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Abstract 25 

 26 

Background: Vitamin D deficiency (VDD) affects the health and wellbeing of millions 27 

worldwide. In high latitude countries such as the United Kigdom (UK), severe complications 28 

disproportionally affect ethnic minority groups.  29 

Objective: To develop a decision-analytic model to estimate the cost-effectiveness of 30 

population strategies to prevent VDD. 31 

Methods: An individual-level simulation model was used to compare: (I) wheat flour 32 

fortification; (II) supplementation of at-risk groups; and (III) combined flour fortification and 33 

supplementation; with (IV) a ‘no additional intervention’ scenario, reflecting the current 34 

Vitamin D policy in the UK. We simulated the whole population over 90 years. Data from 35 

national nutrition surveys were used to estimate the risk of deficiency under the alternative 36 

scenarios. Costs incurred by the health care sector, the government, local authorities, and the 37 

general public were considered. Results were expressed as total cost and effect of each 38 

strategy, and as the cost per ‘prevented case of VDD’ and the ‘cost per Quality Adjusted Life 39 

Year (QALY)’.  40 

Results: Wheat flour fortification was cost-saving as its costs were more than offset by the 41 

cost-savings from preventing VDD. The combination of supplementation and fortification 42 

was cost-effective (£9.5 per QALY gained). The model estimated that wheat flour 43 

fortification alone would result in 25% fewer cases of VDD, while the combined strategy 44 

would reduce the number of cases by a further 8%. 45 

Conclusion: There is a strong economic case for fortifying wheat flour with Vitamin D, alone 46 

or in combination with targeted vitamin D3 supplementation. 47 

  48 
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Introduction 49 

Vitamin D helps to maintain adequate levels of calcium and phosphorus in the body, playing a 50 

fundamental role in bone and muscle health (1). The main source of Vitamin D is sunlight 51 

exposure and many behavioural, cultural or environmental factors increase the risk of VDD 52 

by limiting the skin’s direct exposure to sunlight. Risk factors for VDD include, for example, 53 

sun screen use, air pollution, indoors lifestyles, full body clothing, and living in high latitude 54 

settings (2,3). People with dark pigmented skin who live in setting with limited sunlight, such 55 

as high latitude countries are also at a higher risk for VDD, as well as older adults, 56 

particularly if institutionalised. VDD can lead to poor health and its symptoms manifest as 57 

osteomalacia, bone pain, muscle weakness and consequent increased risk of falls. In children, 58 

severe VDD additionally causes hypocalcaemia (low levels of calcium in the blood), which is 59 

associated with seizures, tetany and heart failure (4,5), and rickets with osteomalacic leg 60 

bowing, muscle weakness and delayed infant development. Morbidity from VDD is 61 

predominantly found in individuals from Black and Asian Minority Ethnic (BAME) groups 62 

living in high-latitude countries, including in the UK (6,7), the US (8), Canada (9), 63 

Scandinavian countries (10–13) and Australia (8,14). Nonetheless, VDD is common in many 64 

populations across the world, regardless of ethnicity.  65 

In response, most countries have adopted policies to increase the populations’ intake of 66 

vitamin D, which generally consist of a combination of supplementation and food fortification 67 

strategies (15). In the UK, multivitamin supplements containing vitamin D are recommended 68 

to all infants and children up to the age of four, as well as to pregnant women and 69 

breastfeeding mothers (16). These vitamins are provided free-of-charge to those in low-70 

income households. In addition, infant formulas and spreadable fats are mandatorily fortified, 71 

while other foods including breakfast cereals and milk substitutes are voluntarily fortified. 72 

While both supplements and fortified foods are important sources of vitamin D for the UK 73 
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population, evidence suggests supplementation polices are not working (7,17) and the mean 74 

daily vitamin D intake is still below the Reference Nutritional Intake (RNI) of 400 IU per day 75 

(2,18). Therefore, rickets and hypocalcemic complications remain a serious health issue and 76 

cause of death in infants, particularly in the BAME group (4,7,19,20). Evidence shows that 77 

vitamin D status, which is measured through the blood concentration of a Vitamin D 78 

metabolite, the 25-hydroxyvitamin D [25(OH)D], is suboptimal in 13% of the European 79 

population (21). In the UK population, 20% of adults and 16% of children aged between 11 80 

and 18 years are estimated to be VDD (2), with the BAME group being, by far, the most 81 

affected (10,12,22–25). 82 

So far, the economic evidence needed to inform and underpin VDD prevention policies has 83 

been limited (26). To the best of the authors’ knowledge’, there is no evidence on the cost-84 

effectiveness of preventing population VDD through food fortification or a combination of 85 

food fortification and supplementation, even though the latter is the approach taken in most 86 

countries (15). This study estimates the cost-effectiveness of preventing VDD using the 87 

population of England and Wales as a simulated cohort and compares the strategies of 88 

supplementation of at-risk groups, wheat flour fortification, and a combination of the two 89 

approaches. 90 

 91 

Methods  92 

An individual-level state-transition model was developed to compare four different strategies 93 

to prevent population VDD.  A state transition model was chosen to allow recurrence of VDD 94 

over the life course, and individual-level simulation was used to make the most efficient use 95 

of available data on risk heterogeneity for VDD in the population, as well as to account for 96 

individual pathways across the model’s time horizon (27,28). The model used a one-year 97 

cycle length, and both costs and benefits were discounted at 3.5% per year, as recommended 98 
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by the UK National Institute for Health and Care Excellence (NICE) (29). The base case 99 

analysis was done from a societal perspective and results reported using incremental cost 100 

effectiveness ratios (ICER) in the form of cost per additional quality-adjusted life year 101 

(QALY) gained, and cost per prevented case of VDD.  The model was built in TreeAge Pro 102 

2016 software, and followed modelling (28,30) and reporting (31) guidelines for good 103 

practice.   104 

The model comprised three main health states (Figure 1). These health states were mutually 105 

exclusive and represent clinically relevant stages: 106 

1) Vitamin D deficient (VDD): all children with serum 25(OH)D concentrations below 107 

30nmol/L (3) and adults with serum 25(OH)D below 50 nmol/L (32).  108 

2) Vitamin D sufficient (VDS): all children with serum 25(OH)D concentrations above 109 

30nmol/L (3) and adults with serum 25(OH)D above 50 nmol/L (32). 110 

3) Dead: based on all-cause mortality and naturally treated as an absorbing state.  111 

 112 

[Figure 1] 113 

 114 

The majority of the VDD population were assumed to be asymptomatic. Within the model, 115 

asymptomatic individuals followed a pathway with the possibility of remaining deficient or 116 

becoming sufficient over time. For the deficient population who become symptomatic, 117 

children were assigned a risk of developing rickets and hypocalcemic complications, and 118 

adults a risk of developing osteomalacia. Younger adults aged between 19-64 years old who 119 

acquire osteomalacia suffer from diffuse pain and muscle weakness. Older adults with 120 

osteomalacia had a modest increased risk of falls due to pain and muscle weakness. The full 121 

model structure depicting the clinical pathways for children and adults with symptomatic 122 

VDD can be found in the supplementary material (Figure S1 and Figure S2). 123 
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The starting cohort within the model was simulated based on the population of England and 124 

Wales, according to its age, sex and ethnicity distributions (33). The following four 125 

alternative strategies were compared: (I) wheat flour fortification at 400IU of Vitamin D per 126 

100 g of wheat flour; (II) free supplementation to all at-risk groups; (III) a combination of 127 

flour fortification and supplementation; and (IV) no additional intervention, i.e. maintaining 128 

the current fortification and supplementation policy of providing supplements to young 129 

children, pregnant women and breastfeeding mothers within low-income households, and 130 

fortifying certain food groups. Wheat flour was chosen as the most appropriate food for 131 

fortification since, contrary to milk and spreadable fats, flour is a staple food across multiple 132 

ethnic groups, including Asian, African, Caribbean, and white ethnic groups, and therefore 133 

will potentially reach multiple at-risk groups. Evidence from Scandinavian countries shows 134 

that milk supplementation is not as effective in reaching ethnic minority groups as it is in 135 

reaching white ethnic groups (15). Regarding safety, a UK study that compared vitamin D 136 

fortification of milk, flour and a combination of both showed that flour fortification alone 137 

presented the lowest risk of toxicity in the population (34). Wheat flour is already fortified in 138 

the UK, and addition of vitamin D to the mix of added nutrients is likely to carry lower 139 

implementation barriers than targeting an industry that has no fortification infrastructure, in 140 

place, such as milk in the UK.  The baseline risk of VDD was estimated using individual-level 141 

intake data reported from the National Diet and Nutrition Survey (NDNS) (18,35). The intake 142 

of vitamin D included all food sources (natural and fortified foods, including voluntarily 143 

fortified). Differences in intake by age group and sex were considered. 144 

The effectiveness of wheat flour fortification in reducing the risk of being VDD by sex was 145 

derived from Allen et al.’s nutrition model (34,36). Ethnicity specific effects were not 146 

available and therefore the same effect was assumed for white and BAME populations. The 147 
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full list of the transition probabilities used in the model for the current UK policy and wheat 148 

flour fortification is presented in the supplementary material (Table S1.A. and Table S1.B.). 149 

The effect of the supplementation programme was based on data provided by a local 150 

government organization in London, UK (37), which recorded the uptake of free vitamin D 151 

supplements using an electronic card system. In this Local Authority, all children up to 4 152 

years old, pregnant women and breastfeeding mothers were eligible to receive free Vitamin D 153 

supplements. In our model, supplements were provided to all sub-populations at risk of 154 

symptomatic VDD including all infants and young children up to 18 years old; individuals of 155 

all ages from BAME backgrounds; and all individuals aged over 65 years. In the absence of 156 

data on the uptake of supplements by adults and older children (>4 years old), we assumed the 157 

same uptakes in older and younger children to that of children <4 years, and the adult uptake 158 

to be the same as that of pregnant and breastfeeding women. The model assumed a 159 

supplement dosage of 400IU per day for all groups except for the elderly, who received 160 

800IU per day as per the recommended minimum dose to prevent falls (38). The effectiveness 161 

of the combined scenario (wheat flour fortification plus supplementation of at-risk groups) 162 

was estimated as the additive effectiveness of each strategy alone.  163 

Outcomes 164 

Preventing VDD in the population reduces the risk of poor bone and muscle health. The 165 

outcome unit used for the cost-effectiveness analysis was the number of cases of VDD 166 

prevented. For the cost-utility analysis, the health-related quality of life (HRQoL) for a given 167 

health state was combined with the time spent in that health state to formulate QALYs. The 168 

preference-based quality of life values (i.e. utilities) applied to estimate QALYs were sourced 169 

from two HRQoL studies, published elsewhere (39), one focusing on VDD in children, and 170 

the other in adults (supplementary material, table S2).  171 
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 172 

Costs 173 

Cost data were derived from multiple sources (supplementary material, table S3). For the 174 

wheat flour fortification strategy, the price of dried vitamin D was obtained from a UK 175 

commercial flour supplier of the food industry (LFI (UK) Ltd). The costs of re-labelling 176 

packages, used in a sensitivity analysis, and the public sector costs of enforcing mandatory 177 

fortification were sourced from the Food Standards Agency‘s study of wheat flour 178 

fortification with folic acid (40). The cost structure of the supplementation programme was 179 

based on the Local Authority’s supplementation programme (37), which was pharmacy-led. It 180 

was assumed that supplements would be supplied through community pharmacies, which 181 

would receive an initial financial incentive for participating in the programme and 182 

reimbursements for the cost of the supplements dispensed. An additional incentive would be 183 

provided for each supplement dispensed to encourage sustained adherence to the programme.  184 

Uncertainty and sensitivity analyses 185 

Several sensitivity analyses were conducted to determine how sensitive the model results 186 

were to the assumptions made (Table 1). First, the time horizon was varied to 5 and 10 years. 187 

Second, the discount rate for both costs and benefits was set to 1.5%. Third, the perspective 188 

was altered to include only public sector costs, therefore eliminating all private costs borne by 189 

the food industry. Fourth, following the Food Stardards Agency report on the cost of 190 

fortifying flour with folic acid in the UK (40), the model included a conservative estimate for 191 

the food industry costs of relabelling flour packages, and all products containing flour, such as 192 

cakes and biscuits. Fifth, the model assumed no disutility from asymptomatic VDD. Sixth, the 193 

starting cohort was altered to include a higher proportion of BAME individuals, reflecting the 194 

population mix of many large UK cities (33). Finally, a probabilistic sensitivity analysis was 195 

conducted based on 10,000 iterations of a Monte Carlo simulation, using the model parameter 196 
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distributions listed in the supplementary material (Tables S4-S11).  All analyses was 197 

conducted in TreeAge Pro 2017, R1.  198 

 199 

[Table 1] 200 

 201 

Results 202 

The model base case analysis showed that wheat flour fortification was cost-saving, which 203 

means that it led to fewer costs and more benefits when compared to the current national 204 

policy in England and Wales, and is therefore described as dominant (Table 2). All other 205 

strategies were found to be superior to the current national policy in terms of cases of VDD 206 

prevented.  207 

The model estimated that if the current VDD policy is kept in place, there will be almost 40 208 

million new cases of VDD – asymptomatic and symptomatic - over the next 90 years. 209 

Introducing wheat flour fortification would result in a 25% reduction in this number, and if 210 

that is combined with an additional supplementation programme then a further 8% would be 211 

prevented (33% in total). The model estimated that wheat flour fortification would lead to an 212 

increased expenditure of £0.12 per person per year based on consumption estimates that 213 

include common flour based products such as cakes and biscuits (41). The model found the 214 

strategy of flour fortification to be cost-saving, saving approximately £65 million over a 90-215 

year time horizon. If food fortification is combined with supplementation, then this would 216 

lead to an additional cost of nearly £2 per case of VDD prevented but more cases of VDD 217 

would be prevented when compared to fortification alone. 218 

 219 

[Table 2] 220 

 221 
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The analysis showed that wheat flour fortification at 400IU per 100g of flour combined with 222 

targeted supplementation at 400IU for children up to 18 years old and all individuals from 223 

BAME backgrounds and 800IU for all individuals older than 65 years old is cost-effective. 224 

The intervention costs on average £0·38 per person across the whole population (total costs 225 

over the 90 years modelled is 250 million) and leads to an average gain of 0·04 QALYs, 226 

resulting in an ICER of £9·50 per QALY gained (table 3). Under commonly applied UK 227 

thresholds of willingness to pay per QALY, this represents a highly cost-effective use of 228 

resources.  229 

[Table 3] 230 

 231 

The sensitivity analyses showed the model results were not sensitive to the majority of the 232 

assumptions made. Consistently, with each subsequent sensitivity analysis, the model showed 233 

the flour fortification strategy to be dominant and the combined strategy to impose a small 234 

cost but to be highly cost-effective. Evidence from the literature suggests that asymptomatic 235 

VDD – (serum concentrations of 25(OH)D levels below the deficiency threshold, but no overt 236 

symptoms), if coexisting with limited dietary calcium, are regarded as a pre-clinical health 237 

risk state, with diffuse pain (1), muscle weakness and fatigue (42), and thus likely to impact 238 

on quality of life. In the base case analysis, a detrimental impact on HRQoL was assumed 239 

based on an expert elicitation study (39). We tested this assumption in a sensitivity analysis 240 

and noted that when it is assumed that the asymptomatic VDD health state results in the same 241 

quality of life as being vitamin D sufficient, then the combined strategy has no additional 242 

benefit (supplementation material, appendix 4). 243 

Finally, the probabilistic sensitivity analysis (Figure 2) showed that for willingness to pay 244 

values of up to £200 per QALY, wheat flour fortification is the recommended option. For 245 
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values above £200 per QALY, a combination of wheat flour fortification and supplementation 246 

of all-at risk groups is the optimal strategy.  247 

 248 

[Figure 2] 249 
 250 

 251 

Discussion 252 

Our model found that implementing strategies to prevent VDD is likely to be cost-effective 253 

and wheat flour fortification to be cost-saving as compared to the current policy in England 254 

and Wales. The costs of implementing and running the fortification scheme were more than 255 

compensated for by the health care savings from preventing more cases of VDD. 256 

Alternatively, the combined strategy of adding Vitamin D to wheat flour and extending the 257 

coverage of supplementation to all at-risk groups would be highly cost-effective strategy. 258 

Therefore, for an additional cost, the combined strategy prevents more cases of VDD when 259 

compared to fortification alone and under conventional decision-making rules(43), this 260 

additional cost would be regarded as a highly cost-effective use of public resources. 261 

 262 

These results of our study are in line with published economic evaluations of food 263 

fortification programmes for other micronutrients, such as folic acid (44–46), which have 264 

found food fortification to be cost-saving, in pre- and post-implementation studies. The 265 

economic advantage of food fortification lies in the wide-coverage and shared costs across the 266 

private sector, consumers and the government. Food fortification has the potential to target 267 

hard-to-reach populations, overcoming some of the problems with low uptake of 268 

supplementation programmes. Moreover, fortification has a far lower burden on the health 269 

care budget than supplementation alternatives, as most costs of the food fortification 270 
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programme are borne by the food industry, and passed on to the consumer. However, a 271 

combined strategy offers both a nutritional safety net to the population by fortifying the food 272 

chain, and a targeted supplementation scheme to those who are most in need. 273 

 274 

We have included children, BAME groups and individuals aged over 65 years old in the at-275 

risk group of the population. Even though most severe cases of VDD have been reported in 276 

BAME mothers and their new-borns, overall pregnant women benefit from adequate levels of 277 

25OHD.  Most vitamin D supplementation policies around the world already target pregnant 278 

women and infants. When considering new public health approaches to reach at-risk and 279 

vulnerable groups, pregnant women should continue to be a target group for the strategy of 280 

supplementation. 281 

 282 

The analysis presented here is based on hypothetical scenarios with conservative assumptions 283 

applied to increase confidence in the results. For example, potential savings in primary care 284 

associated with consultation of general practitioners and testing were not included, such as the 285 

economic burden from routine 25(OH)D testing. In children alone, these costs were estimated 286 

to be £1·7 million (at 2014 prices) (47). As new and more expensive diagnostic tests are 287 

introduced, the economic burden is likely to increase. Furthermore, conservative estimates 288 

regarding the modelling of VDD-related falls in the elderly were also applied, based on a 289 

recent economic evaluation study by Poole et al (2015) (48).  290 

 291 

We have focused on the benefits of vitamin D to bone and muscle health. The emerging 292 

evidence of potential wider benefits of maintaining a healthy vitamin D status such as 293 

prevention of cancer and cardiovascular disease (49,50), acute respiratory infections, (51) and 294 

other illnesses (52),  suggests that the impact of public health measures to tackle vitamin D 295 
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deficiency might be even stronger than that reported in this study. A recent meta-analysis 296 

using individual patient data from over 10,000 individuals found that vitamin D supplements 297 

reduced the risk of acute respiratory infections, such as colds and the flu, which have a 298 

tremendous burden in population health and health systems (51). As more robust evidence on 299 

non-musculoskeletal effects of vitamin D from interventional studies become available, there 300 

is potential for future models to incorporate these additional benefits. If the same public 301 

health measures compared in our model are able to prevent other diseases, the cost-302 

effectiveness results will be even more favourable that the ones we present here. 303 

One of the strengths of the model is that it was informed by direct communication with 304 

stakeholders, including clinical experts, local UK public health organisations, established 305 

researchers with experience in economic evaluation of micronutrient interventions, and expert 306 

investigators in the economics of food fortification. Moreover, this is the first model to 307 

compare supplementation and food fortification with vitamin D independently, as well as the 308 

combination of both in the same analysis, which is a more meaningful way of representing the 309 

relevant alternatives for policy makers to consider. Our findings were robust when tested 310 

under a number of deterministic sensitivity analyses and a probabilistic sensitivity analysis. 311 

 312 

The model has some limitations. Data on the costs and uptake of the supplementation 313 

programme were sourced from a Local Authority, and were extrapolated to a nation-wide 314 

scenario. Regarding the costs, for example, purchases at the national level might achieve 315 

economies of scale and result in lower costs. To account for this uncertainty, each relevant 316 

model input (eg. cost estimates) was assigned a wide distribution within the probabilistic 317 

sensitivity analysis. There was a lack of data on the uptake of supplements by ethnic groups 318 

who have different risk profiles for developing VDD. In the absence of uptake data by ethnic 319 

group, equivalent levels were applied to all ethnic groups. Furthermore, the cost and 320 
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effectiveness of the combined strategy was assumed to be the sum of the costs and 321 

effectiveness of the flour fortification and supplementation strategies combined. In reality, if 322 

implemented simultaneously, interactions between the two strategies are likely, although it is 323 

unknown in which direction. Finally, the model only included the health-related benefits from 324 

preventing VDD and any other benefits beyond health were not included. Economic 325 

evaluation requires that the relevant benefits and costs of each of the policy alternatives are 326 

quantifiable. This is the greatest challenge when applying standard economic evaluation 327 

methods to the prevention of micronutrient deficiencies. The benefits from reducing the 328 

prevalence of vitamin and mineral deficiencies are wide but hard to measure (53). Nutrition, 329 

including vitamin D status, impacts human development from conception until the later stages 330 

of life (54–56). Moreover, poor nutrition affects socioeconomically disadvantaged groups of 331 

the population, and tackling it would have a wider economic benefit by addressing health and 332 

social inequalities (57). For example, there would be a clear social benefit from reducing the 333 

prevalence of VDD in minority ethnic groups, as it would reduce any stigma associated with 334 

rickets in children (58). 335 

 336 

The effectiveness of any fortification programme depends on a number of programme design 337 

choices, for example, the food chosen needs to be consumed by the targeted population, and 338 

the price increase of the final product should be kept low, so that no access barriers based on 339 

income are not created (53,59). These features of a programme are particularly important in 340 

the context of VDD since BAME groups are at a higher risk. Other studies have highlighted 341 

that there is a need to collect data on the diet and nutritional status of BAME populations in 342 

the UK (60). We corroborate such needs. To date, nutritional data from the NDNS have not 343 

been reported by ethnic group. Doing so would facilitate implementation of food fortification 344 

programmes, the effectiveness of which could be monitored using the existing structures, as 345 



 

 

 

 

15 

done in other countries such as Finland (21). Fortifying flour would ensure that population 346 

serum 25(OH)D concentrations are raised to safe levels with supplementation used to target 347 

subgroups that the fortification programme may not reach effectively.  348 

 349 

VDD is wide-spread in the population, it has a negative impact on HRQoL with a burden of 350 

disease that is much larger than rickets and osteomalacia. VDD and its complications are 351 

preventable and well-planned public health strategies can be highly cost-effective and even 352 

cost-saving. Biological, environmental, cultural, historical, and economic factors influence 353 

how VDD affects the population, as well as the cost and effectiveness of alternative strategies. 354 

Therefore, tackling population VDD in England and Wales requires efforts from 355 

multidisciplinary professionals, such as clinicians, nutritionists, health economists, public 356 

health professionals, and policy makers.  357 
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Figures legends 

Figure 1 – Illustration of the model structure 

Figure 2 – Cost-effectiveness acceptability curve (CEAC) showing the probability of 

alternatives to prevent VDD being cost-effective at increasing acceptability thresholds  

 


