over 90 years. Data from 36 national nutrition surveys were used to estimate the risk of deficiency under the alternative 37 scenarios. Costs incurred by the health care sector, the government, local authorities, and the 38 general public were considered. Results were expressed as total cost and effect of each 39 strategy, and as the cost per 'prevented case of VDD' and the 'cost per Quality Adjusted Life 40 Year (QALY)'.

41 **Results**: Wheat flour fortification was cost-saving as its costs were more than offset by the 42 cost-savings from preventing VDD. The combination of supplementation and fortification 43 was cost-effective (£9.5 per QALY gained). The model estimated that wheat flour 44 fortification alone would result in 25% fewer cases of VDD, while the combined strategy 45 would reduce the number of cases by a further 8%.

46 Conclusion: There is a strong economic case for fortifying wheat flour with Vitamin D, alone
47 or in combination with targeted vitamin D3 supplementation.

48

49 Introduction

50 Vitamin D helps to maintain adequate levels of calcium and phosphorus in the body, playing a 51 fundamental role in bone and muscle health (1). The main source of Vitamin D is sunlight 52 exposure and many behavioural, cultural or environmental factors increase the risk of VDD by limiting the skin's direct exposure to sunlight. Risk factors for VDD include, for example, 53 54 sun screen use, air pollution, indoors lifestyles, full body clothing, and living in high latitude 55 settings (2,3). People with dark pigmented skin who live in setting with limited sunlight, such 56 as high latitude countries are also at a higher risk for VDD, as well as older adults, particularly if institutionalised. VDD can lead to poor health and its symptoms manifest as 57 58 osteomalacia, bone pain, muscle weakness and consequent increased risk of falls. In children, 59 severe VDD additionally causes hypocalcaemia (low levels of calcium in the blood), which is 60 associated with seizures, tetany and heart failure (4,5), and rickets with osteomalacic leg 61 bowing, muscle weakness and delayed infant development. Morbidity from VDD is 62 predominantly found in individuals from Black and Asian Minority Ethnic (BAME) groups 63 living in high-latitude countries, including in the UK (6,7), the US (8), Canada (9), 64 Scandinavian countries (10–13) and Australia (8,14). Nonetheless, VDD is common in many 65 populations across the world, regardless of ethnicity. 66 In response, most countries have adopted policies to increase the populations' intake of 67 vitamin D, which generally consist of a combination of supplementation and food fortification 68 strategies (15). In the UK, multivitamin supplements containing vitamin D are recommended 69 to all infants and children up to the age of four, as well as to pregnant women and 70 breastfeeding mothers (16). These vitamins are provided free-of-charge to those in low-71 income households. In addition, infant formulas and spreadable fats are mandatorily fortified, 72 while other foods including breakfast cereals and milk substitutes are voluntarily fortified. 73 While both supplements and fortified foods are important sources of vitamin D for the UK

74 population, evidence suggests supplementation polices are not working (7,17) and the mean 75 daily vitamin D intake is still below the Reference Nutritional Intake (RNI) of 400 IU per day (2,18). Therefore, rickets and hypocalcemic complications remain a serious health issue and 76 77 cause of death in infants, particularly in the BAME group (4,7,19,20). Evidence shows that vitamin D status, which is measured through the blood concentration of a Vitamin D 78 79 metabolite, the 25-hydroxyvitamin D [25(OH)D], is suboptimal in 13% of the European 80 population (21). In the UK population, 20% of adults and 16% of children aged between 11 81 and 18 years are estimated to be VDD (2), with the BAME group being, by far, the most 82 affected (10,12,22–25). 83 So far, the economic evidence needed to inform and underpin VDD prevention policies has 84 been limited (26). To the best of the authors' knowledge', there is no evidence on the cost-85 effectiveness of preventing population VDD through food fortification or a combination of 86 food fortification and supplementation, even though the latter is the approach taken in most 87 countries (15). This study estimates the cost-effectiveness of preventing VDD using the 88 population of England and Wales as a simulated cohort and compares the strategies of 89 supplementation of at-risk groups, wheat flour fortification, and a combination of the two 90 approaches.

91

92 Methods

An individual-level state-transition model was developed to compare four different strategies to prevent population VDD. A state transition model was chosen to allow recurrence of VDD over the life course, and individual-level simulation was used to make the most efficient use of available data on risk heterogeneity for VDD in the population, as well as to account for individual pathways across the model's time horizon (27,28). The model used a one-year cycle length, and both costs and benefits were discounted at 3.5% per year, as recommended

99	by the UK National Institute for Health and Care Excellence (NICE) (29). The base case
100	analysis was done from a societal perspective and results reported using incremental cost
101	effectiveness ratios (ICER) in the form of cost per additional quality-adjusted life year
102	(QALY) gained, and cost per prevented case of VDD. The model was built in TreeAge Pro
103	2016 software, and followed modelling (28,30) and reporting (31) guidelines for good
104	practice.
105	The model comprised three main health states (Figure 1). These health states were mutually
106	exclusive and represent clinically relevant stages:
107	1) Vitamin D deficient (VDD): all children with serum 25(OH)D concentrations below
108	30nmol/L (3) and adults with serum 25(OH)D below 50 nmol/L (32).
109	2) <u>Vitamin D sufficient (VDS)</u> : all children with serum 25(OH)D concentrations above
110	30nmol/L (3) and adults with serum 25(OH)D above 50 nmol/L (32).
111	3) <u>Dead</u> : based on all-cause mortality and naturally treated as an absorbing state.
112	
113	[Figure 1]
114	
115	The majority of the VDD population were assumed to be asymptomatic. Within the model,
116	asymptomatic individuals followed a pathway with the possibility of remaining deficient or
117	becoming sufficient over time. For the deficient population who become symptomatic,
118	children were assigned a risk of developing rickets and hypocalcemic complications, and
119	adults a risk of developing osteomalacia. Younger adults aged between 19-64 years old who
120	acquire osteomalacia suffer from diffuse pain and muscle weakness. Older adults with
121	osteomalacia had a modest increased risk of falls due to pain and muscle weakness. The full
122	model structure depicting the clinical pathways for children and adults with symptomatic
123	VDD can be found in the supplementary material (Figure S1 and Figure S2).

124 The starting cohort within the model was simulated based on the population of England and 125 Wales, according to its age, sex and ethnicity distributions (33). The following four 126 alternative strategies were compared: (I) wheat flour fortification at 400IU of Vitamin D per 127 100 g of wheat flour; (II) free supplementation to all at-risk groups; (III) a combination of 128 flour fortification and supplementation; and (IV) no additional intervention, i.e. maintaining 129 the current fortification and supplementation policy of providing supplements to young 130 children, pregnant women and breastfeeding mothers within low-income households, and 131 fortifying certain food groups. Wheat flour was chosen as the most appropriate food for 132 fortification since, contrary to milk and spreadable fats, flour is a staple food across multiple 133 ethnic groups, including Asian, African, Caribbean, and white ethnic groups, and therefore 134 will potentially reach multiple at-risk groups. Evidence from Scandinavian countries shows 135 that milk supplementation is not as effective in reaching ethnic minority groups as it is in 136 reaching white ethnic groups (15). Regarding safety, a UK study that compared vitamin D 137 fortification of milk, flour and a combination of both showed that flour fortification alone 138 presented the lowest risk of toxicity in the population (34). Wheat flour is already fortified in 139 the UK, and addition of vitamin D to the mix of added nutrients is likely to carry lower 140 implementation barriers than targeting an industry that has no fortification infrastructure, in place, such as milk in the UK. The baseline risk of VDD was estimated using individual-level 141 142 intake data reported from the National Diet and Nutrition Survey (NDNS) (18,35). The intake 143 of vitamin D included all food sources (natural and fortified foods, including voluntarily 144 fortified). Differences in intake by age group and sex were considered. 145 The effectiveness of wheat flour fortification in reducing the risk of being VDD by sex was 146 derived from Allen et al.'s nutrition model (34,36). Ethnicity specific effects were not 147 available and therefore the same effect was assumed for white and BAME populations. The

148 full list of the transition probabilities used in the model for the current UK policy and wheat 149 flour fortification is presented in the supplementary material (Table S1.A. and Table S1.B.). 150 The effect of the supplementation programme was based on data provided by a local 151 government organization in London, UK (37), which recorded the uptake of free vitamin D 152 supplements using an electronic card system. In this Local Authority, all children up to 4 153 years old, pregnant women and breastfeeding mothers were eligible to receive free Vitamin D 154 supplements. In our model, supplements were provided to all sub-populations at risk of 155 symptomatic VDD including all infants and young children up to 18 years old; individuals of 156 all ages from BAME backgrounds; and all individuals aged over 65 years. In the absence of 157 data on the uptake of supplements by adults and older children (>4 years old), we assumed the 158 same uptakes in older and younger children to that of children <4 years, and the adult uptake 159 to be the same as that of pregnant and breastfeeding women. The model assumed a 160 supplement dosage of 400IU per day for all groups except for the elderly, who received 161 800IU per day as per the recommended minimum dose to prevent falls (38). The effectiveness 162 of the combined scenario (wheat flour fortification plus supplementation of at-risk groups) 163 was estimated as the additive effectiveness of each strategy alone.

164 **Outcomes**

Preventing VDD in the population reduces the risk of poor bone and muscle health. The outcome unit used for the cost-effectiveness analysis was the number of cases of VDD prevented. For the cost-utility analysis, the health-related quality of life (HRQoL) for a given health state was combined with the time spent in that health state to formulate QALYs. The preference-based quality of life values (i.e. utilities) applied to estimate QALYs were sourced from two HRQoL studies, published elsewhere (39), one focusing on VDD in children, and the other in adults (supplementary material, table S2). 172

173 **Costs**

174 Cost data were derived from multiple sources (supplementary material, table S3). For the 175 wheat flour fortification strategy, the price of dried vitamin D was obtained from a UK 176 commercial flour supplier of the food industry (LFI (UK) Ltd). The costs of re-labelling 177 packages, used in a sensitivity analysis, and the public sector costs of enforcing mandatory 178 fortification were sourced from the Food Standards Agency's study of wheat flour 179 fortification with folic acid (40). The cost structure of the supplementation programme was 180 based on the Local Authority's supplementation programme (37), which was pharmacy-led. It 181 was assumed that supplements would be supplied through community pharmacies, which 182 would receive an initial financial incentive for participating in the programme and 183 reimbursements for the cost of the supplements dispensed. An additional incentive would be 184 provided for each supplement dispensed to encourage sustained adherence to the programme.

185 Uncertainty and sensitivity analyses

186 Several sensitivity analyses were conducted to determine how sensitive the model results 187 were to the assumptions made (Table 1). First, the time horizon was varied to 5 and 10 years. 188 Second, the discount rate for both costs and benefits was set to 1.5%. Third, the perspective 189 was altered to include only public sector costs, therefore eliminating all private costs borne by 190 the food industry. Fourth, following the Food Stardards Agency report on the cost of 191 fortifying flour with folic acid in the UK (40), the model included a conservative estimate for 192 the food industry costs of relabelling flour packages, and all products containing flour, such as 193 cakes and biscuits. Fifth, the model assumed no disutility from asymptomatic VDD. Sixth, the 194 starting cohort was altered to include a higher proportion of BAME individuals, reflecting the 195 population mix of many large UK cities (33). Finally, a probabilistic sensitivity analysis was 196 conducted based on 10,000 iterations of a Monte Carlo simulation, using the model parameter

197 distributions listed in the supplementary material (Tables S4-S11). All analyses was

198 conducted in TreeAge Pro 2017, R1.

- 199
- 200

[Table 1]

201

202 **Results**

The model base case analysis showed that wheat flour fortification was cost-saving, which means that it led to fewer costs and more benefits when compared to the current national policy in England and Wales, and is therefore described as dominant (Table 2). All other strategies were found to be superior to the current national policy in terms of cases of VDD prevented.

208 The model estimated that if the current VDD policy is kept in place, there will be almost 40 209 million new cases of VDD – asymptomatic and symptomatic - over the next 90 years. 210 Introducing wheat flour fortification would result in a 25% reduction in this number, and if 211 that is combined with an additional supplementation programme then a further 8% would be 212 prevented (33% in total). The model estimated that wheat flour fortification would lead to an 213 increased expenditure of £0.12 per person per year based on consumption estimates that 214 include common flour based products such as cakes and biscuits (41). The model found the 215 strategy of flour fortification to be cost-saving, saving approximately £65 million over a 90-216 year time horizon. If food fortification is combined with supplementation, then this would 217 lead to an additional cost of nearly £2 per case of VDD prevented but more cases of VDD 218 would be prevented when compared to fortification alone.

219

220

[Table 2]

221

222 The analysis showed that wheat flour fortification at 400IU per 100g of flour combined with targeted supplementation at 400IU for children up to 18 years old and all individuals from 223 224 BAME backgrounds and 800IU for all individuals older than 65 years old is cost-effective. 225 The intervention costs on average ± 0.38 per person across the whole population (total costs 226 over the 90 years modelled is 250 million) and leads to an average gain of 0.04 QALYs, 227 resulting in an ICER of £9.50 per QALY gained (table 3). Under commonly applied UK 228 thresholds of willingness to pay per QALY, this represents a highly cost-effective use of 229 resources.

230

[Table 3]

231

232 The sensitivity analyses showed the model results were not sensitive to the majority of the 233 assumptions made. Consistently, with each subsequent sensitivity analysis, the model showed 234 the flour fortification strategy to be dominant and the combined strategy to impose a small 235 cost but to be highly cost-effective. Evidence from the literature suggests that asymptomatic 236 VDD – (serum concentrations of 25(OH)D levels below the deficiency threshold, but no overt 237 symptoms), if coexisting with limited dietary calcium, are regarded as a pre-clinical health 238 risk state, with diffuse pain (1), muscle weakness and fatigue (42), and thus likely to impact 239 on quality of life. In the base case analysis, a detrimental impact on HRQoL was assumed 240 based on an expert elicitation study (39). We tested this assumption in a sensitivity analysis 241 and noted that when it is assumed that the asymptomatic VDD health state results in the same 242 quality of life as being vitamin D sufficient, then the combined strategy has no additional 243 benefit (supplementation material, appendix 4).

Finally, the probabilistic sensitivity analysis (**Figure 2**) showed that for willingness to pay values of up to £200 per QALY, wheat flour fortification is the recommended option. For values above £200 per QALY, a combination of wheat flour fortification and supplementationof all-at risk groups is the optimal strategy.

- 248
- 249 250

[Figure 2]

251

252 **Discussion**

Our model found that implementing strategies to prevent VDD is likely to be cost-effective 253 254 and wheat flour fortification to be cost-saving as compared to the current policy in England 255 and Wales. The costs of implementing and running the fortification scheme were more than 256 compensated for by the health care savings from preventing more cases of VDD. 257 Alternatively, the combined strategy of adding Vitamin D to wheat flour and extending the 258 coverage of supplementation to all at-risk groups would be highly cost-effective strategy. 259 Therefore, for an additional cost, the combined strategy prevents more cases of VDD when 260 compared to fortification alone and under conventional decision-making rules(43), this 261 additional cost would be regarded as a highly cost-effective use of public resources.

262

263 These results of our study are in line with published economic evaluations of food 264 fortification programmes for other micronutrients, such as folic acid (44-46), which have 265 found food fortification to be cost-saving, in pre- and post-implementation studies. The 266 economic advantage of food fortification lies in the wide-coverage and shared costs across the private sector, consumers and the government. Food fortification has the potential to target 267 hard-to-reach populations, overcoming some of the problems with low uptake of 268 269 supplementation programmes. Moreover, fortification has a far lower burden on the health 270 care budget than supplementation alternatives, as most costs of the food fortification

271 programme are borne by the food industry, and passed on to the consumer. However, a 272 combined strategy offers both a nutritional safety net to the population by fortifying the food 273 chain, and a targeted supplementation scheme to those who are most in need.

274

We have included children, BAME groups and individuals aged over 65 years old in the atrisk group of the population. Even though most severe cases of VDD have been reported in BAME mothers and their new-borns, overall pregnant women benefit from adequate levels of 250HD. Most vitamin D supplementation policies around the world already target pregnant women and infants. When considering new public health approaches to reach at-risk and vulnerable groups, pregnant women should continue to be a target group for the strategy of supplementation.

282

283 The analysis presented here is based on hypothetical scenarios with conservative assumptions 284 applied to increase confidence in the results. For example, potential savings in primary care 285 associated with consultation of general practitioners and testing were not included, such as the 286 economic burden from routine 25(OH)D testing. In children alone, these costs were estimated 287 to be £1.7 million (at 2014 prices) (47). As new and more expensive diagnostic tests are 288 introduced, the economic burden is likely to increase. Furthermore, conservative estimates 289 regarding the modelling of VDD-related falls in the elderly were also applied, based on a 290 recent economic evaluation study by Poole et al (2015) (48).

291

We have focused on the benefits of vitamin D to bone and muscle health. The emerging evidence of potential wider benefits of maintaining a healthy vitamin D status such as prevention of cancer and cardiovascular disease (49,50), acute respiratory infections, (51) and other illnesses (52), suggests that the impact of public health measures to tackle vitamin D 296 deficiency might be even stronger than that reported in this study. A recent meta-analysis 297 using individual patient data from over 10,000 individuals found that vitamin D supplements 298 reduced the risk of acute respiratory infections, such as colds and the flu, which have a 299 tremendous burden in population health and health systems (51). As more robust evidence on 300 non-musculoskeletal effects of vitamin D from interventional studies become available, there 301 is potential for future models to incorporate these additional benefits. If the same public 302 health measures compared in our model are able to prevent other diseases, the cost-303 effectiveness results will be even more favourable that the ones we present here.

304 One of the strengths of the model is that it was informed by direct communication with 305 stakeholders, including clinical experts, local UK public health organisations, established 306 researchers with experience in economic evaluation of micronutrient interventions, and expert 307 investigators in the economics of food fortification. Moreover, this is the first model to 308 compare supplementation and food fortification with vitamin D independently, as well as the 309 combination of both in the same analysis, which is a more meaningful way of representing the 310 relevant alternatives for policy makers to consider. Our findings were robust when tested 311 under a number of deterministic sensitivity analyses and a probabilistic sensitivity analysis.

312

313 The model has some limitations. Data on the costs and uptake of the supplementation 314 programme were sourced from a Local Authority, and were extrapolated to a nation-wide 315 scenario. Regarding the costs, for example, purchases at the national level might achieve 316 economies of scale and result in lower costs. To account for this uncertainty, each relevant 317 model input (eg. cost estimates) was assigned a wide distribution within the probabilistic 318 sensitivity analysis. There was a lack of data on the uptake of supplements by ethnic groups 319 who have different risk profiles for developing VDD. In the absence of uptake data by ethnic 320 group, equivalent levels were applied to all ethnic groups. Furthermore, the cost and

effectiveness of the combined strategy was assumed to be the sum of the costs and 321 322 effectiveness of the flour fortification and supplementation strategies combined. In reality, if 323 implemented simultaneously, interactions between the two strategies are likely, although it is 324 unknown in which direction. Finally, the model only included the health-related benefits from 325 preventing VDD and any other benefits beyond health were not included. Economic 326 evaluation requires that the relevant benefits and costs of each of the policy alternatives are 327 quantifiable. This is the greatest challenge when applying standard economic evaluation 328 methods to the prevention of micronutrient deficiencies. The benefits from reducing the 329 prevalence of vitamin and mineral deficiencies are wide but hard to measure (53). Nutrition, 330 including vitamin D status, impacts human development from conception until the later stages 331 of life (54-56). Moreover, poor nutrition affects socioeconomically disadvantaged groups of 332 the population, and tackling it would have a wider economic benefit by addressing health and 333 social inequalities (57). For example, there would be a clear social benefit from reducing the 334 prevalence of VDD in minority ethnic groups, as it would reduce any stigma associated with 335 rickets in children (58).

336

337 The effectiveness of any fortification programme depends on a number of programme design 338 choices, for example, the food chosen needs to be consumed by the targeted population, and 339 the price increase of the final product should be kept low, so that no access barriers based on 340 income are not created (53,59). These features of a programme are particularly important in 341 the context of VDD since BAME groups are at a higher risk. Other studies have highlighted 342 that there is a need to collect data on the diet and nutritional status of BAME populations in 343 the UK (60). We corroborate such needs. To date, nutritional data from the NDNS have not 344 been reported by ethnic group. Doing so would facilitate implementation of food fortification 345 programmes, the effectiveness of which could be monitored using the existing structures, as done in other countries such as Finland (21). Fortifying flour would ensure that population
serum 25(OH)D concentrations are raised to safe levels with supplementation used to target
subgroups that the fortification programme may not reach effectively.

349

350 VDD is wide-spread in the population, it has a negative impact on HRQoL with a burden of 351 disease that is much larger than rickets and osteomalacia. VDD and its complications are 352 preventable and well-planned public health strategies can be highly cost-effective and even 353 cost-saving. Biological, environmental, cultural, historical, and economic factors influence 354 how VDD affects the population, as well as the cost and effectiveness of alternative strategies. Therefore, tackling population VDD in England and Wales requires efforts from 355 356 multidisciplinary professionals, such as clinicians, nutritionists, health economists, public 357 health professionals, and policy makers.

358 Acknowledgements

359 Dr. Sue Horton, School of Public Health and Health Systems, University of Waterloo, for initial advice on the economics of food fortification. Dr. Helena Pachón, Rollins School of 360 361 Public Health, Emory University, for the insights on the practicalities of wheat flour 362 fortification. The team at the Center for Health Economics Research and Evaluation, 363 University Technology Sydney, particularly Dr. Phillip Haywood, as well as Dr. Kim Dalziel, 364 Center for Health Policy, University of Melbourne, for the methodological advice. Smita 365 Hanciles and Gwenda Scott from Lewisham Local Authority, UK, as well as Eleanor McGee 366 from Birmingham Local Authority, UK, for the insights on supplementation alternatives and 367 data access.

368 **Conflict of interest**

369 None declared

370 Author Contributions

371 All authors contributed to designing the research. MA conducted the research and analyzed

data supervised by LA, MP, WH and EF. All authors contributed substantially to writing the

373 paper, while MA and EF had primary responsibility for final content. All authors have read

and approved the final manuscript.

375

376 Funding

- 377 This research was funded by the College of Medical and Dental Sciences of the University of
- 378 Birmingham, through an internal PhD studentship grant.

References

- Holick MF. The vitamin D epidemic and its health consequences. J Nutr. 2005/10/28.
 2005;135(11):2739s-48s.
- Bates B, Lennox A, Prentice A, Bates C, Page P, Nicholson S, et al. National Diet and Nutrition Survey Results from Years 5 and 6 (combined) of the Rolling Programme (2012/2013 – 2013/2014). Public Health Engand and the Food Standards Agency ; 2016.
- Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J Clin Endocrinol Metab. 2016/01/09. 2016;101(2):394–415.
- Uday S, Fratzl-Zelman N, Roschger P, Klaushofer K, Chikermane A, Saraff V, et al. Cardiac, bone and growth plate manifestations in hypocalcemic infants: revealing the hidden body of the vitamin D deficiency iceberg. BMC Pediatr. 2018 Jun;18(1):183.
- Maiya S, Sullivan I, Allgrove J, Yates R, Malone M, Brain C, et al. Hypocalcaemia and vitamin D deficiency: an important, but preventable, cause of life-threatening infant heart failure. Heart. 2008;94(5):581–4.
- Patel J V, Chackathayil J, Hughes EA, Webster C, Lip GY, Gill PS. Vitamin D deficiency amongst minority ethnic groups in the UK: a cross sectional study. Int J Cardiol. 2012/11/13. 2013;167(5):2172–6.
- 7. Uday S, Högler W. Prevention of rickets and osteomalacia in the UK: political action overdue.
 Arch Dis Child [Internet]. 2018; Available from: http://adc.bmj.com/content/archdischild/early/2018/04/16/archdischild-2018-314826.full.pdf
- Brown LL, Cohen B, Tabor D, Zappalà G, Maruvada P, Coates PM. The vitamin D paradox in Black Americans: a systems-based approach to investigating clinical practice, research, and public health - expert panel meeting report. BMC Proc [Internet]. 2018;12(6):6. Available from: https://doi.org/10.1186/s12919-018-0102-4
- 9. Vatanparast H, Nisbet C, Gushulak B. Vitamin D insufficiency and bone mineral status in a

population of newcomer children in Canada. Nutrients [Internet]. 2013 May 14;5(5):1561–72. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23673607

- Bärebring L, Schoenmakers I, Glantz A, Hulthén L, Jagner Å, Ellis J, et al. Vitamin D status during pregnancy in a multi-ethnic population-representative Swedish cohort. Nutrients. 2016;8(10):655.
- Ramnemark A, Norberg M, Pettersson-Kymmer U, Eliasson M. Adequate vitamin D levels in a Swedish population living above latitude 63 N: The 2009 Northern Sweden MONICA study. Int J Circumpolar Health. 2015;74(1):27963.
- Andersson Å, Björk A, Kristiansson P, Johansson G. Vitamin D intake and status in immigrant and native Swedish women: a study at a primary health care centre located at 60 N in Sweden. Food Nutr Res. 2013;57(1):20089.
- Glerup H, Rytter L, Mortensen L, Nathan E. Vitamin D deficiency among immigrant children in Denmark. Eur J Pediatr. 2004;163(4):272–3.
- 14. O'Callaghan KM, Kiely ME. Ethnic disparities in the dietary requirement for vitamin D during pregnancy: considerations for nutrition policy and research. Proc Nutr Soc. 2018;77(2):164–73.
- Spiro A, Buttriss JL. Vitamin D: An overview of vitamin D status and intake in Europe. Nutr Bull [Internet]. 2014;39(4):322–50. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288313/
- 16. (SACN) SAC on N. Vitamin D and Health [Internet]. Public Health England; 2016. Available from: https://www.gov.uk/government/groups/scientific-advisory-committee-on-nutrition
- Uday S, Kongjonaj A, Aguiar M, Tulchinsky T, Högler W. Variations in infant and childhood vitamin D supplementation programmes across Europe and factors influencing adherence.
 Endocr Connect [Internet]. 2017 Sep 18;6(8):667–75. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28924002
- Bates B, Lennox A, Prentice A, Bates C, Page P, Nicholson S, et al. National Diet and Nutrition Survey Results from Years 1, 2, 3 and 4 (combined) of the Rolling Programme (2008/2009 – 2011/2012). Public Health Engand and Food Standards Agency; 2014.

- Basatemur E, Sutcliffe A. Incidence of Hypocalcemic Seizures Due to Vitamin D Deficiency in Children in the United Kingdom and Ireland. J Clin Endocrinol Metab. 2014;100(1):E91–5.
- Julies P, Lynn RM, Pall K, Leoni M, Calder A, Mughal Z, et al. 116 Nutritional rickets presenting to secondary care in children (<16 years) – a uk surveillance study. Arch Dis Child [Internet]. 2018 Mar 1;103(Suppl 1):A202 LP-A203. Available from: http://adc.bmj.com/content/103/Suppl_1/A202.3.abstract
- 21. Cashman KD, Dowling KG, Skrabakova Z, Gonzalez-Gross M, Valtuena J, De Henauw S, et al. Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr. 2016/02/13.
 2016;103(4):1033–44.
- 22. Darling AL, Hart KH, Macdonald HM, Horton K, Kang'Ombe AR, Berry JL, et al. Vitamin D deficiency in UK South Asian Women of childbearing age: a comparative longitudinal investigation with UK Caucasian women. Osteoporos Int. 2013;24(2):477–88.
- Martin CA, Gowda U, Renzaho AMN. The prevalence of vitamin D deficiency among darkskinned populations according to their stage of migration and region of birth: A meta-analysis. Nutrition. 2016;32(1):21–32.
- 24. van der Meer IM, Middelkoop BJC, Boeke AJP, Lips P. Prevalence of vitamin D deficiency among Turkish, Moroccan, Indian and sub-Sahara African populations in Europe and their countries of origin: an overview. Osteoporos Int [Internet]. 2011;22(4):1009–21. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046351/
- Ginde AA, Liu MC, Camargo CA. Demographic Differences and Trends of Vitamin D Insufficiency in the US Population, 1988–2004. Arch Intern Med [Internet]. 2009 Mar 23;169(6):626–32. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447083/
- Aguiar M, Andronis L, Pallan M, Högler W, Frew E. Preventing vitamin D deficiency (VDD): a systematic review of economic evaluations. Eur J Public Health. 2017/02/17. 2017;27(2):292–301.
- Barton P, Bryan S, Robinson S. Modelling in the economic evaluation of health care: selecting the appropriate approach. J Health Serv Res Policy. 2004;9(2):110–8.

- Davis S, Stevenson M, Tappenden P, Wailoo AJ. NICE DSU Technical Support Document 15: Cost-effectiveness modelling using patient-level simulation. Sch Heal Relat Res Univ Sheff. 2014;
- 29. (NICE) NI for H and CE. Developing NICE guidelines: the manual [Internet]. 3rd ed. Process and methods [PMG20]. 2014. Available from: https://www.nice.org.uk/process/pmg20/chapter/incorporating-economic-evaluation
- Siebert U, Alagoz O, Bayoumi AM, Jahn B, Owens DK, Cohen DJ, et al. State-transition modeling: a report of the ISPOR-SMDM modeling good research practices task force-3. Value Heal. 2012;15(6):812–20.
- Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. Consolidated health economic evaluation reporting standards (CHEERS) statement. Cost Eff Resour Alloc. 2013;11(1):6.
- 32. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.
- 33. Statistics O for N. Census. UK Data Serv Census Support. 2011;
- 34. Allen RE, Dangour AD, Tedstone AE, Chalabi Z. Does fortification of staple foods improve vitamin D intakes and status of groups at risk of deficiency? A United Kingdom modeling study. Am J Clin Nutr. 2015/07/03. 2015;102(2):338–44.
- Research NS, Laboratory MRCEW, London UC, School M. National Diet and Nutrition Survey Years 1-6, 2008/09-2013/14 [Internet]. UK Data Services; 2017. Available from: http://doi.org/10.5255/UKDA-SN-6533-7
- 36. Allen RE. Would fortification of more foods with vitamin D improve vitamin D intakes and status of groups at risk of deficiency in the UK? London School of Hygiene & Tropical Medicine. London School of Hygiene & Tropical Medicine; 2013.
- Limited T. FreeD: Vitamin D supplementation in Lewisham [Internet]. 2014. Available from: http://www.therapyaudit.com/media/2015/05/lewisham-casestudy.pdf

- 38. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev [Internet]. 2012;(9). Available from: http://dx.doi.org/10.1002/14651858.CD007146.pub3
- 39. Aguiar M. Decision analytic modelling of the prevention of vitamin D deficiency in England and Wales [Internet]. UniversityoOf Birmingham; 2018. Available from: http://etheses.bham.ac.uk/8120/
- 40. Food Standards Agency (FSA). Improving folate intakes of women of reproductive age and preventing neural tube defects: practical issues [Internet]. 2007. Available from: http://tna.europarchive.org/20120419000433/http://www.food.gov.uk/multimedia/pdfs/fsa0706 04.pdf
- 41. NABIM. Statistics [Internet]. 2014. Available from: http://www.nabim.org.uk/statistics
- 42. Roy S, Sherman A, Monari-Sparks MJ, Schweiker O, Hunter K. Correction of Low Vitamin D Improves Fatigue: Effect of Correction of Low Vitamin D in Fatigue Study (EViDiF Study). N Am J Med Sci [Internet]. 2014 Aug;6(8):396–402. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158648/
- Santos AS, Guerra-Junior AA, Godman B, Morton A, Ruas CM. Cost-effectiveness thresholds: methods for setting and examples from around the world. Expert Rev Pharmacoecon Outcomes Res. 2018;18(3):277–88.
- 44. Jentink J, van de Vrie-Hoekstra NW, de Jong-van den Berg LT, Postma MJ. Economic evaluation of folic acid food fortification in The Netherlands. Eur J Public Heal. 2008/02/02. 2008;18(3):270–4.
- 45. Bentley TGK, Weinstein MC, Willett WC, Kuntz KM. A cost-effectiveness analysis of folic acid fortification policy in the United States. Public Health Nutr. 2009;12(04):455–67.
- Grosse SD, Berry RJ, Tilford JM, Kucik JE, Waitzman NJ. Retrospective Assessment of Cost Savings From Prevention. Am J Prev Med. 2016;50(5):S74–80.
- 47. Basatemur E, Hunter R, Horsfall L, Sutcliffe A, Rait G. Costs of vitamin D testing and

prescribing among children in primary care. Eur J Pediatr [Internet]. 2017 Oct [cited 2018 May 24];176(10):1405–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28803270

- 48. Poole CD, Smith J, Davies JS. Cost-effectiveness and budget impact of Empirical vitamin D therapy on unintentional falls in older adults in the UK. BMJ Open. 2015;5(9):e007910.
- 49. Del Valle HB, Yaktine AL, Taylor CL, Ross AC. Dietary reference intakes for calcium and vitamin D. National Academies Press; 2011.
- 50. Zhang R, Li B, Gao X, Tian R, Pan Y, Jiang Y, et al. Serum 25-hydroxyvitamin D and the risk of cardiovascular disease: dose-response meta-analysis of prospective studies. Am J Clin Nutr [Internet]. 2017 Apr [cited 2019 Apr 18];105(4):810–9. Available from: https://academic.oup.com/ajcn/article/105/4/810-819/4569717
- 51. Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and metaanalysis of individual participant data. [cited 2019 Apr 18]; Available from: http://dx.doi.org/10.1136/bmj.i6583
- (IOM) I of M. Dietary reference intakes for calcium and vitamin D. National Academies Press;
 2011.
- Allen LH. Guidelines on food fortification with micronutrients. In: Guidelines on food fortification with micronutrients. World Health Organization. Dept. of Nutrition for Health and Development; 2006.
- 54. WHO FAO. Evaluating the public health significance of micronutrient malnutrition. Guidel food Fortif with Micronutr Geneva World Heal Organ. 2006;39–92.
- 55. Urrutia-Pereira M, Solé D. [Vitamin D deficiency in pregnancy and its impact on the fetus, the newborn and in childhood]. Rev Paul Pediatr [Internet]. 2015 [cited 2019 Apr 18];33(1):104–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25662013
- 56. Holick MF. The Influence of Vitamin D on Bone Health Across the Life Cycle. J Nutr [Internet]. 2005 Nov 1 [cited 2019 Apr 18];135(11):2726S-2727S. Available from: https://academic.oup.com/jn/article/135/11/2726S/4669897

- 57. Darnton-Hill I, Webb P, Harvey PWJ, Hunt JM, Dalmiya N, Chopra M, et al. Micronutrient deficiencies and gender: social and economic costs. Am J Clin Nutr [Internet]. 2005 May 1;81(5):1198S-1205S. Available from: http://dx.doi.org/10.1093/ajcn/81.5.1198
- Bivins R. "The English Disease" or "Asian Rickets"?: Medical Responses to Postcolonial Immigration. Bull Hist Med. 2007;81(3):533.
- 59. Horton S. The Economics of Food Fortification. J Nutr [Internet]. 2006 Apr 1;136(4):1068–71.
 Available from: http://dx.doi.org/10.1093/jn/136.4.1068
- 60. Filby A, Wood H, Jenks M, Taylor M, Burley V, Barbier M, et al. Examining the Cost-Effectiveness of Moving the Healthy Start Vitamin Programme from a Targeted to a Universal Offering: Cost-effectiveness Systematic Review [Internet]. NICE, editor. Vol. July. 2015. Available from: https://www.nice.org.uk/Media/Default/About/what-we-do/NICEguidance/NICE-guidelines/healthy-start-cost-effectiveness-review.pdf

Figures legends

Figure 1 – Illustration of the model structure

Figure 2 – Cost-effectiveness acceptability curve (CEAC) showing the probability of alternatives to prevent VDD being cost-effective at increasing acceptability thresholds