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Automated defect classification of Aluminium 5083 TIG welding

using HDR camera and neural networks

Daniel Bacioiua,b, Geoff Meltonb, Mayorkinos Papaeliasa, Rob Shawb

aDepartment of Metallurgy and Materials, University of Birmingham
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Abstract

Weld defect identification represents one of the most desired goals in the field of non-
destructive testing (NDT) of welds. The current study investigates a system for assessing
tungsten inert gas (TIG) welding using a high dynamic range (HDR) camera with the help
of artificial neural networks (ANN) for image processing. This study proposes a new dataset
1 of images of the TIG welding process in the visible spectrum with improved contrast, sim-
ilar to what a welder would normally see, and a model for computing a label identifying the
welding imperfection. The progress (accuracy) achieved with the new system over varying
degrees of categorisation complexity is thoroughly presented.

Keywords: automation, convolutional neural networks, HDR camera, vision, process
monitoring, quality assessment

1. Introduction

Tungsten Inert Gas (TIG) welding [1, 2] is an arc welding process which is commonly
employed in joining high-value precision components across a range of industries including
automotive and aerospace. It was invented in the late 1930s when the requirement for join-
ing magnesium became apparent. Since then, it has been adapted for joining steel, copper,
aluminium and many other engineering alloys. It is traditionally a manually implemented
process, capable of achieving higher quality weldments in comparison with other arc pro-
cesses. However, it currently has many limitations, all of which are inherently related to its
manual nature. It heavily relies on highly-skilled manual welders who are expensive and in
very short supply. Furthermore, it lacks the flexibility to perform the welding of complex
geometries and causes poor repeatability and relatively high scrappage rates.
To address these limitations, the automation of TIG weld process is crucial. The monitoring
and control of the weld pool during the process are critical to the automation in order to
ensure quality, consistency and repeatability [3, 4, 5, 6].

1https://www.kaggle.com/danielbacioiu/tig-aluminium-5083
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The welding process control system using some form of neural network started with the
introduction of neurofuzzy architecture by Zhang and Kovacevic [7, 8]. The neurofuzzy al-
gorithm was capable of adapting and controlling the non-linear nature of TIG welding by
establishing a correlation between the weld pool boundary and the top-side and back-side
bead widths.
Over the past decades, a number of sensing approaches have been proposed in the litera-
ture as a means to monitor, in real-time, the weld pool. Among these approaches are the
pool oscillation method [9, 10], ultrasonic testing [11, 12, 13], infrared sensing [14, 15] and
specular weld pool surface [16, 17]. Lee et al.[18], Song et al. [19] and Lucas et al. [20]
approach the concept of capturing and processing images of the weld pool. Most of these
studies dedicate ample analysis for weld defects categorisation at different stages during or
post-welding. The raw information for image processing and the entire approach deriving
from it take two main avenues: radiographic images and visible spectrum images of welding.
The two approaches have inspired each other with regards to the signal processing applied
to the data, but fundamentally they approach the problem from two different points of
view. While the radiography cannot monitor the weld pool, the acquisition of images in the
visible spectrum has no limitation with regards to image collection. Conversely, the visible
spectrum image acquisition needs to cope with the intense light emitted by the welding arc.
To illustrates this, Zou et al. [21] proposed an algorithm for real-time weld defect detection
in radiographic NDT of spiral pipes. The method is based on greyscale image thresholding
and application of Kalman filtering for defects tracking and false alarms exclusion. The
technique provides further resilience to noise and background inhomogeneity. In another
work, Boaretto et al. [22] made use of double wall double image (DWDI) method for cap-
turing radiographic images. These authors subsequently located the weld bead, segmented
the discontinuities and extracted the features. These features were then processed with a
feed-forward multilayer perceptron (MLP) for the classification of discontinuities into ’de-
fect’ and ’no-defect’. Hou et al. [23] proposed a system for identifying defects in x-ray
images of welds based on Stacked Sparse Auto-Encoders (SSAE) and softmax classification.
After training the system on a subset of GDXray dataset, the author achieved an accuracy
of 91.84%.
On the other hand, using input that is more analogous to human vision, Jiang et al. [24]
studied the extraction of weld pool width from an image by passing it through a series of
transformations: intra-group variance thresholding, fill hole treatment (advance morpholog-
ical operations), FFT, edge detection (Canny), edge curve fitting and finally weld pool width
extraction. Liu et al. [25] designed a procedure for capturing the top side of keyhole plasma
arc welding using a CCD camera and a filter with different rates of attenuation to counter
the strong arc characteristics. The authors applied the Canny filter on the image to extract
weld pool edges followed by a series of custom designed and very specific steps, tailored to
plasma arc welding, to reconstruct the exact weld pool boundary. In another study, Fidali
et al. [26] investigated a technique which uses two cameras to acquire the visual and infrared
spectrum of MAG welding process, fuse the images, then extract arc area statistics, welding
area topological features and assesses intensity profile along a line in arc and welding pool
areas. The authors used the multitudes of these parameters to detect different welding con-
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ditions. The end classification was carried out using k-nearest neighbour classifier achieving
an accuracy around 50%.
In a suite of publications, Liu and Zhang [27, 28, 29] combined the specular weld pool surface
representation of the TIG welding process with the adaptive neuro-fuzzy inference system
(ANFIS) for establishing the correlation between the welding current and speed and the
back-side bead width. In a subsequent study [30] the same authors attempted to fuse the
human welders’ robustness to weld pool variations and the robot’s quick response capability
for offsetting varying welding currents and input disturbances.
In our work, visual testing is the main focus of study, by identifying reliably and consis-
tently defects present in weldments of aluminium 5083 using the TIG welding process. The
current study assesses the suitability of 12 neural networks (NN) architectures covering con-
volutional neural networks (CNN) and fully-connected neural networks (FCN) with varying
internal layouts. More precisely, the principal aim of the study is to provide an alternative
method for analysing images of the TIG welding process by combining the HDR camera and
novel processing paradigms as neural networks.

2. Methodology

Our approach for defect identification involves utilising a camera trailing the welding
process oriented directly towards the weld pool to obtain the real-time images. Figure 1
depicts the schematic layout of the system while Figure 2 is a real-life setup.

Figure 1: TIG welding process layout.

First, images of weld pools from ”good welds” were captured and recorded then several
defects were introduced and weld pools from ”defective welds” were also recorded. The
alteration of welding parameters, one at the time, helped with the defects introduction. For
instance, a series of weld trials were performed in which the welding current was decreased in
stages until ”lack of penetration” was obtained. Note that all trials started with a standard
”control” welding conditions given in subsection 2.1.
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The images captured by the camera were then categorised based on the data representative
of the defects targeted in this work. Note that this categorisation ranges from the basic
”good weld vs defective weld” to more complex 6-class problem of ”good weld vs burn
through vs contamination vs lack of fusion vs misalignment and lack of penetration”.

2.1. Welding process

The welding process of choice in the current study is TIG welding due to the arc stability,
minimal spatter and weld pool stability, used for high-quality welds, which simplifies the
images analyses.

Figure 2: Camera and robot setup.

Aluminium 5083 grade was selected as the work material because it is extensively used
in TIG welding. Its composition is detailed in Table 1. The plates thickness is 2mm, and
the groove angle is 90°. Table 2 lists the welding parameters used in this work as a standard

Table 1: Aluminium 5083 composition.

Element %

Al Balance
Mg 4.00 - 4.90
Mn 0.40 - 1.00
Si 0.40 Typical
Zn 0.25 Typical
Ti 0.15 Typical
Fe 0.40 Typical
Cu 0.10 Typical
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”control” to achieve good welding conditions.

Table 2: Standard baseline welding parameters.

Current (A) 90
Travel Speed (cm/min) 35

Voltage (V) 12
Argon flow rate (L/min) 15

Figures 3 and 4 show the distribution of the input current and the travel speed for each
class examined in this study by deviating from the baseline parameters.

Figure 3: Current values for each category

Figure 4: Travel speed values for each category

2.2. Camera capabilities

The camera used to record images is a Xiris XVC-1000. It uses high dynamic range
(HDR) capability, of 140+dB, to diminish the arc luminosity and bring up details from the
weld pool and surrounding area, generating tones with greater accuracy. Table 3 details the
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camera specifications.
Figure 5 shows the workpiece after welding with the weld appearance as recorded by the
camera attached.

Table 3: Xiris XVC-1000 specifications

Image Sensor 2/3” Mono HDR CMOS
Speed/Resolution Up to 55 FPS at 1280 (H) x 1024 (V) pixels
Dynamic Range 140+ dB
Bit Depth 12 bits
Image Data Mono 8/16, Bayer 8/16
Shutter Range 1 µs - 53s Exposure

Figure 5: Dataset samples of aluminium TIG welding. a) good weld; b) burn through; c) contamination; d)
lack of fusion; e) misalignment; f) lack of penetration
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2.2.1. Data

The study aim is to extract information from an image representing the weld pool and
surrounding area in the visible spectrum. We use a new dataset, recorded with the HDR
camera, containing images with tone contrast similar to human eye vision, an example of
which is given in Figure 5, composed of 60 welding trials.
Each trial generates images at 55 frames per second, producing relatively quickly a large
amount of data. The dataset contains 33254 images of TIG welding of aluminium 5083. The
images were split into 6 classes, listed in Table 4, by an experienced operator.

Table 4: Dataset split between training and test for 6-class test.

Number of samples
Label Train Test

good weld 8758 2189
burn through 1783 351
contamination 6325 2078
lack of fusion 4028 1007
misalignment 2953 729

lack of penetration 2819 234
Total 26666 6588

Table 5: Dataset split between training and test for 4-class test.

Number of samples
Label Train Test

good weld 3763 427
burn through 1783 351
contamination 2918 396
lack of fusion 4182 402

Total 12646 1576

The processing architecture requires the data to be split into two main subsets: training
and testing, with approximatively 75% and 25% share respectively. The data split are
described in Table 4 and 6 are for the 6-class and 2-class analysis, respectively. The exception
is the 4-class analysis, described in Table 5, which uses an 88%-12% split due to limitations
in the generated data. The dataset for 4-class trial is a smaller version of 6-class and
2-class datasets where ”misalignment” and ”lack of penetration” are removed and classes
with excessive number of examples reduced. The reduction excludes images from classes
with excessive representation, i.e. ”good weld”. As a consequence it is less representative
compared to the other two. All 6-class, 4-class and 2-class analysis use the data generated
within the same set of welding experiments. Table 6 ”defective” category incorporates all
the defects from Table 4 under one single class.
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Table 6: Dataset split between training and test for 2-class test.

Number of samples
Label Train Test

good weld 8758 2189
defective 17908 4399

Total 26666 6588

As each weld generates hundreds of images, the problem of correlation between the train
and test splits became apparent. To reduce the correlation, it was ensured that no weld trial
could be found in both the train and test subsets, meaning that the dataset was split based
on welding trial only and not by frame setting.

2.2.2. Preprocessing

The camera delivers frames of size 1280×1024 pixels, centred on the weld pool. The im-
ages contain a substantial amount of black pixels surrounding the weld pool and the welding
arc as seen in Figure 6. Therefore, the cropping reduces the original size of 1280×1024 to
800×974. Further to cropping, the images are subsampled, reducing the size to 400×487.
The subsampling operation is necessary because of the hardware constraints during the train-
ing stage of the networks. The model receiving a higher resolution requires significantly more
GPU memory.

Figure 6: Image subsampling
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The resolution reduction has the potential of influencing the resulting model accuracy.
This study performs an ablation analysis on the effect of resolution reduction on the final
accuracy. The images of 400×487 pixels are subsampled to 25×30 pixels and unsampled
back to 400×487. The subsampling followed by upsampling has two reasons: it maintains
the input image size of 400×487 pixels for neural networks and removes details from the
baseline image of 400×487. The result is the isolation of fidelity as the only changing
parameter across comparison.

2.3. Processing architecture

The processing paradigm evaluated in the current study is based on an artificial neural
network (ANN) architecture [31, 32, 33]. ANN is a lattice of computations which reduces
the input dimensionality, eventually arriving at desired labels. The reason for choosing ANN
rests mostly in the processing adaptability across various lighting and appearance conditions.
The study applies the fully connected neural network architecture (FCN) [34, 35, 36, 37]
and convolutional neural network (CNN) [38] for processing the weld images. FCN and
CNN are subsets of the larger ANN processing paradigm [39]. Both architectures have an
input layer for receiving the image and an output layer for the classification label. In FCN
there is a connection between each input pixel and every node from the subsequent layer.
In case of CNN, the region for kernel application is limited to the kernel dimension. One
of the first application of CNN [31] was character identification [40]. A representation of
convolution dynamics is Figure 7, where the input image (green) convolves with the kernel
(red) outputting one single value (purple).

Figure 7: Convolution between a feature map of dimension 5 × 5 (green) and a kernel of dimension 3 × 3
(red), stride 1 and image padding 0. The result is another feature map of dimension 3× 3 (turquoise).

By traversing the input image one pixel at a time (stride 1) horizontally or vertically,
another image (feature map) is created (turquoise). The reduction in the number of pa-
rameters required to produce the same output is significant. As an example in the current
displayed setting of Figure 7 there are 3 × 3 = 9 weights producing 9 outputs, while in the
case of fully-connected networks (FCN), producing the same output would require 5 × 5
× 9 = 225 weights because the number of parameters grows quadratically with the input
image size.
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The analysis in the current study covers 12 architectures, 6 CNNs and 6 FCNs. The main
parameters defining the architecture variations for CNN are the convolutional kernel size,
the number of kernels in each layer and stride, while for FCN the important parameters are
number of layers and the number of units in each layer. Tables 7 and 8 describe in more
details how layers are composed for each architecture.

Table 7: Fully connected neural network architectures

Model Number Description
reference of layers

7 4 downsize:[400, 487]
flatten:[194800]

matmul:[194800, 256]-relu
matmul:[256, 128]-relu

matmul:[128, {6, 4 or 2}]-Softmax
8 5 downsize:[400, 487]

max pool:[2, 2]/2
flatten:[48600]

matmul:[48600, 256]-relu
matmul:[256, 128]-relu

matmul:[128, {6, 4 or 2}]-Softmax
9 5 downsize:[400, 487]

max pool:[3, 3]/3
flatten:[21546]

matmul:[21546, 256]-relu
matmul:[256, 128]-relu

matmul:[128, {6, 4 or 2}]-Softmax;
10 5 downsize:[400, 487]

max pool:[5, 5]/5
flatten:[7760]

matmul:[7760, 256]-relu
matmul:[256, 128]-relu

matmul:[128, {6, 4 or 2}]-Softmax
11 5 downsize:[400, 487]

max pool:[10, 10]/10
flatten:[1920]

matmul:[1920, 256]-relu
matmul:[256, 128]-relu

matmul:[128, {6, 4 or 2}]-Softmax
12 5 downsize:[400, 487]

max pool:[20, 20]/20
flatten:[480]

matmul:[480, 256]-relu
matmul:[256, 128]-relu

matmul:[128, {6, 4 or 2}]-Softmax
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Table 8: Convolutional neural network architectures

Model Number Description
reference of layers

1 12 downsize:[400, 487]
conv:[5, 5]x[16]/1-relu, max pool:[5, 5]/3
conv:[5, 5]x[32]/1-relu, max pool:[5, 5]/3
conv:[5, 5]x[64]/1-relu, max pool:[5, 5]/3
conv:[5, 5]x[128]/1-relu, max pool:[5, 5]/3

flatten:[384]
matmul:[384, 256]-relu, matmul:[256, 128]-relu

matmul:[128, {6, 4 or 2}]-Softmax
2 12 downsize:[400, 487]

conv:[5, 5]x[16]/1-relu, max pool:[3, 3]/2
conv:[5, 5]x[32]/1-relu, max pool:[3, 3]/2
conv:[5, 5]x[64]/1-relu, max pool:[3, 3]/2
conv:[5, 5]x[128]/1-relu, max pool:[9, 9]/9

flatten:[2560]
matmul:[2560, 256]-relu, matmul:[256, 128]-relu

matmul:[128, {6, 4 or 2}]-Softmax
3 10 downsize:[400, 487]

conv:[5, 5]x[32]/2-relu, max pool:[3, 3]/2
conv:[5, 5]x[64]/2-relu, max pool:[3, 3]/2
conv:[5, 5]x[128]/2-relu, max pool:[3, 3]/2

conv:[3, 3]x[256]/2-relu
flatten:[512]

matmul:[512, 256]-relu, matmul:[256, 128]-relu
matmul:[128, {6, 4 or 2}]-Softmax;

4 12 downsize:[400, 487]
conv:[3, 3]x[16]/1-relu, max pool:[5, 5]/3
conv:[3, 3]x[32]/1-relu, max pool:[5, 5]/3
conv:[3, 3]x[64]/1-relu, max pool:[5, 5]/3
conv:[3, 3]x[128]/1-relu, max pool:[5, 5]/3

flatten:[1024]
matmul:[1024, 256]-relu, matmul:[256, 128]-relu

matmul:[128, {6, 4 or 2}]-Softmax
5 12 downsize:[400, 487]

conv:[3, 3]x[16]/1-relu, max pool:[3, 3]/2
conv:[3, 3]x[32]/1-relu, max pool:[3, 3]/2
conv:[3, 3]x[64]/1-relu, max pool:[3, 3]/2
conv:[3, 3]x[128]/1-relu, max pool:[9, 9]/9

flatten:[3840]
matmul:[3840, 256]-relu, matmul:[256, 128]-relu

matmul:[128, {6, 4 or 2}]-Softmax
6 11 downsize:[400, 487]

conv:[3, 3]x[16]/2-relu, max pool:[3, 3]/2
conv:[3, 3]x[32]/2-relu, max pool:[3, 3]/2
conv:[3, 3]x[64]/2-relu, max pool:[3, 3]/2

conv:[3, 3]x[128]/2-relu
flatten:[512]

matmul:[512, 256]-relu, matmul:[256, 128]-relu
matmul:[128, {6, 4 or 2}]-Softmax
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The first layer, ”conv:[5, 5]×[16]/1-relu”, in model 1 in Table 8, contains 16 kernels
with each kernel of dimension 5×5, stride 1, and the rectified linear unit, ReLu [41],
activation function. It produces 16 feature maps of size 396×483 each. This implies
396×483×16 = 3060288 output values with 5×5×16 (weights) + 16 (biases) = 416 pa-
rameters. For comparison purpose, the same number of outputs, with a FCN, would require
(396×483×16)*(400×487 + 1) = 596,147,162,688 parameters - almost impossible to pro-
cess.
Following each convolution layer, there is maximum pooling sampling layer [42]. ”max
pool:[5, 5]/3” translates to a kernel size 5×5 and stride 3, which samples the largest value
in the receptive field.
The basic blocks in this study are the 5×5 kernels with stride 1 and 2, 3×3 kernels with
stride 1 and 2, maximum pooling layers of sizes 5×5 with stride 3 and 3×3 with stride 2.
The convolution and maximum pooling operators are placed at the beginning of the network
having an effect of feature reduction, minimising input from 194800 (multiplying 400×487)
pixels to few hundreds.
After the convolution and pooling layers within each architecture, the image is flattened
i.e., unrolled into a vector and denoted ”flatten:[384]”, followed by fully connected layers,
denoted ”matmul:[384, 256]” as they are matrix multiplications.
The last two hidden layers ”matmul:[384, 256]-relu” and ”matmul:[256, 128]-relu” are the
same for all the networks to preserve some similarity between different architectures and
assess the power of representations built in previous convolutional layers.
An example of the feature maps shrinkage due to convolution and maximum pooling is
presented in Figure 8.

Figure 8: An example of visualisation of feature maps dimensions for each convolution and fully connected
layers for Model 1.
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2.3.1. Convergence

On top of the architecture variation, there is the process of learning, or more precisely,
finding the probability distribution describing the dataset. The probability distribution
is parametrised by the weights composing the kernels and fully connected layers in the
architecture described in Subsection 2.3. The convergence algorithm used in the current
study is called Adaptive Moment Estimation (Adam) [43]. The training parameters are
described in Table 9

Table 9: Training parameters.

Learning rate 10−1, 10−2, 10−3, 10−4 and 10−5

Number of epochs 5
Batch size 10

First moment estimates decay rate 0.9
Second-moment estimates decay rate 0.999

In summary, this study evaluates the neural networks accuracy on classifying weld images
with defects. The variable under investigation are as follows:

Table 10: Varying parameters.

Model 12 architectures
Learning rate 10−1, 10−2, 10−3, 10−4 and 10−5

Classification difficulty 2-class
4-class
6-class

Input images size 400x487 px
30x25 px

3. Results & Discussion

3.1. 6-class test

The most challenging test for the neural networks is the 6-class classification, for which
performance over a range of architecture and learning rate variations are described in Table
11.
The architectures highlight a significant degree of performance difference between CNN and
FCN. The CNN models outperform and build better representations from HDR input images
compare to FCN with a performance gap of 18% on average.
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Table 11: Model accuracy for the learning rate and model for 6-class classification.

Model Learning rates analysed
reference

10−1 10−2 10−3 10−4 10−5 model
average (%)

1 33.23 33.23 65.94 71.75 71.22 69.64
2 33.23 33.23 55.49 62.34 62.45 60.09
3 33.23 33.23 64.30 62.42 58.26 61.66
4 33.23 33.23 65.83 61.82 56.36 61.34
5 33.23 33.23 64.37 61.38 52.02 59.26
6 33.23 44.14 54.57 40.73 48.09 47.79
7 33.23 33.23 26.05 41.68 39.00 35.57
8 33.23 33.23 40.06 42.02 40.73 40.93
9 33.23 33.23 38.75 46.92 43.14 42.94
10 33.23 35.20 39.62 42.32 44.76 42.23
11 31.54 35.53 45.22 40.70 42.96 42.96
12 33.23 44.64 40.66 47.50 46.84 45.00

average 33.09 35.44 50.07 51.80 50.48 50.78

The performance numbers presented in Table 11, on the last column (dark grey back-
ground), represents the average of the three light grey columns, 10−3, 10−4 and 10−5 and
it measures the model’s stability across a range of values for learning rate. The first two
columns (10−1 and 10−2) are omitted because the networks are not successful in represent-
ing the underlying dataset probability distribution for the learning rate chosen. 10−1 and
10−2 learning rates were too high for the architecture’s internal parameters to converge to a
state representative of dataset’s probability distribution. In conclusion, all the learning rate
greater than 10−2 are unsuitable for converging to an acceptable solution.
Figures 9 shows the same set of models as Table 11, displayed graphically, while Figure 10
clusters the models based on the number of layers, highlighting the importance for increasing
the networks depth.
The limit in this case is the processing power available, which for this study, was 4GB Nvidia
GeForce GTX 980, able to accommodate a model of up to 12 layers. The pattern is also
found in FCN, architectures with 5 hidden layers exhibiting an accuracy advantage over
architectures with 4 hidden layers.
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Figure 9: Average accuracy for models trained with the learning rates 10−3, 10−4 and 10−5 for 6-class
classification.

Figure 10: Average accuracy as a function of the number of layers for 6-class classification.

The main interest of the study is to perform hyper-parameters’ (e.g. learning rate)
ablation analysis on values that led to relatively successful models. A relatively successful
model is one that achieves an accuracy exceeding 40% since the models tend to classify
everything as the same class. In the current case that class is ”good weld”.

3.2. 4-class test

Table 12 shows the performance results for training the the same architecture on classi-
fying 4 types of welds.
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Table 12: Model accuracy for the learning rate and model for 4-class classification.

Model Learning rates analysed
reference

10−1 10−2 10−3 10−4 10−5 model
average (%)

1 25.51 25.51 68.91 89.66 86.87 81.81
2 25.51 25.51 71.57 73.29 75.13 73.33
3 27.09 25.51 74.05 74.87 74.81 74.58
4 25.51 25.51 89.66 75.32 71.83 78.93
5 25.51 27.09 74.68 81.47 74.18 76.78
6 25.51 73.54 77.03 75.19 70.18 74.13
7 25.51 27.09 69.16 63.32 62.06 64.85
8 27.09 27.09 68.78 55.58 73.10 65.82
9 25.51 56.47 71.38 57.17 61.99 63.52
10 25.51 78.17 68.46 64.91 64.09 65.82
11 27.09 73.92 57.99 70.88 74.62 67.83
12 25.51 65.67 74.75 70.37 72.53 72.55

average 25.90 44.26 72.20 71.00 71.78 71.66

The average performance difference between CNN and FCN shrinks to 9.5%. Figures 11
and 12 show the average accuracy for each class and average accuracy variation for model
depth increase.
The natural inclination is to set larger learning rates since the architectures are able to
converge to a solution faster, requiring less training. In this regard, the FCN has a wider
operating window than CNN, being able to converge even with values as high as 10−2.
That being said, almost all architectures examined, have peak performance in the range
10−3−10−5. Performance as a function of learning rate degrades sharply for values adjacent
to 10−3 (namely 10−2) for CNNs as well as FCN by 42% and 13%, respectively.

Figure 11: Average accuracy for models trained with the learning rates 10−3, 10−4 and 10−5 for 4-class
classification.
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Figure 12: Average accuracy as a function of the number of layers for 4-class classification.

3.3. 2-class test

The reason almost all architectures achieve an accuracy of 67% over 2 classes in Table
13 when the random classification probability is 50% is due to a slight imbalance in test
dataset (2189 good weld samples and 4399 defective). All examples are categorised as
defective (4399/(2189+4399) = 0.67), therefore no representation of data was achieved.

Table 13: Model accuracy for the learning rate and model for 2-class classification.

Model Learning rates analysed
reference

10−1 10−2 10−3 10−4 10−5 model
average (%)

1 66.77 66.77 93.91 87.05 83.24 88.07
2 33.23 66.77 95.57 89.40 81.79 88.92
3 66.77 77.47 83.15 80.10 77.14 80.13
4 66.77 66.77 85.82 90.15 80.86 85.61
5 66.77 66.77 91.01 86.08 92.68 89.93
6 66.77 64.28 81.38 87.99 78.79 82.72
7 66.77 66.77 66.77 69.72 77.69 71.39
8 66.77 66.77 65.80 75.96 69.72 70.49
9 66.77 66.77 71.62 74.74 71.83 72.73
10 66.77 66.77 71.92 70.60 68.23 70.25
11 66.77 61.70 70.58 72.09 67.06 69.91
12 66.77 72.01 73.89 71.93 65.70 70.51

average 63.98 67.47 79.29 79.65 76.23 78.39

The results in Figure 11 and 12 show smaller performance gap between CNN and FCN
with a difference of 7.5% in favour of CNN. Analysing the samples labelled incorrectly,
it is observed that most images of ”contamination” are misclassified, in almost all cases,
indicating the defect is not represented sufficiently well in training dataset.
The 2-class performance mirrors the pattern seen in 6-class with the exception of overall
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accuracy. Since only two classes are present the entire graph is shifted up reflecting simpler
categorisation (see Figures 13 and 14).

Figure 13: Average accuracy for models trained with the learning rates 10−3, 10−4 and 10−5 for 2-class
classification.

Figure 14: Average accuracy as a function of the number of layers for 2-class classification.

3.4. Training stability

The training duration is 5 epochs for all the neural network architectures. Figure 15
shows the loss evolution during training stage, significant of the convergence towards a
solution. In this case the loss graph represents an instance of model reference 4, but the
same trend could be observed for all the models.
Figure 16 shows the test accuracy at different points during training, notably at every epoch’s
end.
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Figure 15: Training loss evolution.

Figure 16: Test accuracy evolution.

Figures 15 and 16 highlight the models’ rapid converge during the first epoch, while
during the next 4 epochs, the models either maintain the same accuracy or at best improves
it marginally.

3.5. Subsampling influence

This study analysis the impact of the resolution reduction on the final accuracy perfor-
mance. The result are presented in Figures 17, 18 and 19, for the 6-class, 4-class and 2-class,
respectively. Models trained using the images subsampled to 25× 30 pixels then upsampled
to 400× 487 are compared against models trained with the images subsampled to 400× 487
pixels. The fidelity reduction impacts severally the CNN architectures, particularly when
the problem difficulty increases and the distinction between classes became harder, as in
6-class test. The FCNs show small decrease in accuracy performance, therefore concluding
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the architectures are agnostic to inaccurate pixel values and less sensitive to the gradient
between pixels values.

Figure 17: Subsampling accuracy impact for 6-class defect.

Figure 18: Subsampling accuracy impact for 4-class defect.
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Figure 19: Subsampling accuracy impact for 2-class defect.

4. Conclusion

This study investigates a system for weldment classification using a vision system com-
posed of a HDR camera able to offset powerful arc light and capture more detailed imaging
of weld pool paired with the new and adaptive classification paradigm of neural networks.
The analysis involved the construction of models based on CNN and FCN, varying inter-
nal architecture and hyper-parameters influencing the convergence of internal parameters
for representing dataset’s probability distribution. The models were trained using 6-class,
4-class and 2-class tests with highest accuracies of 71%, 89% and 95%, respectively. Further-
more, this study performed neural networks’ robustness examination over a set of problems
(6-class, 4-class and 2-class), highlighting the parameters influencing the model performance,
concluding the architecture is the most important aspect given the learning rate is adequately
chosen. The study also cover, the critical analysis of the errors linked to the input images
fidelity reduction, highlighting the decrease in the accuracy performance.
The system required the generation of a new TIG welding dataset representing good welds
as well as different types of common defects. This study contributes with 33254 images
covering five welding defects.
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