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Abstract: In order to benefit from a realistic hydrogen production device equipped on a vehicle,
issues with the effects of the process parameters on H2 and CO yield need to be resolved. In this study,
a reduced mechanism for n-heptane (as a surrogate diesel) reforming over a Pt/CeO2-Al2O3 catalyst
is adopted to investigate the effects of the process parameters on H2 and CO yield, and the preferred
process parameters are concluded. In addition, the comparison of reforming bench tests of diesel
fuel and n-heptane under typical diesel engine operating conditions is conducted. The n-heptane
reforming simulation results show that the maximum H2 and CO yield moves toward unity with the
decreased GHSV and increased reaction temperature, and the GHSV of 10,000 1/h, O2/C ratio of 0.6
and reaction temperature of 500 ◦C is preferable. The contrast experiments reveal that the change
trend of H2 and CO yield displays consistence, although the difference of the average H2 and CO
yield results is obvious. The characteristics of n-heptane reforming can represent H2 and CO yield
features of diesel fuel reforming at typical reaction temperatures in a way.

Keywords: diesel reforming; hydrogen production; simulation; catalyst

1. Introduction

Hydrogen as an additive to fossil fuel can improve the thermal efficiency and reduce the harmful
tailpipe emissions of engines [1,2]. A special device equipped on a vehicle, using hydrogen fuel as an
additive, that can produce hydrogen from various kinds of hydrocarbons is required, and the reaction
process of hydrogen production is called fuel reforming [3]. As reported in the previous literature,
the methods of fuel reforming mainly include steam reforming (SR), autothermal reforming (ATR),
partial oxidation reforming (POX) and water gas shift reaction (WGSR) [4]. The on-board hydrogen
production devices must satisfy many requirements such as efficiency, weight, compactness, cost and
simple plant displacement [5–12]. In view of the compactness and modification cost of the fuel supply
system, the on-board diesel reforming devices equipped on a vehicles are considered as a feasible
technique at present.

Commercial diesel fuel is mainly composed of high-molecular-weight hydrocarbons, with carbon
numbers ranging from approximately C7 to C20 [13,14]. Due to the complicated properties of diesel
fuel and the cost of numerical simulations to deal with numerous components in modelling and
the subsequent chemical reaction processes of diesel fuel reforming, most previous studies model
the problems by representing diesel with a primary reference fuel, i.e., n-heptane and iso-octane,
as an approximation [15–18]. In addition, an appropriate catalyst is essential in order to achieve
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high conversions and product selectivity in diesel fuel reforming [19–21]. Among the additives
with different activity discussed in the published literatures, CeO2 remains an outstanding choice
due to its high oxygen storage capacity and the oxidation/reduction reversibility of active metals,
providing assistance in coke elimination [22–25]. However, few studies on the catalytic reforming
mechanism of n-heptane and the effect of process parameter optimization on the hydrogen yield,
especially for on-board reforming devices under typical engine running conditions, has been conducted
until now. For example, Hamoule et al. [26] investigated the catalytic activities of Pt catalysts
supported on Al-HMS for the n-heptane reforming reaction. Abashar [27] discussed the simultaneous
hydrogen production from the catalytic reforming of n-heptane in circulating fast fluidized bed
reactors. The results implied that the increase of the temperature might have adverse effects on the
optimal H2/CO ratio. Gonzalez-Marcos et al. [28] investigated an industrial characterisation method
for naphtha reforming bimetallic Pt-Sn/Al2O3 catalysts through n-heptane reforming test reactions.
The research showed that n-heptane reforming was a useful test reaction to characterise Pt-Sn/Al2O3

catalysts and could be used for the evaluation of naphtha reforming catalysts. Whether the n-heptane
reforming can also represent the features of diesel fuel reforming at typical reaction temperature is
unknown and how different are the H2 and CO yield (vol.%) between n-heptane reforming and diesel
fuel reforming are questions that remain unresolved. In order to benefit from an efficient and realistic
hydrogen production device equipped on a vehicle, issues with the effects of the process parameters
and the key species concentrations of hydrogen to individual reaction steps for n-heptane reforming
under typical diesel engine operating conditions need to be resolved. All these factors would stimulate
the research to develop cost-effective technologies for efficient on-board production of hydrogen as an
addition to the fossil fuels utilized on internal combustion engines.

In this study, n-heptane (C7H16) was used as a surrogate diesel fuel to simulate the diesel reforming
process for a diesel engine operating under medium load. A reduced mechanism for n-heptane reforming
over a Pt/CeO2-Al2O3 catalyst was adopted to investigate the effects of the process parameters in order
to achieve production of hydrogen in this study. Sensitivity analysis results were used to assess the
temporal sensitivity of temperature and key species concentrations of hydrogen to individual reaction
steps from those of the base mechanism. Through the aforementioned work, the preferred process
parameters (GHSV, O2/C ratio, H2O/C ratio and reaction temperature) were concluded and these
could guide the diesel reforming test in a laboratory reformer setup. At the end, a comparison of
reforming bench tests of diesel fuel and n-heptane under the typical diesel engine operating conditions in
a laboratory mini reformer was conducted to study the composition variation tendency of the reforming
reactor product gas, in order to demonstrate the usefulness of n-heptane as a surrogate for diesel fuel
reforming. The aim of this work was to clarify whether n-heptane reforming could represent the features
of diesel fuel reforming at typical reaction temperatures, and to reveal any differences in the change
trends of H2 and CO yield (vol.%) between diesel fuel reforming and n-heptane reforming.

2. Theory and Experiment

2.1. Reforming Kinetics of Representative Hydrocarbons

The catalytic reforming mechanism of hydrocarbon fuels includes gas phase chemical kinetics and
surface reaction chemical kinetics. In this study, a skeletal mechanism for n-heptane reforming was
obtained from the Lawrence Livermore National Laboratory (LLNL) and related literatures [29–33].
Table 1 lists the significant reactions and related rate constant expressions for n-heptane gas phase
reactions. Propene is one of the major pollutants and is usually taken as representative of unburnt
hydrocarbons [29,31]. The surface reaction mechanism of propene could help investigate the
performance of the platinum catalyst. Table 2 lists the significant reactions and related rate constant
expressions for propene surface reactions. In the abovementioned tables, the nomenclatures of related
constants were as follows: A is the pre-exponential factor, s−1; n is temperature index; E is the activation
energy, J·mol−1.



Energies 2019, 12, 1056 3 of 14

Table 1. Significant reactions and related rate constant expressions for n-heptane gas phase reaction.

Reaction Step Elementary-Step Reaction A n E

R.1 C7H16 + O2 = C7H15 + HO2 2.8 × 1014 0.0 47,180.0
R.2 C7H16 + H = C7H15 + H2 5.6 × 107 2.0 7667.0
R.3 C7H16 = C7H15 + H 3.972 × 1019 −0.95 103,200.0
R.4 C7H16 + OH = C7H15 + H2O 8.600 × 109 1.1 1815.0
R.5 C7H16 + HO2 = C7H15 + H2O2 8.000 × 1012 0.0 19,300.0
R.6 C7H15 + O2 = C7H15O2 2.000 × 1012 0.0 0.0
R.7 C5H11CO = C5H11 + CO 1.000 × 1011 0.0 9600.0
R.8 C7H15O2 = C7H14O2H 6.000 × 1011 0.0 20,380.0
R.9 C7H16 = C4H9 + C3H7 2.000 × 1016 0.0 80,710.0

R.10 C7H14O2H + O2 = C7H14O2HO2 2.34 × 1011 0.0 0.0
R.11 C7H14O2HO2 = C7H14O3 + OH 2.965 × 1013 0.0 26,700.0
R.12 C7H14O3 = C5H11CO + CH2O + OH 1.000 × 1016 0.0 42,400.0
R.13 C5H11CO = C2H5 + C3H6 + CO 1.000 × 1011 0.0 9600.0
R.14 C5H11 = C2H5 + C3H6 3.200 × 1013 0.0 28,300.0
R.15 C7H15 = CH3 + 2C3H6 3.000 × 1013 0.0 29,800.0
R.16 C7H15 = C2H5 + C2H4 + C3H6 1.200 × 1013 0.0 28,300.0
R.17 C3H6 + OH = CH3CHO + CH3 3.500 × 1011 0.0 0.0
R.18 CH3CHO + OH = CH3 + CO + H2O 1.000 × 1013 0.0 0.0
R.19 C4H9 = C2H5 + C2H4 2.500 × 1013 0.0 28,810.0
R.20 C3H7 = C2H4 + CH3 9.600 × 1013 0.0 30,950.0
R.21 C3H6 = C2H3 + CH3 6.150 × 1015 0.0 85,500.0
R.22 CH3 + HO2 = CH2O + H + OH 4.300 × 1013 0.0 0.0
R.23 CO + OH = CO2 + H 3.510 × 107 1.3 −758.0
R.24 O + OH = O2 + H 4.000 × 1014 −0.5 0.0
R.25 H + O2 + M = HO2 + M 2.800 × 1018 −0.86 0.0
R.26 HO2 + HO2 = H2O2 + O2 2.000 × 1012 0.0 0.0
R.27 OH + OH (+M) = H2O2 (+M) 7.600 × 1013 −0.37 0.0
R.28 CH2O + OH = HCO + H2O 2.430 × 1010 1.18 −447.0
R.29 CH2O + HO2 = HCO + H2O2 3.000 × 1012 0.0 8000.0
R.30 HCO + O2 = HO2 + CO 3.300 × 1013 −0.4 0.0
R.31 CH4 + O = CH3 + OH 1.020 × 1019 1.5 8604.0
R.32 CH4 + HO2 = CH3 + H2O2 1.000 × 1013 0.0 18,700.0
R.33 C2H4 + OH = CH2O + CH3 6.000 × 1013 0.0 960.0
R.34 H + O2 + N2 = HO2 + N2 2.600 × 1019 −1.24 0.0
R.35 C2H5 + O2 = C2H4 + HO2 2.000 × 1010 0.0 −2200.0
R.36 CH4 + 2H2O = CO2 + 4H2 2.290 × 1012 0.0 20,000.0
R.37 CO + H2O = CO2 + H2 6.200 × 1015 0.0 20,000.0
R.38 C3H6 + 3H2O⇒ 3CO + 6H2 9.49 × 1020 0.0 10,000.0
R.39 C3H5+3H2O⇒ 3CO + 5.5H2 9.49 × 1015 0.0 67,800.0
R.40 C2H5 + 2H2O⇒ 2CO + 4.5H2 9.49 × 1015 0.0 10,000.0
R.41 C2H4 + 2H2O⇒ 2CO + 4H2 9.49 × 1020 0.0 18,000.0
R.42 CH3 + H2O⇒ CO + 2.5H2 9.49 × 1016 0.0 67,800.0
R.43 H + C2H5 ⇒ H2 + C2H4 2.000 × 1012 0.0 0.0
R.44 C2H4 + H = C2H3 + H2 5.670 × 1019 0.0 62,900.0
R.45 C2H6 + H = C2H5 + H2 1.400 × 1019 0.0 31,000.0
R.46 C2H5 = C2H4 + H 1.020 × 1043 −9.1 22,400.0
R.47 H2 + CO(+M)⇔ CH2O(+M) 4.300 × 107 1.5 79,600.0
R.48 2O + M⇔ O2 + M 1.200 × 1017 −1.0 0.0
R.49 H + HO2 ⇔ O2 + H2 4.480 × 1013 0.0 1068.0
R.50 H + CH4 ⇔ CH3 + H2 6.600 × 1013 1.620 10,840.0
R.51 H + HCO⇔ H2 + CO 7.340 × 1013 0.0 0.0
R.52 H + CH2O⇔ HCO + H2 5.740 × 1017 1.900 2742.0
R.53 2H + M⇔ H2 + M 1.000 × 1018 1.0 0.0
R.54 2H + H2 ⇔ 2H2 9.000 × 1016 −0.6 0.0
R.55 2H + H2O⇔ H2 + H2O 6.000 × 1019 −1.25 0.0
R.56 2H + CO2 ⇔ H2 + CO2 5.500 × 1020 −2.0 0.0
R.57 O2 + CO⇔ O + CO2 2.500 × 1012 0.0 47,800.0
R.58 O + CO(+M)⇔ CO2(+M) 1.800 × 1010 0.0 2385.0
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Table 2. Significant reactions and related rate constant expressions for propene surface reaction.

Reaction Step Elementary-Step Reaction A n E

R.1 CO2 + Pt(S)⇒ CO2(S) 5.000 × 10−3 0.0 0.0
R.2 O + Pt(S) +Pt(S)⇒ O(S) + O(S) 7.000 × 10−2 0.0 0.0
R.3 C3H6 + Pt(S) + Pt(S)⇒ C3H6(S) 9.800 × 10−1 0.0 0.0
R.4 C3H6 + O(S) + Pt(S)⇒ C3H5(S) + OH(S) 5.000 × 10−2 0.0 0.0
R.5 H2O + Pt(S)⇒ H2O(S) 4.600 × 10−2 0.0 0.0
R.6 CO + Pt(S)⇒ CO(S) 8.400 × 10−1 0.0 0.0
R.7 H2 + Pt(S) + Pt(S)⇒ H(S) + H(S) 4.600 × 10−2 0.0 0.0
R.8 O(S) + O(S)⇒ Pt(S) + Pt(S) + O2 3.700 × 1021 0.0 232.2
R.9 C3H6(S)⇒ C3H6 + Pt(S) + Pt(S) 1.000 × 1013 0.0 72.7

R.10 C3H5(S) + OH(S)⇒ C3H6 O(S) + Pt(S) 3.700 × 1021 0.0 31.0
R.11 H(S) + H(S)⇒ H2 + Pt(S) + Pt(S) 3.700 × 1021 0.0 67.4
R.12 H2O(S)⇒ Pt(S) + H2O 1.000 × 1013 0.0 40.3
R.13 CO(S)⇒ CO + Pt(S) 1.000 × 1013 0.0 136.4
R.14 CO2(S)⇒ CO2 + Pt(S) 1.000 × 1013 0.0 27.1
R.15 C3H5(S) + 5O(S) + 2Pt(S)⇒ 5OH(S) + 3C(S) 3.700 × 1021 0.0 95.0
R.16 C3H6(S)⇒ CC2H5(S) + H(S) 1.000 × 1013 0.0 75.4
R.17 CC2H5(S) + H(S)⇒ C3H6(S) 3.700 × 1021 0.0 48.8
R.18 CC2H5(S) + Pt(S)⇒ C2H3(S) + CH2(S) 3.700 × 1021 0.0 108.2
R.19 C2H3(S) + CH2(S)⇒ CC2H5(S) + Pt(S) 3.700 × 1021 0.0 3.2
R.20 C2H3(S) + Pt(S)⇒ CH3(S) + C(S) 3.700 × 1021 0.0 46.0
R.21 CH3(S) + C(S)⇒ C2H3(S) + Pt(S) 3.700 × 1021 0.0 46.9
R.22 CH3(S) + Pt(S)⇒ CH2(S) + H(S) 1.260 × 1021 0.0 70.4
R.23 CH2(S) + H(S)⇒ CH3(S) + Pt(S) 3.090 × 1021 0.0 0.0
R.24 CH2(S) + Pt(S)⇒ CH(S) + H(S) 7.000 × 1021 0.0 59.2
R.25 CH(S) + H(S)⇒ CH2(S) + Pt(S) 3.090 × 1021 0.0 0.0
R.26 CH(S) + Pt(S)⇒ C(S) + H(S) 3.090 × 1021 0.0 0.0
R.27 C(S) + H(S)⇒ CH(S) + Pt(S) 1.250 × 1021 0.0 138.0
R.28 C2H3(S) + O(S)⇒ Pt(S) + CH3CO(S) 3.700 × 1019 0.0 62.3
R.29 CH3CO(S) + Pt(S)⇒ C2H3(S) + O(S) 3.700 × 1021 0.0 196.7
R.30 CH3(S) + CO(S)⇒ Pt(S) + CH3CO(S) 3.700 × 1021 0.0 82.9
R.31 CH3CO(S) + Pt(S)⇒ CH3(S) + CO(S) 3.700 × 1021 0.0 0.0
R.32 CH3(S) + O(S)⇒ CH2(S) + OH(S) 3.700 × 1021 0.0 36.6
R.33 CH2(S) + OH(S)⇒ CH3(S) + O(S) 3.700 × 1021 0.0 25.1
R.34 CH2(S) + O(S)⇒ CH(S) + OH(S) 3.700 × 1021 0.0 25.1
R.35 CH(S) + OH(S)⇒ CH2(S) + O(S) 3.700 × 1021 0.0 25.2
R.36 CH(S) + O(S)⇒ C(S) + OH(S) 3.700 × 1021 0.0 25.1
R.37 C(S) + OH(S)⇒ CH(S) + O(S) 3.700 × 1021 0.0 224.8
R.38 O(S) + H(S)⇒ OH(S) + Pt(S) 3.700 × 1021 0.0 11.5
R.39 OH(S) + Pt(S)⇒ O(S) + H(S) 5.770 × 1022 0.0 74.9
R.40 H(S) + OH(S)⇒ H2O(S) + Pt(S) 3.700 × 1021 0.0 17.4
R.41 H2O(S) + Pt(S)⇒ H(S) + OH(S) 3.660 × 1021 0.0 73.6
R.42 OH(S) + OH(S)⇒ H2O(S) + O(S) 3.700 × 1021 0.0 48.2
R.43 H2O(S) + O(S)⇒ OH(S) + OH(S) 2.350 × 1021 0.0 41.0
R.44 CO2(S) + Pt(S)⇒ CO(S) + O(S) 3.700 × 1021 0.0 165.1
R.45 OH + Pt(S)⇒ OH(S) 1.000 0.0 0.0
R.46 OH(S)⇒ OH + Pt(S) 1.000 × 1013 0.0 192.8
R.47 CH4 + 2Pt(S)⇒ CH3(S) + H(S) 4.6334 × 1020 0.5 0.0

2.2. Reforming Process Evaluated

For the numerical simulation of diesel reforming over a Pt/CeO2-Al2O3 catalyst, the skeletal
reaction mechanism mentioned above was applied in this research. Gas phase reactions and surface
reactions were modelled by an elementary-step reaction mechanism based on the molecular processes
implemented in Chemkin code [34], and the chemical kinetics files were available in Chemkin format.

The following assumptions were made:
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• n-Heptane was used as surrogate diesel fuel to simulate the gas phase reaction processes.
• The surface reaction mechanisms of propene were applied to investigate the reforming products

over platinum catalyst.
• Pt/CeO2-Al2O3 catalyst seen in Figure 1 was chosen and its profile was measured by using a

Micromeritics ASAP 2020 device. The measured parameters of the catalyst were: Pt 2.0 wt %,
CeO2 49.0 wt %, Al2O3 49.0 wt %, surface area 100 m2/g, surface density 2.04 × 10−9 moles/cm2,
porosity 0.8, diameter 2.2 cm and length 8.5 cm.

• Referring to the prototype diesel engine operating conditions [35], the Gas Hourly Space Velocity
(GHSV; volumetric flow rate of gas per hour divided by the volume of the catalyst bed) was set to
10,000, 15,000, 20,000 and 25,000 1/h. O2/C molar ratio was set to 0.6, 0.8, 1.0 and 1.2. H2O/C
molar ratio was set to 1, 1.5, 2 and 2.5. The reaction temperature was set to 400, 450, 500, and
550 ◦C.
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Figure 1. Reforming catalyst.

2.3. Experimental Procedure

The products of diesel reforming usually include H2 and CO, along with the formation of ethane
and ethylene, etc. [36]. In this study, the reforming tests were conducted in a self-designed mini-
reformer of which the overall dimensions were: length 48 cm, diameter 22 cm and weight 13 kg,
as shown in Figure 2. The catalytic reformer setup was mainly composed of a carrier gas supply
(Ar), water, oxygen, diesel fuel or n-heptane supply, furnace temperature controller, catalyst bed and
reforming reactor product gas analyser so on.
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Figure 2. Catalytic reformer setup: (a) Catalytic reforming reactor (b) Schematic of reforming
experimental set-up.

The catalytic reforming reactor was fed by water, oxygen, diesel fuel or n-heptane, and it was
loaded with a prototype precious metal catalyst (Pt/CeO2-Al2O3). The reactor was placed in a
tubular furnace and the temperature was controlled by means of a temperature controller. In addition,
a micro-evaporator was placed in inlet of the reactor in order to make sure water, diesel fuel or
n-heptane were evaporated. A K-type thermocouple was adopted and its arrangement allowed
vertical movement in the mixture and thus monitoring the reactor temperature profile. Two syringe
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pumps fitted with a glass syringe were used to supply water, diesel fuel or n-heptane, as well as
to control their flow rates, respectively. A gas chromatograph-mass spectrometer (GC-MS) system
(Agilent 7890B/5977B MSD), which was equipped with a flame ionization detector and two thermal
conductivity detectors, was used to measure the H2 and CO content of the reactor products. Before the
content tests of the reactor products, the GC-MS device should be calibrated with high purity H2 and
CO, respectively. Note that the averaged data in six replicates was used for all experimental and their
standard deviation was required to be less than 5%.

The reaction temperature was set to 400, 450, 500, and 550 ◦C for the reforming tests, respectively.
These different reaction temperatures were selected, referring to the exhaust temperature of the
abovementioned prototype diesel engine running at the representative operating conditions. Through
with the simulated optimization results, GHSV was kept constant at approximately 10,000 1/h during
the reforming tests referring to a typical diesel engine operating under medium load. The basic
process parameters for the reforming reactions were the oxygen-to-carbon molar ratio O2/C and the
water-to-carbon molar ratio H2O/C. The process parameters had to be accurately determined and
accordingly water, oxygen and diesel fuel (or n-heptane) flow into the reactor had to be controlled
for the maximum hydrogen yield. Referring to the above simulated optimization results and the
realistic operating conditions of the prototype diesel engine [35], the flow rates of water, diesel fuel
and n-heptane were calculated to be 8, 5.4 and 3.7 mL/min under the constant GHSV condition of
10,000 1/h during the reforming bench tests, respectively.

3. Results and Discussion

3.1. Effect of GHSV on Reformer Product

The effect on GHSV on the reaction profiles was evaluated at different reaction temperatures.
Figure 3 shows the simulated results of H2 and CO yield (vol.%) for n-heptane reforming with length
variation of the catalyst bed at different reaction temperatures, for four different GHSV values 10,000,
15,000, 20,000 and 25,000 1/h, separately.

A higher GHSV requires better catalytic activity of the Pt/CeO2-Al2O3 catalyst, as higher GHSV
shortens the residence time of the reforming mixture over the catalyst. All of abovementioned factors
could affect the fuel conversion rate and H2, CO yield. As shown in Figure 3, H2 and CO yield (vol.%)
increased as the GHSV decreased. In addition, the maximum H2 and CO yield moved toward unity
as the GHSV decreased and the reaction temperature increased. Under lower GHSV conditions, the
hydrogen and carbon monoxide selectivities were much lower than those at higher GHSV conditions.

From Figure 3, it also could be concluded that the H2 and CO yield (vol.%) increased as the length
of the catalyst bed increased. The peak production velocity of H2 and CO appeared at the front part of
the catalyst bed, and then it decreased as the axial length of the catalyst bed increased. The H2 and CO
yield (vol.%) increased as the reaction temperature was increased from 400 to 500 ◦C. The maximum
H2 and CO yield (vol.%) exceeded 22.6% and 3.3%, separately, as shown in Figure 3. The product mole
ratio of H2/CO exceeded 2.2, which was an approximate stoichiometric ratio of a one-step n-heptane
SR reaction. As illustrated in [27,37], the amount of vaporized n-heptane and water had significant
effect on the H2 and CO yield. Due to the high temperatures of the gas mixture, injected water was
expected to be fully evaporated and mixed with the n-heptane. In addition, the aforesaid reaction
conditions promoted the occurrence of WGSR reactions, where CO was consumed and further H2 was
produced. Hence the actual mole ratio of H2/CO for the reformer product exceeded the stoichiometric
ratio of H2/CO for a one-step n-heptane SR reaction. Nevertheless too high a temperature could
deactivate the activity of Pt/CeO2-Al2O3 catalyst. From the above results, GHSV of 10,000 1/h was
preferable in terms of H2 and CO productivity.
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Figure 3. GHSV conditions: 10,000, 15,000, 20,000 and 25,000 1/h at different reaction temperatures: 
(a) 400 °C; (b) 450 °C; (c) 500 °C; (d) 550 °C. 

3.2. Effect of O2/C Ratio on Reformer Product 

The effect on O2/C ratio on the reaction profiles was evaluated at different reaction 
temperatures. The calculation of the O2/C ratio was explained in [1]. Figure 4 shows the simulated 
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the partial oxidation reforming of hydrocarbons [38,39]. From those results, it was clear that the O2/C 
ratio of the reactants had a strong influence on hydrogen and carbon monoxide production. For the 
different GHSV and fuel flow rates into the catalyst bed, the corresponding O2/C ratios were 0.6, 0.8, 
1.0 and 1.2, separately. As shown in Figure 4, H2 and CO yield (vol. %) increased as the O2/C ratio 
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Figure 3. GHSV conditions: 10,000, 15,000, 20,000 and 25,000 1/h at different reaction temperatures: (a)
400 ◦C; (b) 450 ◦C; (c) 500 ◦C; (d) 550 ◦C.

3.2. Effect of O2/C Ratio on Reformer Product

The effect on O2/C ratio on the reaction profiles was evaluated at different reaction temperatures.
The calculation of the O2/C ratio was explained in [1]. Figure 4 shows the simulated results of H2 and
CO yield (vol.%) for n-heptane reforming with length variation of the catalyst bed at different reaction
temperatures, for four different O2/C ratio conditions of 0.6, 0.8, 1.0 and 1.2, separately.

In fact, an increase of O2/C ratio meant an increase of the quantity of oxygen reacting with
hydrogen and carbon monoxide. Some results were also confirmed by the experimental studies on the
partial oxidation reforming of hydrocarbons [38,39]. From those results, it was clear that the O2/C
ratio of the reactants had a strong influence on hydrogen and carbon monoxide production. For the
different GHSV and fuel flow rates into the catalyst bed, the corresponding O2/C ratios were 0.6,
0.8, 1.0 and 1.2, separately. As shown in Figure 4, H2 and CO yield (vol.%) increased as the O2/C
ratio decreased. Comparing Figure 4 with Figure 3, it also illustrated that WGSR reaction played an
important role in promoting H2 yield and consuming CO, which was indicated by the mole ratio of
H2/CO.

As discussed in [38,39], the hydrogen yield of steam reforming depends on the reaction
temperature, therefore the optimal operating temperature of the reactor had been determined by means
of a parametric analysis and this value had been adjusted to achieve the best fit of the experimental
data. As shown in Figure 4, an O2/C ratio of 0.6 and reaction temperature of 500 ◦C was preferable in
terms of H2 and CO productivity.
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Figure 4. O2/C ratio conditions: 0.6, 0.8, 1.0 and 1.2 at different reaction temperatures: (a) 400 °C; (b) 
450 °C; (c) 500 °C; (d) 550 °C. 
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A higher H2O/C ratio indicated that more water was added to the reforming reactor. As shown 
in Figure 5, H2 yield (vol. %) increased and CO yield (vol. %) decreased as the H2O/C ratio increased. 
As the water added to the reforming reactor and H2O/C ratio increased from 1.0 to 2.5, the H2 
production increased but the CO content of the reformer product dropped. As shown in the 
literature [37], the new reaction occurring with water addition was considered to be WGSR and it 
could be demonstrated by the decreased CO yield. The maximum hydrogen yield (vol. %), 
approximately 19%, was achieved with the H2O/C ratio of 2.5 as shown in Figure 5. Further increase 
of water addition brought about an increased hydrogen yield by the WGSR as illustrated in [37]. 
Optimisation of the reforming reaction process and the catalyst to obtain further conversion of the 
carbon monoxide to hydrogen by the WGSR would improve the produced hydrogen levels even 
further. 

Figure 4. O2/C ratio conditions: 0.6, 0.8, 1.0 and 1.2 at different reaction temperatures: (a) 400 ◦C; (b)
450 ◦C; (c) 500 ◦C; (d) 550 ◦C.

3.3. Effect of H2O/C Ratio on Reformer Product

A higher H2O/C ratio indicated that more water was added to the reforming reactor. As shown
in Figure 5, H2 yield (vol.%) increased and CO yield (vol.%) decreased as the H2O/C ratio increased.
As the water added to the reforming reactor and H2O/C ratio increased from 1.0 to 2.5, the H2

production increased but the CO content of the reformer product dropped. As shown in the
literature [37], the new reaction occurring with water addition was considered to be WGSR and it could
be demonstrated by the decreased CO yield. The maximum hydrogen yield (vol.%), approximately
19%, was achieved with the H2O/C ratio of 2.5 as shown in Figure 5. Further increase of water addition
brought about an increased hydrogen yield by the WGSR as illustrated in [37]. Optimisation of the
reforming reaction process and the catalyst to obtain further conversion of the carbon monoxide to
hydrogen by the WGSR would improve the produced hydrogen levels even further.
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Figure 5. H2O/C ratio conditions: 1.0, 1.5, 2.0 and 2.5 at different reaction temperatures: (a) 400 °C; 
(b) 450 °C; (c) 500 °C; (d) 550 °C. 

3.4. Sensitivity Analysis and ROP Analysis of the Reaction Steps Effect on H2 Production 

In order to understand the detailed mechanisms and sensitivity of the H2 yield, a sensitivity 
analysis and ROP analysis of the reaction steps’ effect on H2 production was carried out in this 
study. The rate expression for the n-heptane reforming reaction was given by [40,41] and the 
direction of the thermodynamic equilibrium for reforming reactions depended on the prevailing 
conditions in the reaction media. As shown in Figure 6a, the highest sensitivity coefficient for H2 
production occurred in the reaction step R.10 (Table 1) which promoted hydrogen yield. For the 
reaction steps R.10, R.12, R.31 and R.1, the positive sensitivity coefficients were reduced gradually. 
Figure 6a also illustrated that the lowest sensitivity coefficients for H2 production occurred in the 
reaction step R.15 (Table 1) which inhibited the hydrogen yield. For the reaction steps R.15, R.16 
and R.34, the negative sensitivity coefficients reduced gradually. 

The rate-of-production (ROP) analysis could identify the degree of contribution of reaction 
steps to the H2 yield. As shown in Figure 6b, the ROP coefficient in the reaction steps R.41, R.37 and 
R.38 (Table 1) was positive, which promoted the H2 yield. The ROP coefficients in the reaction steps 
R.36 and R.51 were negative, which inhibited H2 yield, but the total ROP coefficient was positive 
which illustrated the reforming process of n-heptane moved forward to hydrogen yield. 

The reaction temperature has a profound effect on the reaction rate constants and participates 
in supplying the necessary heat required to shift the thermodynamic equilibria of endothermic 
reactions. As shown in Figures 4 and 5, the reaction temperature effect was more pronounced at 
low reaction temperatures, e.g., from 400 °C to 500 °C, than at high reaction temperatures, e.g., from 
500 °C to 550 °C. Similar findings were reported in [27]. 

Figure 5. H2O/C ratio conditions: 1.0, 1.5, 2.0 and 2.5 at different reaction temperatures: (a) 400 ◦C; (b)
450 ◦C; (c) 500 ◦C; (d) 550 ◦C.

3.4. Sensitivity Analysis and ROP Analysis of the Reaction Steps Effect on H2 Production

In order to understand the detailed mechanisms and sensitivity of the H2 yield, a sensitivity
analysis and ROP analysis of the reaction steps’ effect on H2 production was carried out in this study.
The rate expression for the n-heptane reforming reaction was given by [40,41] and the direction of the
thermodynamic equilibrium for reforming reactions depended on the prevailing conditions in the
reaction media. As shown in Figure 6a, the highest sensitivity coefficient for H2 production occurred
in the reaction step R.10 (Table 1) which promoted hydrogen yield. For the reaction steps R.10, R.12,
R.31 and R.1, the positive sensitivity coefficients were reduced gradually. Figure 6a also illustrated
that the lowest sensitivity coefficients for H2 production occurred in the reaction step R.15 (Table 1)
which inhibited the hydrogen yield. For the reaction steps R.15, R.16 and R.34, the negative sensitivity
coefficients reduced gradually.

The rate-of-production (ROP) analysis could identify the degree of contribution of reaction steps
to the H2 yield. As shown in Figure 6b, the ROP coefficient in the reaction steps R.41, R.37 and R.38
(Table 1) was positive, which promoted the H2 yield. The ROP coefficients in the reaction steps R.36
and R.51 were negative, which inhibited H2 yield, but the total ROP coefficient was positive which
illustrated the reforming process of n-heptane moved forward to hydrogen yield.

The reaction temperature has a profound effect on the reaction rate constants and participates in
supplying the necessary heat required to shift the thermodynamic equilibria of endothermic reactions.
As shown in Figures 4 and 5, the reaction temperature effect was more pronounced at low reaction
temperatures, e.g., from 400 ◦C to 500 ◦C, than at high reaction temperatures, e.g., from 500 ◦C to
550 ◦C. Similar findings were reported in [27].
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Figure 6. Sensitivity analysis and ROP analysis of the reaction steps on H2 production: (a) Sensitivity 
analysis; (b) ROP analysis. 

3.5. Experimental Results of H2 and CO Production 

The fundamental properties of the feed commercial diesel fuel were as follows: density 832 
kg/m3, cetane number 56, lower heating value 42.7 MJ/kg and kinematic viscosity at 0 °C 4.12 mm2/s. 
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kept constant at approximately 10,000 1/h referring to a typical diesel engine operating under 
medium load and the above simulated optimization results. The flow rates of water, diesel fuel and 
n-heptane in the bench test were calculated as mentioned in Section 2.3. 
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reforming experiments was achieved at the typical reaction temperature. The characteristics of 
n-heptane reforming could represent the H2 and CO yield (vol. %) features of diesel fuel reforming at 
typical reaction temperatures in a way. In order to benefit from representing the diesel fuel 
reforming as accurately as possible by means of a numerical simulation method, a multi-component 
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3.5. Experimental Results of H2 and CO Production

The fundamental properties of the feed commercial diesel fuel were as follows: density 832 kg/m3,
cetane number 56, lower heating value 42.7 MJ/kg and kinematic viscosity at 0 ◦C 4.12 mm2/s. Figure 7
shows the experimental results of H2 and CO yield (vol.%) at the different reaction temperatures of
400, 450, 500 and 550 ◦C, respectively. During the contrast experiments, GHSV was kept constant at
approximately 10,000 1/h referring to a typical diesel engine operating under medium load and the
above simulated optimization results. The flow rates of water, diesel fuel and n-heptane in the bench
test were calculated as mentioned in Section 2.3.

Figure 7a shows the average H2 and CO yield comparison results of the diesel experiment,
n-heptane simulation and n-heptane experiment at different reaction temperatures. As shown in
Figure 7a, the average H2 yields (vol.%) of the diesel reforming experiment were 16.3%, 16.4%, 17.9%
and 15.8% at the reaction temperatures of 400, 450, 500 and 550 ◦C, respectively; the corresponding
average CO yields (vol.%) were 3.1%, 2.96%, 3.7% and 2.94%. Figure 7a also shows that the average
H2 yields (vol.%) of the n-heptane reforming experiments were 19.3%, 19.5%, 20.1% and 19.8% at the
reaction temperatures of 400, 450, 500 and 550 ◦C, respectively; the corresponding average CO yields
(vol.%) were 2.3%, 2.7%, 2.9% and 2.8%. As shown in Figures 3–5 and Figure 7a, the average outlet
yields (vol.%) of H2 and CO in the n-heptane experimental results corresponded with those in the
simulated results under typical reaction temperatures.

Figure 7b shows the error bars of the H2 and CO yields (vol.%) for the diesel fuel and n-heptane
experiments. As shown in Figure 7b, the standard deviations of the average H2 yield (vol.%) for the
diesel and n-heptane experiments at the reaction temperatures of 400, 450, 500 and 550 ◦C were less
than 0.23% and 0.43%, respectively; the corresponding standard deviations of the average CO yields
(vol.%) for the diesel and n-heptane experiments were less than 0.09% and 0.12%. The average H2

yields (vol.%) for the diesel fuel experiments compared to the n-heptane experiments were reduced by
15.4%, 15.7%, 10.9% and 20.1% at the reaction temperatures of 400, 450, 500 and 550 ◦C, respectively;
the corresponding average CO yields (vol.%) for the diesel fuel experiments compared to n-heptane
experiments increased by 34.1%, 9.4%, 26.9% and 5.1%. As illustrated in Figure 7, an O2/C ratio of 0.6
and reaction temperature of 500 ◦C were preferable considering H2 and CO yield.

Through the comparison of the reforming bench tests of diesel fuel and n-heptane, the change
trends of H2 and CO yield (vol.%) revealed consistence, as shown in Figure 7, although the differences
between the average H2 and CO yield (vol.%) results were obvious. The reduction range that H2

yield (vol.%) of diesel fuel reforming varied from 10.9% to 20.1% compared to n-heptane reforming
experiments was achieved at the typical reaction temperature. The characteristics of n-heptane
reforming could represent the H2 and CO yield (vol.%) features of diesel fuel reforming at typical
reaction temperatures in a way. In order to benefit from representing the diesel fuel reforming as
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accurately as possible by means of a numerical simulation method, a multi-component wide distillation
range surrogate fuel ought to be proposed in further studies. Obviously, the decrease of the hydrogen
yield went along with an increase of carbon monoxide, indicating that the WGSR was constrained at
higher reaction temperatures. Although ceria-supported rhodium and platinum was an acceptable
catalyst for WGSR, its optimal activity was restricted to a narrow range, and at high temperature by
the superiority of the more thermodynamically favoured reverse-shift reaction [8,42]. In the diesel
fuel reforming as shown in Figure 7, the presence of the endothermic dry reforming reaction that
might had also taken place was obvious from the experimental results. Compared to that of diesel
fuel reforming, the fluctuation of the average H2 and CO exit yield (vol.%) of n-heptane reforming
was small at different reaction temperatures as long as an adequate catalyst bed length was ensured.
The primary cause for the aforementioned phenomenon was attributed to different components in
commercial diesel fuel with different classes of chemical structures that were affected differently by
different reaction temperatures during the reforming process.
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4. Conclusions

In this study, a reduced mechanism for n-heptane as surrogate diesel reforming was adopted
to investigate the effects of the process parameters in order to achieve production of hydrogen and
carbon monoxide. Meanwhile the sensitivity analysis and ROP analysis of the effect of the reaction
steps on hydrogen production was carried out. Finally diesel fuel and n-heptane reforming tests were
conducted in a laboratory mini-reformer to study the composition variation of the reforming reactor
product gas under typical diesel engine operating conditions, respectively. The following conclusions
are drawn from the results and discussion.

• During the n-heptane reforming simulation process, the H2 and CO yields (vol.%) increased as the
GHSV decreased. In addition, the maximum H2 and CO yield moved toward unity as the GHSV
decreased and the reaction temperature increased. Under lower GHSV conditions, hydrogen
and carbon monoxide selectivity was much lower than under higher GHSV conditions. The H2

and CO yield (vol.%) increased as the reaction temperature increased from 400 to 500 ◦C. Due
to occurrence of the WGSR reaction, the actual mole ratio of H2/CO for the reformer products
exceeded the stoichiometric ratio of H2/CO for the one-step n-heptane SR reaction.

• An increase of O2/C ratio meant an increase of the quantity of oxygen reacting with hydrogen
and carbon monoxide. In the n-heptane reforming simulation results, both the hydrogen and
carbon monoxide mole fractions decreased with an increase of O2/C ratio. A GHSV of 10,000
1/h, O2/C ratio of 0.6 and reaction temperature of 500 ◦C were preferable in terms of H2 and
CO productivity.
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• As the water added to the reforming reactor and H2O/C ratio increased from 1.0 to 2.5, the
H2 production increased but the CO content of the reformer product was reduced during the
n-heptane reforming simulation process. There was a trade-off between the H2O/C ratio and
the reaction temperature. Optimisation of the reforming reaction process and the catalyst to
obtain further conversion of the carbon monoxide to hydrogen by the WGSR would improve the
produced hydrogen levels even further.

• For the simulation of n-heptane reforming under typical diesel engine operating conditions, the
reaction temperature effect was more pronounced at low reaction temperatures, e.g., from 400 ◦C
to 500 ◦C, than at high reaction temperatures, e.g., from 500 ◦C to 550 ◦C.

• Through the comparison of reforming bench tests of diesel fuel and n-heptane, the change trends
of H2 and CO yield (vol.%) revealed consistence, although differences between the average H2

and CO yield (vol.%) results were obvious. A reduction range of H2 yield (vol.%) of diesel fuel
reforming from 10.9% to 20.1% compared to n-heptane reforming experiments was achieved at
typical reaction temperatures. The characteristics of n-heptane reforming could represent the H2

and CO yield (vol.%) features of diesel fuel reforming under typical reaction temperature to a
certain extent.
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Nomenclature

GHSV gas hourly space velocity
SR steam reforming
ATR autothermal reforming
POX partial oxidation reforming
WGSR water gas shift reaction
LLNL Lawrence Livermore National Laboratory
GC-MS gas chromatograph-mass spectrometer
vol. volume
ROP rate-of-production
1/h 1/hour
A pre-exponential factor
s−1 second−1

n temperature index
E activation energy
J joule
mol mole
cm centimetre
kg kilogram
wt weight
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