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THE CONE OF Z-TRANSFORMATIONS ON THE LORENTZ CONE∗1

SÁNDOR Z. NÉMETH† AND M. SEETHARAMA GOWDA‡2

Abstract. In this paper, we describe the structural properties of the cone of Z-transformations3

on the Lorentz cone in terms of the semidefinite cone and copositive/completely positive cones4

induced by the Lorentz cone and its boundary. In particular, we describe its dual as a slice of the5

semidefinite cone as well as a slice of the completely positive cone of the Lorentz cone. This provides6

an example of an instance where a conic linear program on a completely positive cone is reduced to7

a problem on the semidefinite cone.8

Key words. Z-transformation, Lorentz cone, semidefinite cone, copositive cone, completely9

positive cone10

AMS subject classifications. 90C33, 15A4811

1. Introduction. Given a proper cone K in a finite dimensional real Hilbert12

space (H, 〈·, ·〉), a linear transformation A : H → H is said to be a Z-transformation13

on K if14 [
x ∈ K, y ∈ K∗, and 〈x, y〉 = 0

]
⇒ 〈Ax, y〉 ≤ 0,15

where K∗ denotes the dual of K in H. Such transformations appear in various areas16

including economics, dynamical systems, optimization, see e.g., [3, 2, 12, 9] and the ref-17

erences therein. When H is Rn and K is the nonnegative orthant, Z-transformations18

become Z-matrices, which are square matrices with nonpositive off-diagonal entries.19

The set Z(K) of all Z-transformations on K is a closed convex cone in the space of20

all (bounded) linear transformations on H. Given their appearance and importance in21

various areas, describing/characterizing elements of Z(K) and its interior, boundary,22

dual, etc., is of interest. An early result of Schneider and Vidyasagar [16] asserts that23

A is a Z-transformation on K if and only if e−tA(K) ⊆ K for all t ≥ 0; consequently,24

(1.1) Z(K) = R I − π(K),25

where π(K) denotes the set of all linear transformations that leave K invariant, I26

denotes the identity transformation, and overline denotes the closure. To see another27

description of Z(K), let LL(K) := Z(K)∩−Z(K) denote the lineality space of Z(K),28

the elements of which are called Lyapunov-like transformations. Then the inclusions29

R I − π(K) ⊆ LL(K)− π(K) ⊆ Z(K) = R I − π(K)30

imply that31

Z(K) = LL(K)− π(K).32

As the cones Z(K), π(K), and LL(K) are generally difficult to describe for an arbitrary33

proper cone K, we consider special cases. When K is the nonnegative orthant, Z(K)34

consists of square matrices with nonpositive off-diagonal entries, π(K) consists of35

nonnegative matrices, and LL(K) consists of diagonal matrices. Consequently, proper36

polyhedral cones can be handled via isomorphism arguments. Moving away from37
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2 SÁNDOR Z. NÉMETH AND M. SEETHARAMA GOWDA

proper polyhedral cones, in this paper, we focus on the Lorentz cone (also called38

the ice-cream cone or the second-order cone as it is induced by the 2-norm) in the39

Euclidean space Rn, n > 1, defined by:40

(1.2) L :=
{

(t, u)> : t ∈ R, u ∈ Rn−1, t ≥ ||u||
}
.41

This, being an example of a symmetric cone, appears prominently in conic optimiza-42

tion [1]. For this cone, Stern and Wolkowicz [17] have shown that A ∈ Z(L) if and43

only if for some real number γ, the matrix γ J − (JA+A>J) is positive semidefinite,44

where J is the diagonal matrix diag(1,−1,−1, . . . ,−1). Another result of Stern and45

Wolkowicz ([18], Theorem 4.2) asserts that46

(1.3) Z(L) = LL(L)− π(L).47

(Going in the reverse direction, in a recent paper, Kuzma et al., [13] have shown that48

for an irreducible symmetric cone K, the equality Z(K) = LL(K) − π(K) holds only49

when K is isomorphic to L.) Characterizations of π(L) and LL(L) appear, respec-50

tively, in [14] and [20].51

52

In this paper, we describe Z(L) and its interior, boundary, and dual in terms of the53

semidefinite cone and the so-called copositive and completely positive cones induced54

by L (or its boundary ∂(L)), see below for the definitions. In particular, we describe55

the dual of Z(L) as a slice of the semidefinite cone and also of the completely positive56

cone of L. This provides an example of an instance where a conic linear optimization57

problem over a completely positive cone is reduced to a semidefinite problem. To58

elaborate, consider Rn, the Euclidean n-space of (column) vectors with the usual59

inner product, Rn×n, the space of all real n × n matrices with the inner product60

〈X,Y 〉 = tr(X>Y ), and Sn, the subspace of all real n × n symmetric matrices in61

Rn×n. Corresponding to a closed cone C (which is not necessarily convex) in Rn, let62

EC := copos(C) :=
{
A ∈ Sn : x>Ax ≥ 0 for all x in C

}
63

denote the copositive cone of C and64

KC := compos(C) :=

{∑
u∈U

uu> : U is a finite subset of C

}
65

denote the completely positive cone of C. When C = Rn, these two cones coincide66

with the semidefinite cone Sn+ (consisting of all real n×n symmetric positive semidef-67

inite matrices); when C = Rn
+, these reduce, respectively, to the (standard) copositive68

cone and completely positive cone. All these cones appear prominently in conic op-69

timization. A result of Burer [5] (see also, [4, 7]) says that any nonconvex quadratic70

programming problem over a closed cone with additional linear and binary constraints71

can be reformulated as a linear program over a suitable completely positive cone. For72

this and other reasons, there is a strong interest in understanding copositive and73

completely positive cones. For the closed convex cones EC and KC , various struc-74

tural properties (such as the interior, boundary) as well as duality, irreducibility, and75

homogeneity properties, have been investigated in the literature, see for example,76

[19, 6, 8, 11]. Taking C to be one of Rn, L, or ∂(L), we show that77

(1.4) Z(L)∗ =
{
B ∈ Rn×n : 〈B, I〉 = 0,−JB ∈ KC

}
78
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and deduce the equality of slices79

(1.5)
{
X ∈ Rn×n : 〈J,X〉 = 0, X ∈ Sn+

}
=
{
X ∈ Rn×n : 〈J,X〉 = 0, X ∈ KC

}
.80

2. Preliminaries. In a (finite dimensional real) Hilbert space (H, 〈·, ·〉), a81

nonempty set C is said to be a closed cone if it closed and tx ∈ C whenever x ∈ C and82

t ≥ 0 in R. Throughout this paper, C denotes a closed cone.83

A nonempty set K is said to be a closed convex cone if it is a closed cone which is also84

convex. Such a cone is said to be proper if K∩−K = {0} and has nonempty interior.85

Corresponding to a closed convex cone K, we define its dual in H as the set86

K∗ =
{
x ∈ H : 〈x, y〉 ≥ 0, ∀y ∈ K

}
.87

We say that a linear transformation A : H → H is copositive on K if 〈Ax, x〉 ≥ 0 for all88

x ∈ K. We also let π(K) = {A : A(K) ⊆ K}, where A denotes a linear transformation89

on H. For a set S in H, we denote the closure, interior, and the boundary by S, S◦,90

and ∂(S) respectively.91

We will be considering closed convex cones in the space H = Rn which carries the92

usual inner product and in the space Rn×n which carries the inner product 〈X,Y 〉 :=93

tr(X>Y ), where the trace of a square matrix is the sum of its diagonal entries. In94

Rn×n, Sn denotes the subspace of all symmetric matrices andAn denotes the subspace95

of all skew-symmetric matrices. We note that Rn×n is the orthogonal direct sum of96

Sn and An.97

We recall some (easily verifiable) properties of the Lorentz cone L given by (1.2).98

L is a self-dual cone in Rn, that is, L∗ = L; its interior and boundary are given,99

respectively, by100

L◦ =
{

(t, u)> : t > ||u||
}
,101

102

∂(L) =
{

(t, u)> : t = ||u||
}

=
{
α (1, u)> : α ≥ 0, ||u|| = 1

}
.103

We also have104

(2.1)

[
0 6= x, y ∈ L, 〈x, y〉 = 0

]
⇒ x = α (1, u)> and y = β (1,−u)>,

for some α, β > 0 and ||u|| = 1.
105

106

For a closed cone C in Rn, we consider the copositive cone EC and the completely107

positive cone KC (defined in the Introduction). Note that these are cones of symmetric108

matrices.109

110

In the Hilbert space Sn (which carries the inner product from Rn×n), the following111

hold.112

(1) KC is the dual cone of EC [19].113

(2) When C − C = Rn, both EC and KC are proper cones ([10], Proposition 2.2).114

In particular, this holds when C is one of Rn, L, or ∂(L).115

(3) We have Sn+ = ERn ⊂ EL ⊂ E∂(L), or equivalently, K∂(L) ⊂ KL ⊂ KRn = Sn+.116

3. Main results. In this section, we provide a closure-free description of Z(L)117

and, additionally, describe the dual, interior, and the boundary of Z(L). We re-118

call that J = diag(1,−1,−1, . . . ,−1) and An denotes the set of all skew-symmetric119

matrices in Rn×n.120
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Theorem 3.1. Let C denote one of Rn, L, or ∂(L). Then,121

(3.1) Z(L) = R I − J(EC +An).122

Proof. Let A ∈ Z(L). From the result of Stern and Wolkowicz [17] mentioned in123

the Introduction, we have124

2γJ − (JA+A>J) = 2P125

for some γ ∈ R and P ∈ Sn+. Hence, JA+ (JA)> = 2(γJ − P ), which implies126

(3.2) 2JA = JA+ (JA)> −
[
(JA)> − JA

]
= 2(γJ − P )− 2Q,127

where 2Q = (JA)> − JA is skew-symmetric. Since J2 = I, this leads to128

A = γ I − J(P +Q),129

where P ∈ Sn+ and Q ∈ An. As Sn+ ⊂ EL ⊂ E∂(L), this proves that130

(3.3) Z(L) ⊆ R I − J(Sn+ +An) ⊆ R I − J(EL +An) ⊆ R I − J(E∂(L) +An).131

Now, to see the reverse inclusions, suppose A = γ I − J(P + Q) for some γ ∈ R,132

P ∈ E∂(L), and Q skew-symmetric. Let 0 6= x, y ∈ L with 〈x, y〉 = 0. By (2.1), x and133

y are in ∂(L), and Jy is a positive multiple of x. Hence, 〈Px, Jy〉 ≥ 0 as P ∈ E∂(L)134

and 〈Qx, Jy〉 = 0 as Q is skew-symmetric. Thus,135

〈Ax, y〉 = γ〈x, y〉 − 〈JPx, y〉+ 〈JQx, y〉 = −〈Px, Jy〉+ 〈Qx, Jy〉 ≤ 0.136

This shows that A ∈ Z(L) and so, inclusions in (3.3) turn into equalities. Thus we137

have (3.1).138

Remarks. From the above theorem, we have139

R I − J(Sn+ +An) = R I − J(EL +An) = R I − J(E∂(L) +An).140

Multiplying throughout by J and noting −An = An, we get the equality of sets141

(R J − Sn+) +An = (R J − EL) +An = (R J − E∂(L)) +An,142

where each set is a sum of An and a subset of Sn. Since Rn×n = Sn + An is an143

(orthogonal) direct sum decomposition, we see that144

(3.4) R J − Sn+ = R J − EL = R J − E∂(L).145

These equalities can also be established via different arguments. A result of Loewy146

and Schneider [14] asserts that A symmetric matrix X is copositive on L if and only147

if there exists µ ≥ 0 such that X−µJ ∈ Sn+. (This is essentially a consequence of the148

so-called S-Lemma [15]: If A and B are two symmetric matrices with 〈Ax0, x0〉 > 0149

for some x0 and 〈Ax, x〉 ≥ 0⇒ 〈Bx, x〉 ≥ 0, then there exists µ ≥ 0 such that B−µA150

is positive semidefinite.) This result gives the equality151

EL = Sn+ + R+ J152
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and consequently R J − Sn+ = R J − EL. The equality153

E∂(L) = Sn+ + R J154

can be seen via an application of Finsler’ theorem [15] that says that if A and B155

are two symmetric matrices with [x 6= 0, 〈Ax, x〉 = 0] ⇒ 〈Bx, x〉 > 0, then there ex-156

ists µ ∈ R such that B + µA is positive semidefinite. (For M ∈ E∂(L) and vectors157

u, v ∈ L◦, one has 〈Jx, x〉 = 0 ⇒ 〈Mkx, x〉 > 0, where k is a natural number and158

Mk := M+ 1
kuv

>. When Mk+µk J is positive semidefinite for all k, it follows that the159

sequence µk is bounded. One can then use a limiting argument.) From this equality,160

one gets R J − Sn+ = R J − E∂(L).161

162

Our next result deals with the dual of Z(L).163

Theorem 3.2. Let C denote one of Rn, L, or ∂(L). Then,164

Z(L)∗ =
{
B ∈ Rn×n : 〈B, I〉 = 0,−JB ∈ KC

}
.165

In particular, (1.5) holds.166

Proof. We fix C. From (3.1), we see that B ∈ Z(L)∗ if and only if167

0 ≤ 〈B, γ I − J(P +Q)〉168

for all γ real, P in EC , and Q in An. Clearly, this holds if and only if169

〈B, I〉 = 0, 〈−JB, P 〉 ≥ 0, and 〈−JB,Q〉 = 0170

for all γ, P , and Q specified above. Now, with the observation that a (real) matrix171

is orthogonal to all skew-symmetric matrices in Rn×n if and only if it is symmetric,172

this further simplifies to173

〈B, I〉 = 0 and − JB ∈ E∗C ,174

where E∗C is the dual of EC computed in Sn. Since KC = E∗C in Sn, we see that175

B ∈ Z(L)∗ if and only if 〈B, I〉 = 0 and − JB ∈ KC . This completes the proof.176

We remark that (1.5) can be deduced directly from (3.4) by taking the duals in Sn.177

178

In our final result, we describe the interior and boundary of Z(L). First, we recall179

some definitions from [9]. Let180

Ω :=
{

(x, y) ∈ L × L : ||x|| = 1 = ||y|| and 〈x, y〉 = 0
}
.181

It is easy to see that Ω is compact and, from (2.1),182

(3.5) Ω =
{

(x, Jx) : x ∈ ∂(L), ||x|| = 1
}
.183

For any A ∈ Rn×n, let184

γ(A) := max
{
〈Ax, y〉 : (x, y) ∈ Ω

}
.185
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Note that A ∈ Z(L) if and only if γ(A) ≤ 0. We say that A ∈ Rn×n is a strict-Z-186

transformation on L if187 [
0 6= x, y ∈ L, 〈x, y〉 = 0

]
⇒ 〈Ax, y〉 < 0.188

The set of all such transformations is denoted by str(Z(L)). For A ∈ Rn×n, the189

following statements are shown in [9], Theorem 3.1:190

γ(A) < 0⇐⇒ A ∈ Z(L)◦ ⇐⇒ A ∈ str(Z(L))191

and192

γ(A) = 0⇐⇒ A ∈ ∂(Z(L)).193

Recall that EL consists of all symmetric matrices that are copositive on L. We194

say that a symmetric matrix P is strictly copositive on L if 0 6= x ∈ L ⇒ 〈Px, x〉 > 0;195

the set of all such matrices is denoted by str(EL). Similarly, one defines str(E∂(L)).196

Corollary 3.3. The following statements hold:197

Z(L)◦ = str(Z(L)) = R I − J
(
str(E∂(L)) +An

)
198

and199

∂(Z(L)) = R I − J
(
∂∗(E∂(L)) +An

)
,200

where ∂∗(E∂(L)) denotes the boundary of E∂(L) in Sn.201

Proof. We first deal with the interior of Z(L). The equality202 {
A ∈ Rn×n : γ(A) < 0

}
= Z(L)◦ = str(Z(L))203

has already been observed in [9], Theorem 3.1. To see the first assertion, we show204

that γ(A) < 0 if and only if A = θ I − J(P + Q) for some θ ∈ R, P (symmetric)205

strictly copositive on ∂(L), and Q skew-symmetric. Suppose γ(A) < 0. Then, for any206

θ ∈ R,207

max
{〈

(A− θ I)x, y
〉

: (x, y) ∈ Ω
}
< 0,208

which, from (3.5) becomes209

min
{〈
J(θ I −A)x, x

〉
: x ∈ ∂(L), ||x|| = 1

}
> 0.210

Now, fix θ and let J(θ I − A) = P + Q, where P ∈ Sn and Q ∈ An. As 〈Qx, x〉 = 0211

for any x, the above inequality implies that min
{〈
Px, x

〉
: x ∈ ∂(L), ||x|| = 1

}
> 0.212

This proves that P is strictly copositive on ∂(L). Rewriting J(θ I −A) = P +Q, we213

see that A = θ I − J(P +Q) which is of the required form.214

To see the converse, suppose A = θ I−J(P +Q), where θ ∈ R, P (symmetric) strictly215

copositive on ∂(L), and Q skew-symmetric. Using (3.5), we can easily verify that216

γ(A) < 0. Thus, A ∈ str(Z(L)).217

An argument similar to the above will show that γ(A) = 0 if and only if A = θ I −218

J(P + Q) for some θ ∈ R, P ∈ ∂∗(E∂(L)), and Q skew-symmetric. This gives the219

statement regarding the boundary of Z(L).220
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We end the paper with a remark dealing with conic linear programs. Motivated221

by the result of Burer (mentioned in the Introduction), we consider a conic linear222

program on a completely positive cone KC (where C is a closed cone):223

min
{
〈c, x〉 : Ax = b, x ∈ KC

}
.224

While such a problem is generally hard to solve, we ask: (When) can we replace KC225

by Sn+ and thus reduce the above problem to the semidefinite programming problem226

min
{
〈c, x〉 : Ax = b, x ∈ Sn+

}
? Just replacing KC by Sn+ without handling the con-227

straint Ax = b is not viable as KC = Sn+ if and only if C∪−C = Rn (which fails to hold228

when n > 1 and C is pointed), see [11]. While we do not answer this broad question,229

we point out, as a consequence of (1.5) that for any C ∈ Sn,230

min
{
〈C,X〉 : 〈X,J〉 = 0, X ∈ KL

}
= min

{
〈C,X〉 : 〈X, J〉 = 0, X ∈ Sn+

}
.231
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