UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

The local structure theorem

Parker, Chris; Stroth, Gernot

DOI:
10.1016/j.jalgebra.2019.08.013

License:

Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
 Peer reviewed version

Citation for published version (Harvard):
Parker, C \& Stroth, G 2019, 'The local structure theorem: the wreath product case', Journal of Algebra. https://doi.org/10.1016/j.jalgebra.2019.08.013

Link to publication on Research at Birmingham portal

[^0]
THE LOCAL STRUCTURE THEOREM: THE WREATH PRODUCT CASE

CHRIS PARKER AND GERNOT STROTH

Dedicated to the memory of Kay Magaard

Abstract

Groups with a large p-subgroup, p a prime, include almost all of the groups of Lie type in characteristic p and so the study of such groups adds to our understanding of the finite simple groups. In this article we study a special class of such groups which appear as wreath product cases of the Local Structure Theorem [MSS2].

1. Introduction

Throughout this article p is a prime and G is a finite group. We say that $L \leq G$ has characteristic p if

$$
C_{G}\left(O_{p}(L)\right) \leq O_{p}(L)
$$

For T a non-trivial p-subgroup of G, the subgroup $N_{G}(T)$ is called a p local subgroup of G. By definition G has local characteristic p if all p-local subgroups of G have characteristic p and G has parabolic characteristic p if all p-local subgroups containing a Sylow p-subgroup of G have characteristic p.

A group K is called a \mathcal{K}-group if all its composition factors are from the known finite simple groups. So, if K is a simple \mathcal{K}-group, then K is a cyclic group of prime order, an alternating group, a simple group of Lie type or one of the 26 sporadic simple groups. A group G is a \mathcal{K}_{p}-group, provided all subgroups of all p-local subgroups of G are \mathcal{K}-groups. This paper is part of a programme to investigate the structure of certain \mathcal{K}_{p}-groups. See [MSS1, MSS2] for an overview of the project.

Of fundamental importance to the development of the programme are large subgroups of G : a p-subgroup Q of G is large if
(i) $C_{G}(Q) \leq Q$; and
(ii) $N_{G}(U) \leq N_{G}(Q)$ for all $1 \neq U \leq C_{G}(Q)$.

For example, if G is a simple group of Lie type defined in characteristic p, $S \in \operatorname{Syl}_{p}(G)$ and $Q=O_{p}\left(C_{G}(Z(S))\right)$, then Q is a large subgroup of G unless there is some degeneracy in the Chevalley commutator relations which define G. This means that Q is a large subgroup of G unless G is one of $\operatorname{Sp}_{2 n}\left(2^{k}\right)$, $n \geq 2, \mathrm{~F}_{4}\left(2^{k}\right)$ or $\mathrm{G}_{2}\left(3^{k}\right)$.

If Q is a large subgroup of G, then it is easy to see that $O_{p}\left(N_{G}(Q)\right)$ is also a large p-subgroup of G. Thus we also assume that
(iii) $Q=O_{p}\left(N_{G}(Q)\right)$.

One of the consequences of G having a large p-subgroup is that G has parabolic characteristic p. In fact any p-local subgroup of G containing Q is
of characteristic p [MSS2, Lemma 1.5.5 (e)]. Further, if $Q \leq S \in \operatorname{Syl}_{p}(G)$, then Q is weakly closed in S with respect to G (Q is the unique G-conjugate of Q in S) [MSS2, Lemma 1.5.2 (e)]. A significant part of the programme described in [MSS1] aims to determine the groups which possess a large p subgroup. This endeavour extends and generalizes earlier work of Timmesfeld and others in the original proof of the classification theorem where groups with a so-called large extraspecial 2-subgroup were investigated. The state of play at the moment is that the Local Structure Theorem has been completed and published [MSS2]. To describe this result we need some further notation.

For a finite group L, Y_{L} denotes the unique maximal elementary abelian normal p-subgroup of L with $O_{p}\left(L / C_{L}\left(Y_{L}\right)\right)=1$. Such a subgroup exists [MSS1, Lemma 2.0.1(a)]. From now on assume that G is a finite \mathcal{K}_{p}-group, S a Sylow p-subgroup of G and Q a large p-subgroup of G with $Q \leq S$ and $Q=O_{p}\left(N_{G}(Q)\right)$. We define

$$
\mathcal{L}_{G}(S)=\left\{L \leq G \mid S \leq L, O_{p}(L) \neq 1, C_{G}\left(O_{p}(L)\right) \leq O_{p}(L)\right\}
$$

Under the assumption that S is contained in at least two maximal p-local subgroups, for $L \in \mathcal{L}_{G}(S)$ with $L \not \leq N_{G}(Q)$, the Local Structure Theorem provides information about $L / C_{L}\left(Y_{L}\right)$ and its action on Y_{L}. Given the Local Structure Theorem there are two cases to treat in order to fully understand groups with a large p-subgroup. Either there exists $L \in \mathcal{L}_{G}(S)$ with $Y_{L} \not \leq Q$ or, for all $L \in \mathcal{L}_{G}(S), Y_{L} \leq Q$. Research in the first case has just started and, for this situation, this paper addresses the wreath product scenario in the Local Structure Theorem [MSS2, Theorem A (3)]. This case is separated from the rest because of the special structure of L and Y_{L}. This structure allows us to use arguments measuring the size of certain subgroups to reduce to three exceptional configurations and has a distinct flavour from the remaining cases. For instance, the groups which are examples in the wreath product case typically have Q of class 3 whereas in the more typical cases it has class at most 2. The configurations in the Local Structure Theorem which are not in the wreath product case and have $Y_{L} \not \leq Q$ will be examined in a separate publication as there are methods which apply uniformly to cover many possibilities at once. Contributions to the $Y_{L} \leq Q$ for all $L \in \mathcal{L}_{G}(S)$ are the subject of [PPS].

For $L \in \mathcal{L}_{G}(S)$ with Q not normal in L we set

$$
L^{\circ}=\left\langle Q^{L}\right\rangle, \bar{L}=L / C_{L}\left(Y_{L}\right) \text { and } V_{L}=\left[Y_{L}, L^{\circ}\right]
$$

and use this notation throughout the paper. Set $q=p^{a}$. We recall from [MSS2, Remark A.25] the definition of a natural wreath $\mathrm{SL}_{2}(q)$-module for the group X with respect to \mathcal{K} : suppose that X is a group, V is a faithful X-module and \mathcal{K} is a non-empty X-invariant set of subgroups of X. Then V is a natural $\mathrm{SL}_{2}(q)$-wreath product module for X with respect to \mathcal{K} if and only if

$$
V=\bigoplus_{K \in \mathcal{K}}[V, K] \text { and }\langle\mathcal{K}\rangle=\underset{K \in \mathcal{K}}{X} K
$$

and, for each $K \in \mathcal{K}, K \cong \mathrm{SL}_{2}(q)$ and $[V, K]$ is the natural $\mathrm{SL}_{2}(q)$-module for K.

We now describe the wreath product case in [MSS2, Theorem A (3)]. For $L \in \mathcal{L}_{G}(S)$ with $L \not \leq N_{G}(Q), L$ is in the wreath product case provided

- there exists a unique \bar{L}-invariant set \mathcal{K} of subgroups of \bar{L} such that V_{L} is a natural $\mathrm{SL}_{2}(q)$-wreath product module for \bar{L} with respect to \mathcal{K}.
- $\overline{L^{\circ}}=O^{p}(\langle\mathcal{K}\rangle) \bar{Q}$ and Q acts transitively on \mathcal{K} by conjugation.
- $Y_{L}=V_{L}$ or $p=2,\left|Y_{L}: V_{L}\right|=2, \overline{L^{\circ}} \cong \mathrm{SL}_{2}(4)$ or $\Gamma \mathrm{SL}_{2}(4)$ and $V_{L} \not \leq Q$.
We say that \bar{L} is properly wreathed if $|\mathcal{K}|>1$.
There are overlaps between the wreath product case and some other divisions in the Local Structure Theorem.

If $\overline{L^{\circ}} \cong \mathrm{SL}_{2}(q)$ with $V_{L}=Y_{L}$, then this situation can be inserted in the linear case of [MSS2, Theorem A (1)] by including $n=2$ is that case. Suppose that $|\mathcal{K}|=2$ and $K \cong \mathrm{SL}_{2}(2)$. If \bar{Q} is a fours group, then, as \bar{Q} conjugates $\overline{K_{1}}$ to $\overline{K_{2}}$,

$$
\overline{L^{\circ}} \cong \Omega_{4}^{+}(2) \cong \mathrm{SL}_{2}(2) \times \mathrm{SL}_{2}(2)
$$

and Y_{L} is the tensor product module. This is an example in the tensor product case of [MSS2, Theorem A (6)]. We declare L to be in the unambiguous wreath product case if these two ambiguous configurations do not occur. The ambiguous cases will be handled in a more general setting in a forthcoming paper mentioned earlier.
Main Theorem. Suppose that p is a prime, G is a finite group, S a Sylow p-subgroup of G and $Q \leq S$ is a large p-subgroup of G with $Q=O_{p}\left(N_{G}(Q)\right)$. If there exists $L \in \mathcal{L}_{G}(S)$ with L in the unambiguous wreath product case and $V_{L} \not \leq Q$, then $G \cong \operatorname{Mat}(22), \operatorname{Aut}(\operatorname{Mat}(22)), \operatorname{Sym}(8), \operatorname{Sym}(9)$ or $\operatorname{Alt}(10)$.

The proof of this theorem splits into four parts. First, in Section 3, we show that in the properly wreathed case we must have $q=|\mathcal{K}|=2$ and, as L is unambiguous, $\bar{S}=\bar{Q} \cong \operatorname{Dih}(8)$ and $\overline{L^{\circ}} \cong \mathrm{O}_{4}^{+}(2)$. If $|\mathcal{K}|=1$, we show that $\overline{L^{\circ}} \cong \Gamma \mathrm{SL}_{2}(4)$ or $\mathrm{SL}_{2}(4)$ and V_{L} is the natural module with $\left|Y_{L}: V_{L}\right| \leq 2$, where, if $\overline{L^{\circ}} \cong \mathrm{SL}_{2}(4),\left|Y_{L}: V_{L}\right|=2$ holds. In the following three sections, we determine the groups corresponding to these three cases. Finally the Main Theorem follows by combining Propositions 3.5, 4.1, 5.1 and 6.2.

In [PPS] the authors proved that the unambiguous wreath product case does not lead to examples if for all $L \in \mathcal{L}_{G}(S)$ we have $Y_{L} \leq Q$, with the additional assumption that G is of local characteristic p. In this paper we do not make the assumption that G is of local characteristic p.

In the Local Structure Theorem there is also a possibility that $L \in \mathcal{L}_{G}(S)$ is of weak wreath type. Any such group is contained in one, which is of unambiguous wreath type. A corollary of our theorem is
Corollary. Suppose that p is a prime, G is a finite group, S a Sylow p subgroup of G and $Q \leq S$ is a large p-subgroup of G with $Q=O_{p}\left(N_{G}(Q)\right)$. If $L \in \mathcal{L}_{G}(S)$ is of weak wreath product type, then either G is as in the Main Theorem or $V_{L} \leq Q$.

In addition to the notation already introduced, we will use the following

Notation. For p a prime, G a group with a large p-subgroup $Q=O_{p}\left(N_{G}(Q)\right)$ and $L \in \mathcal{L}_{G}(S)$, we set $Q_{L}=O_{p}(L)$ and assume that $V_{L} \not \leq Q$. Define $D=\left\langle V_{L}^{N_{G}(Q)}\right\rangle\left(L \cap N_{G}(Q)\right) \in \mathcal{L}_{G}(S)$. Furthermore, set

$$
\begin{aligned}
W & =\left\langle\left(V_{L} \cap Q\right)^{D}\right\rangle \\
U_{L} & =\left\langle\left(W \cap Q_{L}\right)^{L}\right\rangle
\end{aligned}
$$

and

$$
Z=C_{V_{L}}(Q)
$$

Notice that for $L_{0}=N_{L}\left(S \cap C_{L}\left(Y_{L}\right)\right)$, we have $L=C_{L}\left(Y_{L}\right) L_{0}$ and $C_{L}\left(Y_{L}\right) \leq D$. Further

$$
Y_{L_{0}}=Y_{L}=\Omega_{1}\left(Z\left(O_{p}\left(L_{0}\right)\right)\right)
$$

by [MSS2, Lemma 1.2.4 (i)]. Since $C_{L}\left(Y_{L}\right)$ normalizes Q,

$$
L^{\circ}=\left\langle Q^{L}\right\rangle=\left\langle Q^{C_{L}\left(Y_{L}\right) L_{0}}\right\rangle=\left\langle Q^{L_{0}}\right\rangle=L_{0}^{\circ}
$$

Therefore, if L is in the unambiguous wreath product case, then so is L_{0}. Hence we also assume that $L=L_{0}$ and so

$$
Y_{L}=\Omega_{1}\left(Z\left(Q_{L}\right)\right)
$$

2. Preliminaries

In this section we present some lemmas which will be used in the forthcoming sections.

Lemma 2.1. Suppose that X is a group, $E=O_{2}(X)$ is elementary abelian of order 16 and $X / E \cong \operatorname{Alt}(6)$ induces the non-trivial irreducible part of the 6-point permutation module on E. Then X splits over E.

Proof. Choose $R \leq X$ such that $R / E \cong \operatorname{Sym}(4)$ and $Z(R)=1$. Let $T \in$ $\operatorname{Syl}_{3}(R)$. As T acts fixed-point freely on $O_{2}(R), N_{R}(T) \cong \operatorname{Sym}(3)$ and so there are involutions in X / E. Hence, as X / E has one conjugacy class of involutions, there are involutions in $O_{2}(R) \backslash E$. Therefore $O_{2}(R) / Z\left(O_{2}(R)\right)$ is elementary abelian of order 16 . Now we consider $O_{2}(R)$. The fixed-point free action of T on $O_{2}(R) / Z\left(O_{2}(R)\right)$ implies there is partition of this group into five T-invariant subgroups of order 4 . As T acts fixed-point freely on $O_{2}(R)$ the preimages of all these fours groups are abelian. As there are involutions in $O_{2}(R) \backslash E$, there is a T-invariant fours group $F^{*} \leq O_{2}(R) / Z\left(O_{2}(R)\right)$ with $F^{*} \neq E / Z\left(O_{2}(R)\right)$ and such that the preimage F of F^{*} is elementary abelian of order 16 . Now the action of X on E shows that for any involution $i \in R \backslash E$ all involutions in the coset $E i$ are conjugate to i by an element of E. Hence all involutions in $O_{2}(R) \backslash E$ are in F. This shows that F is invariant under $N_{R}(T)$.

Again there is a partition of F into five groups of order four invariant under T. Let t be an involution in $N_{R}(T)$. Then $\left|C_{F}(t)\right|=4$, where $\left|C_{E \cap F}(t)\right|=2$. Hence there is some fours group $F_{1} \leq F, F_{1} \neq E \cap F$ and $C_{F_{1}}(t) \neq 1$. This shows that F_{1} is normalized by t. Then $F_{1}\langle t\rangle \cong \operatorname{Dih}(8)$ is a complement to E. Using a result of Gaschütz [GLS2, Theorem 9.26], X splits over E.

The next lemma is well-known.

Lemma 2.2. Suppose that $X \cong \operatorname{Sym}(5), F_{1}$ and F_{2} are fours groups of X with $F_{1} \leq \operatorname{Alt}(5)$ and V is a non-trivial irreducible $\mathrm{GF}(2) X$-module. Then
(i) V is either the non-trivial irreducible part of the permutation module, which is the same as the natural $\mathrm{O}_{4}^{-}(2)$-module, or V is the natural $\Gamma \mathrm{L}_{2}(4)$-module.
(ii) F_{1} acts quadratically on V if and only if V is the natural $\Gamma \mathrm{L}_{2}(4)-$ module.
(iii) F_{2} acts quadratically on V if and only if V is the natural $\mathrm{O}_{4}^{-}(2)-$ module.

Lemma 2.3. Suppose that p is a prime, X is a group of characteristic p and U is a normal p-subgroup of X. Let R be a normal subgroup of X with $R \leq C_{X}\left(U /\left[U, O_{p}(X)\right]\right)$. If $\left[O_{p}(X), O^{p}(R)\right] \leq U$, then $R \leq O_{p}(X)$.

Proof. It suffices to prove that $O^{p}(R)=1$. Suppose that $n \geq 1$ is such that $\left[U, O^{p}(R)\right] \leq\left[U, O_{p}(X) ; n\right]$. Then

$$
\left[O_{p}(X), O^{p}(R)\right]=\left[O_{p}(X), O^{p}(R), O^{p}(R)\right] \leq\left[U, O^{p}(R)\right] \leq\left[U, O_{p}(X) ; n\right]
$$

and so

$$
\left[O_{p}(X), O^{p}(R), U\right] \leq\left[\left[U, O_{p}(X) ; n\right], O_{p}(X)\right]=\left[U, O_{p}(X) ; n+1\right]
$$

We also have

$$
\left[U, O^{p}(R), O_{p}(X)\right] \leq\left[\left[U, O_{p}(X) ; n\right], O_{p}(X)\right]=\left[U, O_{p}(X) ; n+1\right]
$$

and thus the Three Subgroups Lemma implies

$$
\left[U, O_{p}(X), O^{p}(R)\right] \leq\left[U, O_{p}(X) ; n+1\right]
$$

This yields

$$
\left[U, O^{p}(R)\right]=\left[U, O^{p}(R), O^{p}(R)\right] \leq\left[U, O_{p}(X), O^{p}(R)\right] \leq\left[U, O_{p}(X) ; n+1\right]
$$

Since $O_{p}(X)$ is nilpotent, we deduce $\left[U, O^{p}(R)\right]=1$. Hence

$$
\left[O_{p}(X), O^{p}(R)\right]=\left[O_{p}(X), O^{p}(R), O^{p}(R)\right] \leq\left[U, O^{p}(R)\right]=1
$$

As X has characteristic $p, O^{p}(R)=1$ and so $R \leq O_{p}(X)$ as claimed.
Lemma 2.4. Assume that X is a group, Y is a normal subgroup of X and $x C_{X}(Y) \in Z\left(X / C_{X}(Y)\right)$. If $[Y, x] \leq Z(Y)$, then $Y / C_{Y}(x) \cong[Y, x]$ as X-groups.

Proof. Define

$$
\begin{aligned}
\theta: Y & \rightarrow[Y, x] \\
y & \mapsto[y, x] .
\end{aligned}
$$

Then θ is independent of the choice of the coset representative in $x C_{X}(Y)$.
For $y, z \in Y$,

$$
(y z) \theta=[y z, x]=[y, x]^{z}[z, x]=[y, x][z, x]=(y) \theta(z) \theta
$$

and, for $y \in Y$ and $\ell \in X$, as $[x, \ell] \in C_{R}(Y), x^{\ell}=x c$ for some $c \in C_{X}(Y)$, and so

$$
(y \theta)^{\ell}=[y, x]^{\ell}=\left[y^{\ell}, x^{\ell}\right]=\left[y^{\ell}, x c\right]=\left[y^{\ell}, c\right]\left[y^{\ell}, x\right]^{c}=\left[y^{\ell}, x\right]=\left(y^{\ell}\right) \theta
$$

Thus θ is an X-invariant homomorphism from Y to $[Y, x]$. As $\operatorname{ker} \theta=C_{Y}(x)$, we have $Y / C_{Y}(x) \cong[Y, x]$ as X-groups.

Lemma 2.5. Assume that p is a prime, X is a group, Y is an abelian normal p-subgroup of X and R is a normal p-subgroup of X which contains Y. Suppose that $Y=\left[Y, O^{p}(X)\right],\left[R, O^{p}(X)\right] \leq C_{R}(Y)$ and R acts quadratically or trivially on Y. Suppose that no non-central X-chief factor of $Y / C_{Y}(R)$ is isomorphic to an X-chief factor of $[Y, R]$. Then $Y \leq Z(R)$.

Proof. Assume that $R>C_{R}(Y)$. Using $\left[R, O^{p}(X)\right] \leq C_{R}(Y)$, we may select $x \in R \backslash C_{R}(Y)$ such that $x C_{X}(Y) \in Z\left(X / C_{X}(Y)\right)^{\#}$. As Y is abelian, $[Y, x] \leq$ $Z(Y)$ and so Lemma 2.4 applies to give $Y / C_{Y}(x) \cong[Y, x]$ as X-groups. As R acts quadratically on Y,

$$
C_{Y}(x) \geq C_{Y}(R) \geq[Y, R] \geq[Y, x]
$$

and so the hypothesis on non-central X-chief factors now gives $Y / C_{Y}(x)$ and $[Y, x]$ only have central X-chief factors. In particular, $Y=\left[Y, O^{p}(X)\right] \leq$ $C_{Y}(x)$ and this contradicts the initial choice of $x \in R \backslash C_{R}(Y)$. Hence $Y \leq$ $Z(R)$.

Lemma 2.6. Suppose that p is a prime, X is a group, $V \leq U$ are normal p-subgroups of X, and Q is a large p-subgroup of X which is not normal in X. Assume that V is a non-trivial irreducible $\mathrm{GF}(p) X$-module and U / V is centralized by $O^{p}(X)$. Then
(i) U is elementary abelian; and
(ii) if $U \not \leq \Omega_{1}\left(Z\left(O_{p}(X)\right)\right.$), then $O_{p}(X) / C_{O_{p}(X)}(U)$ contains a noncentral chief factor isomorphic to V as a $\mathrm{GF}(p) X$-module.

Proof. Set $Z_{X}=\Omega_{1}\left(Z\left(O_{p}(X)\right)\right)$. We have $\left[U, O^{p}(X)\right] \leq V \leq Z_{X}$ as V is irreducible. As $O^{p}(X)$ does not centralize $U / \Phi(U)$ by Burnside's Lemma [GLS2, Proposition 11.1] and V is a non-trivial irreducible X-module, $V \not \leq$ $\Phi(U)$ and $\Phi(U)$ is centralized by $O^{p}(X)$. Therefore $\Phi(U) \cap Z_{X}$ is centralized by $O^{p}(X)$ and is normalized by Q. Since Q is large and $O^{p}(X) \not \leq N_{X}(Q)$, we deduce $\Phi(U) \cap Z_{X}=1$. Thus $\Phi(U)=1$ and so U is elementary abelian. Hence (i) holds.

Set $Y=O_{p}(X)$ and assume that $U \not \leq Z_{X}$. Select $x \in U \backslash Z_{X}$ such that $[X, x] \leq U \cap Z_{X} \leq Z(Y)$. Then $x C_{X}(Y) \in Z\left(X / C_{X}(Y)\right)$. Thus Lemma 2.4 implies $Y / C_{Y}(x) \cong[Y, x] \leq U \cap Z_{X}$ and this isomorphism is as X-groups. Since $[Y, x]$ is normalized by $Q,[Y, x] \neq 1$ and Q is large, $O^{p}(X)$ does not centralize $[Y, x]$. Thus $[Y, x] \geq V$ as $\left[U, O^{p}(X)\right] \leq V$. This proves (ii).

Lemma 2.7. Assume that p is a prime, X is a group, U is an elementary abelian normal subgroup of $X, U=\left[U, O^{p}(X)\right]$ and $O_{p}(X)$ acts quadratically and non-trivially on U. Set $R=O_{p}(X), W=R / C_{R}(U)$, and $Z=[U, R]$. Then $W, U / Z$ and Z are X / R-modules and W is isomorphic to an X / R submodule of $\operatorname{Hom}(U / Z, Z)$. In particular, if Z is centralized by X, then the set of X-chief factors of W can be identified with a subset of the $\operatorname{GF}(p)$-duals of the X-chief factors of U / Z.

Proof. Since R acts quadratically on U, W is elementary abelian. Furthermore, R centralizes $W, U / Z$ and Z. Hence all of these groups can be regarded
as $\operatorname{GF}(p) X / R$-modules. For $w \in R$, define

$$
\begin{array}{rlrl}
\theta: R & \rightarrow & \operatorname{Hom}(U / Z, Z) \\
w & \mapsto & \theta_{w}: U / Z & \rightarrow \\
u Z & \mapsto & {[u, w]}
\end{array} .
$$

The calculation in the proof of Lemma 2.4 shows that the commutator $[u, w]$ defines a homomorphism from U to Z and, as w centralizes Z, θ_{w} is a well-defined homomorphism from U / Z to Z. Thus θ is a well-defined map. Consider $w_{1}, w_{2} \in R, u Z \in U / Z$ and $\ell \in X$. Then

$$
(u Z) \theta_{w_{1} w_{2}}=\left[u, w_{1} w_{2}\right]=\left[u, w_{2}\right]^{w_{1}}\left[u, w_{1}\right]=\left[u, w_{1}\right]\left[u, w_{2}\right]=(u Z) \theta_{w_{1}}(u Z) \theta_{w_{2}}
$$

which means $\theta_{w_{1} w_{2}}=\theta_{w_{1}} \theta_{w_{2}}$ and so θ is a group homomorphism. We show that θ is an X-module homomorphism. So let $\ell \in X, u Z \in U / Z$ and $w \in R$. Then $\left(w^{\ell}\right) \theta=\theta_{w^{\ell}}$ and

$$
(u Z) \theta_{w^{\ell}}=\left[u, w^{\ell}\right]=\left[u^{\ell^{-1}}, w\right]^{\ell}=(u)\left(\theta_{w} \cdot \ell\right)
$$

Since $\operatorname{ker} \theta=C_{R}(U)$, this completes the proof of the main claim.
If Z is centralized by X, then

$$
\operatorname{Hom}(U / Z, Z) \cong(U / Z)^{*} \otimes Z=\bigoplus_{i=1}^{n}(U / Z)^{*}
$$

where n is such that $|Z|=p^{n}$. This completes the proof of the lemma.
Lemma 2.8. Suppose that V is a p-group and X is a group which acts faithfully on V with $O_{p}(X)=1$. Assume $A \leq X$ is an elementary abelian p-subgroup of order at least p^{2} which has the property $C_{V}(A)=C_{V}(a)$ for all $a \in A^{\#}$. If L is a non-trivial subgroup of X and $L=[L, A]$, then A acts faithfully on L.

In particular, A centralizes every p^{\prime}-subgroup which it normalizes, $[A, F(X)]=$ $1, E(X) \neq 1$ and, if L is a component of X which is normalized but not centralized by A, then A acts faithfully on L.

Proof. Suppose that $L=[L, A]$ is a non-trivial subgroup of X. Assume that there is $b \in A^{\#}$ with $[L, b]=1$. Then L normalizes $C_{V}(b)$ and so, as $C_{V}(b)=C_{V}(A), L=[L, A]$ centralizes $C_{V}(b)$. Since $L=[L, A], L=O^{p}(L)$ and the Thompson $A \times B$-Lemma implies $[L, V]=1$, a contradiction. Hence A acts faithfully on L.

Let F be a p^{\prime}-subgroup of X which is normalized by A. Then $F=\left\langle C_{F}(a)\right|$ $\left.a \in A^{\#}\right\rangle$. If A does not centralizes F, then there exists $a \in A^{\#}$ such that $1 \neq\left[C_{F}(a), A\right]=\left[C_{F}(a), A, A\right]$. Hence, taking $L=\left[C_{F}(a), A\right]$, we have $L=[L, A]$ and $a \in C_{A}(L)$, a contradiction. Hence $[F, A]=1$. Now A centralizes $F(X)$ and therefore $E(X) \neq 1$.

If L is a component of X which is normalized by A, then either $[L, A]=L$ or $[L, A]=1$. If $[L, A] \neq 1$, then we have A acts faithfully on L.

Lemma 2.9. Let X be a group, N a normal subgroup of G and $T \in \operatorname{Syl}_{p}(X)$. Assume that $X=N T, C_{T}(N)=1, q=p^{a}$ and

$$
N=N_{1} \times N_{2} \cdots \times N_{s},
$$

where $N_{i} \cong \mathrm{SL}_{2}(q)$ for $1 \leq i \leq s$. Then the p-rank of G is sa.

Proof. Assume first that $q=2$. Then T acts faithfully on $O_{3}(N)$. As the 2-rank of $\mathrm{GL}_{s}(3)$ is s, we are done. Similarly, if $q=3$, then T acts faithfully on $O_{2}(N) / Z(N)$, which is elementary abelian of order $2^{2 s}$ we are done as $\mathrm{GL}_{2 s}(2)$ has 3-rank s.

Thus we may assume that $q>3$. In particular, the subgroups N_{i} are quasisimple and T permutes the set $\left\{N_{i} \mid 1 \leq i \leq s\right\}$.

Assume that p is odd. Let A be an elementary abelian subgroup in T of maximal rank and assume that $A \not \leq N$. Then by Thompson replacement [GLS2, Theorem 25.2] we may assume that A acts quadratically on $T \cap N$. This shows that A has to normalize each N_{i}. As non-trivial field automorphisms are not quadratic on $T \cap N_{i}$, we get that A centralizes $T \cap N$ and so $A \leq T \cap N$, the assertion.

Assume that $q=2^{a}$ with $a \geq 2$. Let $B=N_{N}(T \cap N)$. We have that T normalizes B and $T /(T \cap N)$ acts faithfully on $B /(T \cap N)$. Now the Thompson dihedral Lemma [GLS2, Lemma 24.1] says that for any elementary abelian subgroup A of T we have a B-conjugate A^{g} such that $U=\left\langle A, A^{g}\right\rangle(T \cap N) /(T \cap N)$ is a direct product of r dihedral groups where $2^{r}=|A /(A \cap N)| \leq 2^{s}$ and $A(T \cap N) /(T \cap N)$ is a Sylow 2-subgroup of U. Set $T_{1}=\left[O_{2^{\prime}}(U), T \cap N\right]$. As U is generated by two conjugates of A we see that $\left|T_{1}\right|=\left|C_{T_{1}}(A / A \cap N)\right|^{2}$. This now shows that $|A| \leq|T \cap N|$, the assertion again. This proves the lemma.

In the next two lemmas we use the notation presented in the introduction though we do not assume that L is unambiguous.

Lemma 2.10. Suppose that $L \in \mathcal{L}_{G}(S), L \not \leq N_{G}(Q)$ and $V_{L}=\left[Y_{L}, L^{\circ}\right]$. Then
(i) $C_{Y_{L}}\left(L^{\circ}\right)=1$.
(ii) $\Omega_{1}(Z(S)) \leq V_{L}$.
(iii) If V_{L} is an irreducible L-module, $V_{L} \not \leq Q$ and $\Omega_{1}\left(Z\left(Q_{L}\right)\right)<Q_{L}$, then $V_{L} \leq Q_{L}^{\prime} \leq \Phi\left(Q_{L}\right)$.
Proof. As $C_{Y_{L}}\left(L^{\circ}\right) \leq C_{G}(Q)$ is normalized by L, (i) is a consequence of Q being large.

By [MSS2, Lemma $1.24(\mathrm{~g})], \Omega_{1}(Z(S)) \leq Y_{L}$ now Gaschütz Theorem [GLS2, Theorem 9.26] and (i) give (ii).

Assume that N is a non-trivial normal p-subgroup of L. Then $\Omega_{1}(Z(S)) \cap$ $N \neq 1$. Since V_{L} is irreducible as a L-module, (ii) gives $V_{L} \leq N$. In particular, as $V_{L} \not \leq Q, N \not \leq Q$.

Suppose that Q_{L} is abelian. Then, as $Q=O_{p}\left(N_{G}(Q)\right)$ and $\left[Q, Q_{L}, Q_{L}\right] \leq$ $Q_{L}^{\prime}=1, Q_{L}$ is quadratic on Q, and hence $Q_{L} Q / Q$ is elementary abelian and so $\Phi\left(Q_{L}\right) \leq Q$. By the remark earlier taking $N=\Phi\left(Q_{L}\right)$ we obtain $\Phi\left(Q_{L}\right)=1$, contrary to $\Omega_{1}\left(Z\left(Q_{L}\right)\right)<Q_{L}$. Hence Q_{L} is non-abelian. Thus $Q_{L}^{\prime} \neq 1$ and so, as V_{L} is irreducible, $V_{L} \leq Q_{L}^{\prime} \leq \Phi\left(Q_{L}\right)$. This proves (iii).

Lemma 2.11. Suppose that $L \in \mathcal{L}_{G}(S), L \not \leq N_{G}(Q)$ and $V_{L}=\left[Y_{L}, L^{\circ}\right]$. Assume that $Y_{L}=\Omega_{1}\left(Z\left(Q_{L}\right)\right), m \in L$ and $O^{p}(L) Q_{L} \leq K Q_{L}$, where $K=$ $\left\langle W, W^{m}\right\rangle$. Then $O^{p}(L) \leq K$ and the following hold
(i) $\left[O^{p}(L), Q_{L}\right] \leq\left[W, Q_{L}\right]\left[W^{m}, Q_{L}\right] \leq\left(W \cap Q_{L}\right)\left(W^{m} \cap Q_{L}\right)=U_{L}$.
(ii) If $[W, W] \leq V_{L}$, then W acts quadratically on the non-central chief factors of Q_{L} / V_{L}.

Assume, in addition, that V_{L} is irreducible as a K-module, $\left[V_{L}, W, W\right] \neq 1$, and $[W, W] \leq V_{L}$. Then
(iii) $W \cap W^{m} \cap Q_{L} \leq Y_{L}$;
(iv) U_{L} / Y_{L} is elementary abelian or trivial; and
(v) either $Q_{L}=Y_{L}$ or $U_{L}^{\prime} \geq V_{L}$.

Proof. Since W and W^{m} are normalized by $Q_{L}, K=\left\langle W, W^{m}\right\rangle$ is normalized by $Q_{L} K$ and so $O^{p}(L) \leq K$. Since $W, W^{m},\left[Q_{L}, W\right]$ and $\left[Q_{L}, W^{m}\right]$ are normalized by Q_{L}, we have
$\left[Q_{L}, O^{p}(L)\right] \leq\left[Q_{L},\left\langle W, W^{m}\right\rangle\right]=\left[Q_{L}, W\right]\left[Q_{L}, W^{m}\right] \leq\left(W \cap Q_{L}\right)\left(W^{m} \cap Q_{L}\right)$.
In particular, $A=\left(W \cap Q_{L}\right)\left(W^{m} \cap Q_{L}\right)$ is normalized by $O^{p}(L)$. Since $\left(W \cap Q_{L}\right)^{L}=\left(W \cap Q_{L}\right)^{S O^{p}(L)}=\left(W \cap Q_{L}\right)^{O^{p}(L)}$, we have $A=U_{L}$. Thus (i) holds.

By the additional hypothesis,

$$
\left[Q_{L}, W, W\right] \leq[W, W] \leq V_{L}
$$

and so W acts quadratically on all the non-central L-chief factors in Q_{L} / V_{L}, which is (ii).

Notice that part (ii), V_{L} irreducible as a K-module and $\left[V_{L}, W, W\right] \neq$ 1 together imply that the non-central K-chief factors in Q_{L} / V_{L} are not isomorphic to V_{L}.

Set $I=W \cap W^{m} \cap Q_{L}$. Then $I \leq W \cap W^{m}$ and so

$$
[I, W] \leq[W, W] \leq V_{L}
$$

and

$$
\left[I, W^{m}\right] \leq\left[W^{m}, W^{m}\right] \leq V_{L}^{m}=V_{L}
$$

Hence $I V_{L} / V_{L}$ is centralized by $\left\langle W, W^{m}\right\rangle=K$. As W acts quadratically on all the non-central chief factors of K in Q_{L} / V_{L} by (ii) and by assumption, W does not act quadratically on V_{L}, Lemma 2.6 implies that $I \leq \Omega_{1}\left(Z\left(Q_{L}\right)\right)=$ Y_{L}. This proves (iii).

Since W is generated by elements of order $p, W /[W, W]$ is elementary abelian and therefore, as $[W, W] \leq V_{L}, W V_{L} / V_{L}$ is also elementary abelian. Since $W \cap Q_{L}$ and $Q_{L} \cap W^{m}$ normalize each other parts (i) and (iii) give (iv).

If $V_{L} \not \leq U_{L}^{\prime}$ and $Q_{L} \neq Y_{L}$, then, as U_{L} / Y_{L} is elementary abelian by (iv), Lemma 2.10 (ii) implies U_{L} is elementary abelian. Select E with $Q_{L} \geq E>$ V_{L} of minimal order such that $E=\left[E, O^{p}(L)\right]$ and E / V_{L} has a non-central K-chief factor. Then

$$
E \leq\left[Q_{L}, O^{p}(L)\right] \leq\left[Q_{L}, W\right]\left[Q_{L}, W^{m}\right] \leq U_{L} \leq C_{L}(E)
$$

Furthermore, $V_{L}\left[E, Q_{L}\right]<E$ and so $\left[\left[E, Q_{L}\right], O^{p}(L)\right] \leq V_{L}$. Therefore Lemma 2.6 implies that $\left[E, Q_{L}\right] \leq Y_{L}$ and so Q_{L} acts quadratically on E. Hence Lemma 2.5 implies that $E \leq Y_{L}$, a contradiction. Hence U_{L}^{\prime} is non-trivial and it follows that $V_{L} \leq U_{L}^{\prime}$.

3. The Reduction

We use the notation presented in the introduction. For the rest of this article we have $L \in \mathcal{L}_{G}(S)$ with Q not normal in L and L is in the unambiguous wreath product case. This means that $Y_{L}=V_{L}$ unless we are in the special case that $\overline{L^{\circ}} \cong \mathrm{SL}_{2}(4)$ or $\Gamma \mathrm{SL}_{2}(4),\left|Y_{L}: V_{L}\right|=2$ and

$$
V_{L} \not \leq Q
$$

We start with a general result which just requires $V_{L} \not \leq Q$.
Lemma 3.1. The following hold.
(i) $\left\langle V_{L}^{D}\right\rangle$ is not a p-group;
(ii) $\left[Q,\left\langle V_{L}^{D}\right\rangle\right] \leq W$; and
(iii) $W \not \leq C_{G}\left(V_{L}\right)$.

Proof. Let $\tilde{C}=N_{G}(Q)$ and $K=\left\langle V_{L}^{\tilde{C}}\right\rangle$. As $D=K N_{L}(Q)$ and $N_{L}(Q)$ acts on V_{L} we have $\left\langle V_{L}^{D}\right\rangle=\left\langle V_{L}^{K}\right\rangle$ is subnormal in H. If $\left\langle V_{L}^{D}\right\rangle$ is a p-group, we obtain $V_{L} \leq O_{p}\left(N_{G}(Q)\right)=Q$ which is a contradiction. This proves (i).

We have $\left[Q, V_{L}\right] \leq Q \cap V_{L} \leq W$. As W and Q are normalized by D, (ii) holds.

Assume $W \leq C_{G}\left(V_{L}\right)$. Then $\left[W, V_{L}\right]=1$ and so $\left[W,\left\langle V_{L}^{D}\right\rangle\right]=1$. Hence $X=O^{p}\left(\left\langle V_{L}^{D}\right\rangle\right)$ centralizes Q by (ii). Since $C_{G}(Q) \leq Q$, we have $X \leq Q$. Thus $X=1$ and $\left\langle V_{L}^{D}\right\rangle$ is a p-group, which contradicts (i). Hence $W \not \mathbb{Z}$ $C_{G}\left(V_{L}\right)$.

We adopt the following notation. Let $B \geq C_{L}\left(V_{L}\right)$ be such that $\bar{B}=\langle\mathcal{K}\rangle$ and let $S_{0}=S \cap B$. We write $B=K_{1} \ldots K_{s}$ where $K_{i} \geq C_{L}\left(V_{L}\right), \overline{K_{i}} \in \mathcal{K}$, $\overline{K_{i}} \cong \mathrm{SL}_{2}(q)$ and, for $1 \leq i \leq s$, put

$$
\begin{gathered}
S_{i}=S \cap K_{i} \\
V_{L}^{i}=\left[V_{L}, K_{i}\right] \\
Z_{i}=C_{V_{L}^{i}}\left(S_{i}\right)=C_{V_{L}^{i}}\left(S_{0}\right)
\end{gathered}
$$

and

$$
Z_{0}=Z_{1} \ldots Z_{s}=C_{V_{L}}\left(S_{0}\right)
$$

We begin by showing that \bar{W} is not contained in the base group \bar{B}.
Lemma 3.2. Suppose that \bar{L} is either properly wreathed, or $q=p^{a}$ (where p divides a) and some element of $\overline{L^{\circ}}$ induces a non-trivial field automorphism on $O^{p}\left(\overline{L^{\circ}}\right) \cong \mathrm{SL}_{2}(q)$. Then W is not contained in S_{0}. In particular, if \bar{L} is properly wreathed with $q=s=2$, then \bar{Q} is not cyclic of order 4 .

Proof. Set $F=\bigcap_{g \in D} C_{Q}\left(V_{L}\right)^{g}$.
Suppose that W is contained in S_{0}. As \bar{Q} normalizes \bar{W} and acts transitively on \mathcal{K} when \bar{L} is properly wreathed and, as V_{L} is the natural $\mathrm{SL}_{2}(q)-$ module when $s=1$, and field automorphisms are present, the structure of V_{L} yields

$$
\left[V_{L}, S_{0}\right]=\left[V_{L}, W\right]=C_{V_{L}}(W)=Z_{0}
$$

Suppose that $g \in D$. Then using Lemma 3.1(ii) and $\left(V_{L}\right)^{g}=V_{L^{g}}$ yields
(3.2.1) $\left[Z_{0},\left[V_{L^{g}}, Q\right]\right] \leq\left[Z_{0}, W\right]=1$.

We also remark that as $W \leq Q, Z_{0} \leq\left[V_{L}, Q\right] \leq W=W^{g} \leq S_{0}^{g}$ and $Z_{0} \leq Z(W)$. In particular, as S_{0}^{g} normalizes every element of \mathcal{K}^{g}, so does Z_{0}. Therefore, for $1 \leq i \leq s, Z_{0}$ also normalizes each K_{i}^{g} and so also $\left[Y_{L}^{g}, K_{i}^{g}\right]=$ $\left(V_{L}^{i}\right)^{g}$.

If $s=1$ and we have field automorphisms in $\overline{L^{\circ}}$, then $\left[V_{L}, Q\right]>Z_{0}$ and so (3.2.1) provides $Z_{0} \leq C_{Q}\left(\left[V_{L^{g}}, Q\right]\right)=C_{Q}\left(V_{L^{g}}\right)$. Thus

$$
\left[V_{L}, W\right]=Z_{0} \leq F
$$

in this case.
We will show that the same holds in the properly wreathed case. Because Q acts transitively on \mathcal{K}^{g},

$$
V_{L^{g}}=V_{L^{g}}^{1}\left[V_{L^{g}}, Q\right]=V_{L^{g}}^{2}\left[V_{L^{g}}, Q\right]
$$

As $\left[Z_{0},\left[V_{L^{g}}, Q\right]\right]=1$ by (3.2.1),

$$
\begin{aligned}
{\left[V_{L^{g}}, Z_{0}\right] } & =\left[V_{L^{g}}^{1}\left[V_{L^{g}}, Q\right], Z_{0}\right] \cap\left[V_{L^{g}}^{2}\left[V_{L^{g}}, Q\right], Z_{0}\right] \\
& =\left[V_{L^{g}}^{1}, Z_{0}\right] \cap\left[V_{L^{g}}^{2}, Z_{0}\right] \leq V_{L^{g}}^{1} \cap V_{L^{g}}^{2}=1
\end{aligned}
$$

Hence $Z_{0} \leq C_{Q}\left(V_{L^{g}}\right)$ and this implies that

$$
\left[V_{L}, W\right]=Z_{0} \leq F
$$

in the properly wreathed case too. Therefore,

$$
\begin{aligned}
{\left[Q, V_{L}\right] } & \leq W \\
{\left[W, V_{L}\right] } & =Z_{0} \leq F \cap W \\
{\left[F \cap W, V_{L}\right] } & =1
\end{aligned}
$$

Hence V_{L} stabilizes the normal series $Q \geq W \geq W \cap F \geq 1$ in D and so $V_{L} \leq O_{p}(D)$. But then $\left\langle V_{L}^{D}\right\rangle$ is a p-group contrary to Lemma 3.1 (i). We conclude that $W \nsubseteq S_{0}$ as claimed.

If $q=s=2$ and \bar{Q} is cyclic of order four, then, as \bar{W} is generated by involutions, $\bar{W}=\bar{Q} \cap \bar{S}_{0}$, a contradiction. Thus \bar{Q} is not cyclic of order 4 in this case.

We now reduce the properly wreathed case to one specific configuration which will be handled in detail in Section 4.

Proposition 3.3. Assume that \bar{L} is properly wreathed and unambiguous. Then $|\mathcal{K}|=2, q=2$, and \bar{W} permutes \mathcal{K} transitively by conjugation. Furthermore, $\bar{Q}=\bar{S} \cong \operatorname{Dih}(8), \overline{L^{\circ}} \cong \mathrm{O}_{4}^{+}(2)$ and $Y_{L}=V_{L}$ is the natural $\mathrm{O}_{4}^{+}(2)-$ module.

Proof. Since Q permutes \mathcal{K} transitively by conjugation and S_{0} normalizes Q, we have
(i) $\overline{Q \cap S_{0}}$ contains $\left[\bar{Q}, \overline{S_{0}}\right]$;
(ii) $\left|\overline{S_{0}}: \bar{Q} \cap S_{0}\right| \leq\left|\overline{S_{0}}:\left[\bar{Q}, \bar{S}_{0}\right]\right| \leq q$; and
(iii) $\overline{\left[Q, S_{0}\right]} C_{\bar{L}}\left(\overline{K_{i}}\right) / C_{\bar{L}}\left(\overline{K_{i}}\right) \in \operatorname{Syl}_{p}\left(\overline{K_{i}} C_{\bar{L}}\left(\overline{K_{i}}\right) / C_{\bar{L}}\left(\overline{K_{i}}\right)\right)$.

As $W=\left\langle V_{L^{g}} \cap Q \mid g \in D\right\rangle$, Lemma 3.2 implies there exists $g \in D$ such that $V_{L^{g}} \cap Q \notin S_{0}$. We fix this g.

(3.3.2) We have $\overline{V_{L^{g}} \cap Q} \cap \overline{S_{0}} \neq 1$.

Suppose that $\overline{V_{L^{g}} \cap Q} \cap \overline{S_{0}}=1$. Then, as $\overline{Q \cap S_{0}}$ and $\overline{V_{L^{g}} \cap Q}$ normalize each other, $\overline{V_{L^{g}} \cap Q}$ centralizes $\overline{Q \cap S_{0}}$. If $\overline{V_{L^{g}} \cap Q}$ normalizes some $\overline{K_{i}} \in \mathcal{K}$, then, as \bar{Q} acts transitively on \mathcal{K} and normalizes $\overline{V_{L^{g}} \cap Q}, \overline{V_{L^{g}} \cap Q}$ normalizes every member of \mathcal{K}. As $\overline{V_{L^{g}} \cap Q}$ centralizes $\overline{\left[Q, S_{0}\right]}$, (3.3.1) (iii) implies that

$$
\overline{V_{L^{g}} \cap Q} \leq \overline{\left[Q, S_{0}\right]} C_{\bar{L}}\left(\overline{K_{i}}\right) .
$$

Since Q acts transitively on \mathcal{K}, this is true for each $\overline{K_{i}} \in \mathcal{K}$. Thus

$$
\overline{V_{L^{g}} \cap Q} \leq \bigcap_{i=1}^{s} \overline{\left[Q, S_{0}\right]} C_{\bar{L}}\left(\overline{K_{i}}\right)=\bigcap_{i=1}^{s} \overline{S_{i}} C_{\bar{L}}\left(\overline{K_{i}}\right)=\overline{S_{0}},
$$

which contradicts the choice of $g \in D$.
Hence $\overline{V_{L^{g}} \cap Q}$ does not normalize any member of \mathcal{K}. As \bar{B} is a direct product we calculate that $C_{\bar{S}_{0}}\left(\overline{V_{L^{g}} \cap Q}\right)$ has index at least q^{p-1} in $\overline{S_{0}}$. However (3.3.1) (ii) states that $\bar{Q} \cap S_{0}$ has index at most q in $\overline{S_{0}}$ and, as this subgroup is centralized by $\overline{V_{L^{g}} \cap Q}$, we deduce that

$$
p=2
$$

Furthermore, as $\overline{V_{L^{g}} \cap Q}$ does not normalize any member of \mathcal{K}, if $s>2$, we have $C_{\bar{S}_{0}}\left(\overline{V_{L^{g}} \cap Q}\right)$ has index at least q^{2} in $\overline{S_{0}}$, and so we must have

$$
s=2 .
$$

Since $\overline{V_{L^{g}} \cap Q}$ centralizes $\left[\overline{S_{0}}, \bar{Q}\right]$ by (3.3.1)(iii), no element in $\overline{V_{L^{g}} \cap Q}$ can act as a non-trivial field automorphism on $\overline{K_{1}}$ and so we infer from $\overline{V_{L^{g}} \cap Q} \cap \overline{S_{0}}=1$, that $\left|\overline{V_{L^{g}} \cap Q}\right|=2$. In particular, $\left|C_{V_{L}}\left(V_{L^{g}} \cap Q\right)\right|=q^{2}$ as $V_{L^{g}} \cap Q$ exchanges V_{L}^{1} and V_{L}^{2}.

We know that $\left|V_{L^{g}}\right|=q^{4}$. As $\left|\left[V_{L^{g}}, Q\right]\right| \geq q^{3}$, we have

$$
\left|V_{L^{g}}: V_{L^{g}} \cap Q\right| \leq q,
$$

and we have just determined that

$$
\left|V_{L^{g}} \cap Q: V_{L^{g}} \cap Q \cap C_{G}\left(V_{L}\right)\right|=\left|\overline{V_{L^{g}} \cap Q}\right|=2 .
$$

Hence $V_{L^{g}} \cap Q \cap C_{G}\left(V_{L}\right)$ has order at least $2^{3 a-1}$, where $q=2^{a}$.
Assume that $a \neq 1$. Then, as $V_{L^{g}}^{1}$ has order q^{2},

$$
V_{L^{g}} \cap Q \cap C_{G}\left(V_{L}\right) \cap V_{L^{g}}^{1} \neq 1 .
$$

It follows that $V_{L} \cap Q$ normalizes both K_{1}^{g} and K_{2}^{g}. As $\left(V_{L} \cap Q\right) C_{L^{g}}\left(V_{L^{g}}\right) / C_{L^{g}}\left(V_{L^{g}}\right)$ is normalized by Q and Q permutes $\left\{K_{1}^{g}, K_{2}^{g}\right\}$ transitively, $\left(V_{L} \cap Q\right) C_{L^{g}}\left(V_{L^{g}}\right) / C_{L^{g}}\left(V_{L^{g}}\right)$ does not centralize $K_{i}^{g} / C_{L^{g}}\left(V_{L^{g}}\right)$ for $i=1,2$. Thus $\left|C_{V_{L g}^{i}}\left(V_{L} \cap Q\right)\right| \leq q$ for $i=1,2$. But then

$$
2^{3 a-1} \leq\left|V_{L^{g}} \cap Q \cap C_{G}\left(V_{L}\right)\right| \leq\left|C_{V_{L} g}\left(V_{L} \cap Q\right)\right| \leq 2^{2 a}
$$

which contradicts $a \neq 1$. We conclude that $q=s=2$ and $\left|\overline{V_{L^{g}} \cap Q}\right|=2$. Furthermore, $\overline{V_{L^{g}} \cap Q}$ is centralized by \bar{Q} and so \bar{Q} is elementary abelian of order 4. It follows that $\overline{L^{\circ}} \cong \Omega_{4}^{+}(2)$ and V_{L} is the natural module. Hence L
is ambiguous and we conclude that $\overline{V_{L^{g}} \cap Q} \cap \overline{S_{0}} \neq 1$.
(3.3.3) We have $\left|C_{V_{L}}\left(V_{L^{g}} \cap Q\right)\right| \leq q^{s / p}$.

We know $\overline{V_{L^{g}} \cap Q} \not \leq \overline{S_{0}}$ and $\overline{V_{L^{g}} \cap Q} \cap \bar{S}_{0} \neq 1$ by (3.3.2). As $\overline{V_{L^{g}} \cap Q}$ is normalized by $\bar{Q}, \overline{V_{L^{g}} \cap Q} \cap \bar{S}_{0} \neq 1$ implies that

$$
C_{V_{L}}\left(\overline{V_{L^{g}} \cap Q}\right)=C_{Z_{0}}\left(\overline{V_{L^{g}} \cap Q}\right) .
$$

If some element $d \in V_{L^{g}} \cap Q$ induces a non-trivial field automorphism on \bar{K}_{i} for some $\overline{K_{i}} \in \mathcal{K}$, then $C_{V_{L}^{i}}\left(V_{L^{g}} \cap Q\right) \leq C_{Z_{i}}(d)$ has order $q^{1 / p}$ and the result follows by transitivity of \bar{Q} on \mathcal{K}. On the other hand, if $d \in V_{L^{g}} \cap Q$ has an orbit of length p on \mathcal{K}, then $C_{\left\langle\left(V_{L}^{1}\right)^{\langle d\rangle}\right\rangle}\left(V_{L^{g}} \cap Q\right) \leq C_{\left\langle Z_{1}^{(d)}\right\rangle}(d)$ which has order q. Using the transitivity of Q on \mathcal{K}, we deduce $\left|C_{V_{L}}\left(V_{L^{g}} \cap Q\right)\right| \leq q^{s / p}$. This proves the result.

As Q acts transitively on the $\left\{V_{i} \mid 1 \leq i \leq s\right\}$, we have $V_{L}=\left[V_{L}, Q\right] V_{1}$. By (3.3.2) $\bar{Q} \cap \overline{S_{0}} \neq 1$ and so $\left|\left[V_{1}, Q\right]\right| \geq q$. In particular

$$
\left|V_{L}:\left[V_{L}, Q\right]\right| \leq q
$$

Since $V_{L} \cap Q \cap C_{L^{g}}\left(V_{L^{g}}\right) \leq C_{V_{L}}\left(V_{L^{g}} \cap Q\right)$, (3.3.3) and $\left|V_{L}\right|=q^{2 s}$ together give

$$
\left|\left(V_{L} \cap Q\right) C_{L^{g}}\left(V_{L^{g}}\right) / C_{L^{g}}\left(V_{L^{g}}\right)\right| \geq q^{2 s-1-s / p}
$$

On the other hand, by Lemma 2.9 the p-rank of \bar{L} is as where $q=p^{a}$. Hence

$$
s \geq 2 s-1-s / p
$$

and so

$$
s=p=2
$$

In particular, Lemma 2.9 implies
(3.3.4) $\left|\left(V_{L} \cap Q\right) C_{L^{g}}\left(V_{L^{g}}\right) / C_{L^{g}}\left(V_{L^{g}}\right)\right|=q^{2}=2^{2 a}$.

Assume that $q>2$. Since S^{g} / S_{0}^{g} has 2-rank 2 and $V_{L} \cap Q$ is elementary abelian, $\left(V_{L} \cap Q \cap S_{0}^{g}\right) C_{L^{g}}\left(V_{L^{g}}\right) / C_{L^{g}}\left(V_{L^{g}}\right)$ has rank at least $2 a-2 \neq 1$. Since $V_{L} \cap Q \cap S_{0}^{g}$ is normalized by Q and Q permutes $\left\{K_{1}^{g}, K_{2}^{g}\right\}$ transitively, $V_{L} \cap Q \cap S_{0}^{g}$ contains an element which projects non-trivially on to both $S_{1}^{g} C_{L^{g}}\left(V_{L^{g}}\right) / C_{L^{g}}\left(V_{L^{g}}\right)$ and $S_{2}^{g} C_{L^{g}}\left(V_{L^{g}}\right) / C_{L^{g}}\left(V_{L^{g}}\right)$. Thus $V_{L} \geq\left[V_{L} \cap\right.$ $\left.Q,\left[V_{L^{g}}, Q\right]\right] \geq Z_{0}^{g}$. But then, using (3.3.3) yields the contradiction

$$
q^{2}=\left|Z_{0}^{g}\right| \leq\left|C_{V_{L}}\left(V_{L^{g}} \cap Q\right)\right| \leq q .
$$

Thus $q=s=2$. It follows from Lemma 3.2 that W is transitive on \mathcal{K} and $\bar{Q} \cong \operatorname{Dih}(8)$ or \bar{Q} is elementary abelian of order 4 . The second possibility gives $\overline{L^{\circ}} \cong \Omega_{4}^{+}(2)$, which is ambiguous. This proves Proposition 3.3.

Next we deal with the case $s=1$.
Proposition 3.4. Suppose that $O^{p}\left(\overline{L^{0}}\right) \cong \mathrm{SL}_{2}(q)$ where $q=p^{a}=r^{p}, V_{L}=$ Y_{L} is the natural $O^{p}\left(\overline{L^{\circ}}\right)$-module and that some element of $\overline{L^{\circ}}$ induces a non-trivial field automorphism on $O^{p}\left(\overline{L^{\circ}}\right)$. Then $p=2=r$.

Proof. We may assume that $r^{p}>4$. By Lemma 3.2 we have that $W \not \leq S_{0}$ and, as W is generated by elements of order p, we have that $\left|S_{0} W: S_{0}\right|=p$. As Q is normal in $S, 1 \neq \bar{Q} \cap \bar{S}_{0}$, so $Z_{0} \leq Q \cap Y_{L}$. Furthermore, as \bar{Q} contains elements which act as field automorphisms on $O^{p}\left(\overline{L^{\circ}}\right)$,

$$
\left|V_{L} \cap Q: Z_{0}\right| \geq\left|\left[V_{L}, Q\right]: Z_{0}\right| \geq r^{p-1}>p
$$

by assumption. Thus no element in $S \backslash Q_{L}$ centralizes a subgroup of index p in $V_{L} \cap Q$.

Set $W_{1}=\left\langle Z_{0}^{D}\right\rangle$. As Z_{0} centralizes $W \cap S_{0}$, every element of Z_{0} centralizes a subgroup of index at most p in W. As W_{1} is generated by conjugates of Z_{0}, and these conjugates all contain elements which centralize a subgroup of index at most p in W, W_{1} is generated by elements which centralize a subgroup of index at most p in $V_{L} \cap Q$. As no element in $S \backslash Q_{L}$ has this property, we conclude that $W_{1} \leq Q_{L}$. Hence $\left[V_{L}, W_{1}\right]=1$. In particular $\left[V_{L} \cap Q, W_{1}\right]=1$ and so also $\left[W, Z_{0}\right]=\left[W, W_{1}\right]=1$. This shows $W \leq S_{0}$ and contradicts Lemma 3.2.

We collect the results of this section in the following proposition:
Proposition 3.5. Suppose that $L \in \mathcal{L}_{G}(S), L \not \leq N_{G}(Q), V_{L} \not \leq Q$ and L is in the unambiguous wreath product case. Then one of the following holds:
(i) $\overline{L^{\circ}} \cong \mathrm{O}_{4}^{+}(2), \bar{Q}=\bar{S} \cong \operatorname{Dih}(8)$ and $Y_{L}=V_{L}$ is the natural module.
(ii) $\overline{L^{\circ}} \cong \Gamma \mathrm{SL}_{2}(4), V_{L}$ is the natural $\mathrm{SL}_{2}(4)$-module and $\left|Y_{L}: V_{L}\right| \leq 2$.
(iii) $\overline{L^{\circ}} \cong \mathrm{SL}_{2}(4), V_{L}$ is the natural module and $\left|Y_{L}: V_{L}\right|=2$.

Proof. If $|\mathcal{K}|>1$, then (i) holds by Proposition 3.3, so we may assume that $|\mathcal{K}|=1$. As L is unambiguous, either $Y_{L} \neq V_{L}$ or $\overline{L^{\circ}} \not \approx \mathrm{SL}_{2}(q)$. If $Y_{L} \neq V_{L}$, then by definition of the wreath product case, (ii) or (iii) holds. So we may assume $Y_{L}=V_{L}$ and $\overline{L^{\circ}} \neq \mathrm{SL}_{2}(q)$. Now (ii) holds by Proposition 3.4.

$$
\text { 4. } \overline{L^{\circ}} \cong \mathrm{O}_{4}^{+}(2)
$$

In this section we analyse the configuration from Proposition 3.5(i). We prove

Proposition 4.1. Suppose that $L \in \mathcal{L}_{G}(S), L \not \leq N_{G}(Q)$ and L in the unambiguous wreath product case. If $Y_{L} \not \leq Q$ and $\overline{L^{\circ}} \cong \mathrm{O}_{4}^{+}(2)$, then $G \cong$ $\operatorname{Sym}(8)$, $\operatorname{Sym}(9)$ or $\operatorname{Alt}(10)$.

Proof. By Proposition 3.5 we have $\bar{Q} \cong \operatorname{Dih}(8)$. Since Y_{L} is the natural $\mathrm{O}_{4}^{+}(2)$-module for $L / C_{L}\left(Y_{L}\right)$ and V_{L} is also the wreath product module for $L / C_{L}\left(Y_{L}\right)$ with respect to $\left\{\overline{K_{1}}, \overline{K_{2}}\right\}$, we have the following well known facts.
(i) $\left|\left[Y_{L}, Q\right]\right|=2^{3},\left|\left[Y_{L}, Q, Q\right]\right|=2^{2}$ and $C_{Y_{L}}(Q)=\left[Y_{L}, Q, Q, Q\right]$ has order 2.
(ii) $\left[Y_{L}, S_{0}\right]=C_{Y_{L}}\left(S_{0}\right)$ has order 2^{2};
(iii) $\left|\left[Y_{L}, Q^{\prime}\right]\right|=2^{2}$;
(iv) $C_{L}\left(\left[Y_{L}, Q\right]\right) \leq C_{L}\left(Y_{L}\right)$.

Our first aim is to prove
(4.1.2) \bar{W} is elementary abelian of order $2^{2},\left[Y_{L}, W\right]=\left[Y_{L}, Q\right]=Y_{L} \cap Q$ and $\left[Y_{L}, W, W\right]=C_{Y_{L}}(W)=C_{Y_{L}}(Q)=Z$.

Applying Lemma 3.1, we consider $x \in D$ such that $Y_{L^{x}} \cap Q \npreceq C_{L}\left(Y_{L}\right)$. Then $Y_{L^{x}} \cap Q$ is normalized by Q and so

$$
\overline{Y_{L^{x}} \cap Q} \text { contains a 2-central involution in } \bar{Q} .
$$

In particular, (4.1.1)(iii) gives

$$
\left|\left[Y_{L}, Y_{L^{x}} \cap Q\right]\right| \geq 2^{2} .
$$

As Y_{L} is elementary abelian, $\overline{Y_{L^{x}} \cap Q}$ is elementary abelian.
Suppose that $\left[Y_{L}, Y_{L^{x}} \cap Q, Y_{L^{x}} \cap Q\right]=1$. Then

$$
\left[Y_{L}, Y_{L^{x}} \cap Q\right] \leq C_{S^{x}}\left(\left[Y_{L^{x}}, Q\right]\right)=Q_{L^{x}}
$$

by (4.1.1) (iv). Hence $\left[Y_{L}, Y_{L^{x}} \cap Q, Y_{L^{x}}\right]=1$. Then as $\left|\left[Y_{L}, Y_{L^{x}} \cap Q\right]\right|=2^{2}$ and $\left|Y_{L} \cap Q\right|=2^{3}$, we conclude that $\left(Y_{L} \cap Q\right) C_{L^{x}}\left(Y_{L^{x}}\right) / C_{L^{x}}\left(Y_{L^{x}}\right)$ has order 2. Thus $\left[Y_{L^{x}}, Y_{L} \cap Q, Y_{L} \cap Q\right]=1$. Now the argument just presented implies that $\left|\overline{Y_{L^{x}} \cap Q}\right|=2$ and so, as Q normalizes $Y_{L^{x}} \cap Q, \overline{Y_{L^{x}} \cap Q}=Z(\bar{Q})$. In particular, as $\left[Y_{L}, S_{0}, S_{0}\right]=1$, we have proved that

$$
\text { if } \overline{Y_{L^{x}} \cap Q} \leq \overline{S_{0}} \text {, then } \overline{Y_{L^{x}} \cap Q}=Z(\bar{Q}) \text {. }
$$

For a moment let $\overline{Q_{1}}$ be the fours subgroups of \bar{Q} not equal to $\overline{S_{0}}$. Then as $\Phi\left(Y_{L^{x}} \cap Q\right)=1$ the displayed line implies that $\bar{W} \leq \overline{Q_{1}}$ and Lemma 3.2 and $\bar{Q}^{\prime} \leq \overline{Y_{L^{x}} \cap Q}$ imply $\bar{W}=\overline{Q_{1}}$. The remaining statements in (4.1.2) now follow from the action of L on Y_{L}.

We have that $Z(Q)$ centralizes $\left[Y_{L}, Q\right]$ and so $Z(Q) \leq S \cap C_{L}\left(Y_{L}\right)=Q_{L}$. Hence using (4.1.2) we obtain

$$
\begin{aligned}
{[W, W] } & =\left[\left\langle\left[Y_{L}, Q\right]^{D}\right\rangle, W\right]=\left\langle\left[\left[Y_{L}, Q\right], W\right]^{D}\right\rangle \\
& =\left\langle Z^{D}\right\rangle=Z\left[Z,\left\langle V_{L}^{N_{G}(Q)}\right\rangle\right] \leq Z\left[Z(Q),\left\langle V_{L}^{N_{G}(Q)}\right\rangle\right] \\
& =Z\left\langle\left[Z(Q), V_{L}\right]^{N_{G}(Q)}\right\rangle=Z .
\end{aligned}
$$

(4.1.3) We have $Q_{L}=Y_{L}$.

Suppose that $Q_{L}>Y_{L}$. Let $m \in L$ be such that $\bar{K} \cong \mathrm{SL}_{2}(2) \times \mathrm{SL}_{2}(2)$, where $K=\left\langle W, W^{m}\right\rangle$. Recall that by the choice of L in the Notation at the end of the introduction, we have $Y_{L}=\Omega_{1}\left(Z\left(Q_{L}\right)\right)$ and by Proposition 3.5 and (4.1.2), K acts irreducibly on $Y_{L}=V_{L}$. Hence we may apply Lemma 2.11 (iii), (iv) and (v) which combined yield U_{L} / Y_{L} is elementary abelian and

$$
U_{L}^{\prime}=Y_{L} .
$$

Since $\left[Q_{L}, W, W\right] \leq[W, W]=Z \leq Y_{L}$, we have W acts quadratically on every chief factor of L in Q_{L} / Y_{L}. In particular, no non-central L-chief factor of Q_{L} / Y_{L} is isomorphic to Y_{L}.

Let E be the preimage of $C_{U_{L} / Y_{L}}(K)$. Then E is normal in L and application of Lemma 2.6 implies that $E=Y_{L}$. Let $X \in \operatorname{Syl}_{3}(K)$. By Lemma 2.11(i), $\left[K, C_{L}\left(Y_{L}\right)\right] \leq U_{L}$, so $X U_{L}$ is normal in L. As L is solvable, $C_{L}\left(Y_{L}\right)=$ $C_{X}\left(Y_{L}\right) Q_{L}$ and either $C_{X}\left(Y_{L}\right)=1$ or $X \cong 3_{+}^{1+2}$. The latter case is impossible as W is quadratic on U_{L} / Y_{L}. Hence $U_{L}=\left[U_{L}, O^{2}(L)\right]$ and U_{L} / Y_{L} contains no central L-chief factors. We know that every L-chief factor in
U_{L} / Y_{L} is a wreath product module for $\mathrm{SL}_{2}(2) \ell 2$ with \bar{W} acting quadratically. In particular, for every non-central chief factor F of L in U_{L} / Y_{L} we have $[F, \bar{W}]=[F, Z(\bar{Q})]$. Set $W_{1}=[W, D]$. Then

$$
\overline{W_{1}} \geq[\bar{W}, \bar{Q}]=Z(\bar{Q})
$$

Hence $[F, W]=\left[F, W_{1}\right]$ for every non-central chief factor F of L in U_{L} / Y_{L}. Set $\widetilde{L}=L / Y_{L}$ and let $z \in Q$ with $Z(\bar{Q})=\langle\bar{z}\rangle$. As $C_{F}(Z(\bar{Q}))=[F, Z(\bar{Q})]$ for each F, we have $C_{\widetilde{U}_{L}}(z)=\left[\widetilde{U_{L}}, z\right]$; then as W acts quadratically on $\widetilde{U_{L}}$, we have $\left[W, \widetilde{U_{L}}\right]=C_{\widetilde{U_{L}}}(W)$. Thus $\left[U_{L}, W\right] Y_{L}=\left[U_{L}, W_{1}\right] Y_{L}$. In particular,
$\left[W / W_{1}, U_{L}\right]=\left[U_{L}, W\right] W_{1} / W_{1}=\left(Y_{L} \cap Q\right)\left[U_{L}, W_{1}\right] W_{1} / W_{1}=\left(Y_{L} \cap Q\right) W_{1} / W_{1}$ and so U_{L} acts quadratically on W / W_{1}. Therefore $U_{L} C_{D}\left(W / W_{1}\right) / C_{D}\left(W / W_{1}\right)$ is elementary abelian. Hence

$$
Y_{L}=U_{L}^{\prime} \leq C_{D}\left(W / W_{1}\right)
$$

Set $R=\left\langle Y_{L}^{D}\right\rangle$. Then, as $Y_{L} \not \leq O_{2}(D)$ by Lemma 3.1 (i), $Y_{L} \cap O_{2}(D)=$ $Y_{L} \cap Q \leq W$ and so R centralizes $O_{2}(D) / W$ and W / W_{1}. Lemma 2.3 yields $Y_{L} \leq O_{2}(D)$ and this contradicts Lemma 3.1 (i). We have shown $Q_{L}=Y_{L}$.
(4.1.4) $|S|=2^{7}$ and $N_{G}(Q) / Q \cong \operatorname{Sym}(3)$.

Since $Q_{L}=Y_{L}=V_{L}$ and $\bar{Q} \cong \operatorname{Dih}(8),|S|=2^{7}$ and $|Q|=2^{6}$. Then $N_{G}(Q)=S X$, where X is a Hall 2^{\prime}-subgroup of $N_{G}(Q)$ and $Q X$ is normal in $N_{G}(Q)$. Furthermore W is extraspecial of order 2^{5}. As $W / Z=J(Q / Z)$, we have W is normal in $N_{G}(Q)$. Hence X acts faithfully on W and embeds in $\mathrm{O}_{4}^{+}(2)$. As $[\bar{W}, \bar{Q}]=Z(\bar{Q}), S / W$ is faithful on W / Z, so $N_{G}(Q) / W$ embeds into $\mathrm{O}_{4}^{+}(2)$. Because $\mathrm{O}_{4}^{+}(2) \cong \operatorname{Sym}(3) \imath 2$, and $O_{2}\left(N_{G}(Q) / W\right) \neq 1$, we get the claim.

Taking $T \in \operatorname{Syl}_{3}(L)$, we have $N_{L}(T)$ is a complement to Q_{L} and so $L=$ $Q_{L} N_{L}(T)$ is a split extension of Q_{L} by $\mathrm{O}_{4}^{+}(2)$. In particular, the isomorphism type of S is uniquely determined. As $\operatorname{Sym}(8)$ has a subgroup isomorphic to L and $\operatorname{Sym}(8)$ has odd index in $\operatorname{Alt}(10)$, we have S is isomorphic to a Sylow 2-subgroup of Alt(10).

Let $z \in C_{Y_{L}}(Q)^{\#}$, then as Y_{L} is a +-type space for L, there is a fours group A of Y_{L} which has all non-trivial elements L-conjugate to z. Since $C_{G}(z)$ has characteristic $2, C_{O(G)}(z)=1$ and so by coprime action

$$
O(G)=\left\langle C_{O(G)}(a) \mid a \in A^{\#}\right\rangle=1
$$

Assume that G has no subgroup of index two. Then S is isomorphic to a Sylow 2-subgroup of Alt(10). Therefore [Mas, Theorem 3.15] implies that $F^{*}(G) \cong \operatorname{Alt}(10), \operatorname{Alt}(11), \mathrm{PSL}_{4}(r), r \equiv 3(\bmod 4)$, or $\mathrm{PSU}_{4}(r), r \equiv$ $1(\bmod 4)$. Notice that $Z(Q)=C_{Y_{L}}(Q)=\langle z\rangle$ and so $C_{G}(z)=N_{G}(Q)$ has characteristic 2. In Alt(11), z corresponds to (12)(34)(56)(78) and so $C_{G}(z) \leq\left(\operatorname{Alt}(8) \times Z_{3}\right): 2$, which implies that $C_{G}(z)$ is not of characteristic 2. In the linear and unitary groups $C_{G}(z)$ has a normal subgroup isomorphic to $\mathrm{SL}_{2}(r) \circ \mathrm{SL}_{2}(r)$, and this contradicts (4.1.4). Hence $G \cong \operatorname{Alt}(10)$.

Assume now that G has a subgroup of index two. As $V_{L} \leq G^{\prime}$ we also have $W \leq G^{\prime}$. Therefore $\left(G^{\prime} \cap L\right) / Y_{L} \cong \Omega_{4}^{+}(2)$ and so G^{\prime} has Sylow 2subgroups isomorphic to those of Alt(8). Applying [GH, Corollary A*] we have $F^{*}(G) \cong \operatorname{Alt}(8)$, Alt (9) or $\mathrm{PSp}_{4}(3)$. Again in $G^{\prime} \cong \mathrm{PSp}_{4}(3)$, we have that G^{\prime} contains a subgroup of shape $\mathrm{SL}_{2}(3) \circ \mathrm{SL}_{2}(3)$. This contradicts (4.1.4) and proves the proposition.

$$
\text { 5. } \overline{L^{\circ}} \cong \Gamma \mathrm{SL}_{2}(4)
$$

In this section we attend to the case from Proposition 3.5(ii). Hence we have $p=2, \overline{L^{\circ}} \cong \Gamma \mathrm{SL}_{2}(4), V_{L}$ is the natural $\mathrm{SL}_{2}(4)$-module and either $Y_{L}=V_{L}$ or $\left|Y_{L} / V_{L}\right|=2$. Notice that as $L \not \leq N_{G}(Q)$ and L centralizes Y_{L} / V_{L}, if $Y_{L}>V_{L}, Y_{L}$ does not split over V_{L} and $C_{Y_{L}}(Q)=C_{V_{L}}(Q)$ has order 2. Furthermore, $C_{S}\left(\left[Y_{L}, Q\right]\right)=Q_{L}$.

Our aim is to prove
Proposition 5.1. Suppose $L \in \mathcal{L}_{G}(S)$ and $L \not \leq N_{G}(Q)$ with \bar{L} in the unambiguous wreath product case. If $Y_{L} \not \leq Q$ and $\overline{L^{\circ}} \cong \Gamma \mathrm{SL}_{2}(4)$, then $G \cong \operatorname{Mat}(22)$ or $\operatorname{Aut}(\operatorname{Mat}(22))$.

Notice that as $Q_{L} \in \operatorname{Syl}_{2}\left(C_{L}\left(Y_{L}\right)\right), C_{L}\left(Y_{L}\right) / Q_{L}$ is centralized by L°, and so $C_{L^{\circ}}\left(Y_{L}\right)=Q_{L} \cap L^{\circ}$ as the Schur multiplier of $\mathrm{SL}_{2}(4)$ has order 2. We also have $|\bar{Q}| \geq 4$ and $\left|Z(Q) \cap V_{L}\right|=2$.

Lemma 5.2. For $N=N_{G}\left(Q_{L}\right)$ we have $\left(Z(Q) \cap V_{L}\right)^{N} \cap Y_{L} \subseteq V_{L}$. In particular, N normalizes V_{L}.

Proof. If $V_{L}=Y_{L}$, there is nothing to prove. Assume that $\left|Y_{L}: V_{L}\right|=2$. Choose $g \in N$, put $U=\left(Z(Q) \cap V_{L}\right)^{g}$ and assume that $U \not \leq V_{L}$. Recall that $Y_{L}=\Omega_{1}\left(Z\left(Q_{L}\right)\right)$ and so $U \leq Y_{L}$ and Y_{L} is normalized by N. Then $C_{L}(U) C_{N}\left(Y_{L}\right) / C_{N}\left(Y_{L}\right) \cong 5: 4$ or $2 \times \operatorname{Sym}(3)$. As $C_{N}\left(U^{g^{-1}}\right)$ normalizes $Q \cap Y_{L}, C_{N}\left(U^{g^{-1}}\right)$ is not irreducible on $Y_{L} / U^{g^{-1}}$. This excludes the possibility $C_{L}(U) C_{N}\left(Y_{L}\right) / C_{N}\left(Y_{L}\right) \cong 5: 4$ which is irreducible on Y_{L} / U. Hence we see that $Z(Q) \cap V_{L}$ has exactly $15+10=25$ conjugates under N, but 25 does not divide the order of $\mathrm{SL}_{5}(2)=\operatorname{Aut}\left(Y_{L}\right)$. This contradiction proves the lemma.

Lemma 5.3. We have $Q_{L}=Y_{L}$ and either
(i) $|S|=2^{7}, L / Q_{L} \cong \Gamma \mathrm{SL}_{2}(4), N_{G}(Q) / Q \cong \mathrm{SL}_{2}(2)$, there exists a subgroup $E \leq S$ of order 2^{4} which is normalized by $N_{G}(Q)$ such that $N_{G}(E) / E \cong \operatorname{Alt}(6)$ and $N_{L}(E)$ has index 5 in L. Furthermore all the involutions in $\left\langle N_{G}(E), L\right\rangle$ are conjugate.
(ii) G has a subgroup of index 2 which satisfies the conditions in (i).

Proof. We have $\bar{S} \cong \operatorname{Dih}(8)$ and $\bar{Q} \not \leq \bar{S}_{0}$ as $\overline{L^{\circ}} \cong \operatorname{\Gamma SL}_{2}(4)$. Lemma 3.2 implies that $\bar{W} \not \leq \overline{S_{0}}$. By assumption, we either have $Y_{L}=V_{L}$ or $\left|Y_{L}: V_{L}\right|=$ 2. In particular, $2^{4} \leq\left|Y_{L}\right| \leq 2^{5}$. Since \bar{Q} is normal in \bar{S} and contains \bar{W} we know
(5.3.1) Either \bar{Q} is elementary abelian of order 4 or $\bar{Q}=\bar{S}$

As V_{L} is a natural $\mathrm{SL}_{2}(4)$-module and $L \not \leq N_{G}(Q)$, we have $C_{Y_{L}}(Q)=$ $C_{Y_{L}}(S)$ has order 2 and $\left[Y_{L}, Q\right]=\left[V_{L}, Q\right]$ has order 8. Furthermore, as W
is normal in S and is not contained in S_{0}, we have $\left[Y_{L}, Q, W\right]=Z$ where $Z=C_{V_{L}}(S)$ has order 2 . Thus, arguing exactly as before (4.1.3) and in the proof of (4.1.2) we obtain
(5.3.2) $|\bar{W}|=4,[W, W]=Z$ and $\left[Q_{L}, W, W\right] \leq Y_{L}$.
(5.3.3) Assume that $Q_{L}>Y_{L}$. Then $\left[Q_{L}, O^{2}(L)\right] \not \subset Y_{L}$.

Suppose that $\left[Q_{L}, O^{2}(L)\right] \leq Y_{L}$. Then $V_{L} \not \leq \Phi\left(Q_{L}\right)$ by Burnside's Lemma [GLS2, Proposition 11.1], which contradicts Lemma 2.10(iii). This proves the claim

(5.3.4) If $V_{L}<Y_{L}$, then $\bar{Q}=\bar{S}$.

If \bar{Q} has order 4 , then $\bar{Q}=\bar{W}$ by (5.3.2), so \bar{Q} normalizes a Sylow 3-subgroup \bar{T} of \bar{L} and so Q normalizes $C_{Y_{L}}(T)$ which has order 2 and complements V_{L}. Hence $C_{Y_{L}}(T) \leq Z(Q)$, so $T \leq N_{G}(Q)$ and therefore $L=\langle T, S\rangle \leq N_{G}(Q)$, a contradiction. Thus $\bar{Q}=\bar{S}$ has order 8 .
(5.3.5) We have $Q_{L}=Y_{L}$.

Suppose false. By (5.3.2) W acts quadratically on Q_{L} / Y_{L} and $|\bar{W}|=4$. Also $\bar{W} \nsubseteq \overline{S_{0}}$, so Lemma 2.2 implies that the non-central L-chief factors in Q_{L} / Y_{L} are orthogonal modules for $\bar{L} \cong \mathrm{O}_{4}^{-}(2)$. In particular, as L-modules, the non-central L-chief factors of Q_{L} / Y_{L} are not isomorphic to V_{L}.

Choose $E \leq Q_{L}$ normal in L and minimal so that E / Y_{L} contains a noncentral L-chief factor and let F be the preimage of $C_{E / Y_{L}}\left(O^{2}(L)\right)$. Then $\left[F, O^{2}(L)\right] \leq Y_{L}$ and Lemma 2.6 applies to yield $F \leq Y_{L}$. In particular, $[E, E] \leq Y_{L}$.

We claim $E^{\prime} \leq V_{L}$. This is obviously the case if $V_{L}=Y_{L}$. So suppose that $\left|Y_{L}: V_{L}\right|=2$. If $E^{\prime} \not \leq V_{L}$. Then the minimal choice of E and $E^{\prime} V_{L}=Y_{L}$ implies that E / V_{L} is extraspecial of order 2^{5}. Notice that $[E, W] \leq W$ and W / Z is elementary abelian as $[W, W]=Z$ by (5.3.2). Hence, as $[E, W] Y_{L} / V_{L}$ has order 2^{3}, we infer that E / V_{L} has +-type contrary to $\bar{L} \cong \Gamma \mathrm{SL}_{2}(4)$. Hence E / V_{L} is elementary abelian. If $\left[Q_{L}, E\right]=V_{L}$, then E / V_{L} has order 2^{4} by Lemma 2.2 and so $Q_{L} / C_{Q_{L}}(E)$ embeds into

$$
\operatorname{Hom}_{L}\left(E / V_{L}, V_{L}\right) \cong\left(E / V_{L}\right)^{*} \otimes V_{L} \cong\left(E / V_{L}\right) \otimes V_{L}
$$

by Lemma 2.7. Since $Q_{L} / C_{Q_{L}}(E)$ involves only trivial and orthogonal modules this contradicts [Pr, Lemma 2.2].

Thus $\left[E, Q_{L}\right]=Y_{L}>V_{L}$.
By (5.3.4)

$$
\bar{Q}=\bar{S} \text { has order } 8 .
$$

In summary we now know $|\bar{W}|=4$ and $\overline{[W, Q]}=\overline{[W, S]}=Z(\bar{S})$.
We calculate using Z is normal in D by (5.3.2) that

$$
[W, Q, Q]=\left\langle\left[V_{L}, Q, Q, Q\right]^{D}\right\rangle=\left\langle Z^{D}\right\rangle=Z .
$$

Therefore

$$
[E,[W, Q], Q] \leq E \cap[[W, Q], Q] \leq Z \leq Y_{L} .
$$

As $\left|\left[Z(\bar{S}), E / Y_{L}\right]\right|=4$ and $\bar{Q}=\bar{S}$, this implies that $\left|C_{E / Y_{L}}(\bar{S})\right|=4$. As E / Y_{L} is the orthogonal $\mathrm{O}_{4}^{-}(2)$-module for L, this is impossible. We have proved the claim.
(5.3.6) Suppose that $Y_{L}=V_{L}$. Then L is a maximal 2-local subgroup of $G, N_{G}(Q) / Q \cong \mathrm{SL}_{2}(2)$, there exists a subgroup $E \leq S$ of order 2^{4} which is normalized by $N_{G}(Q)$ such that $N_{G}(E) / E \cong \operatorname{Alt}(6)$ and $N_{L}(E)$ has index 5 in L.
By (5.3.5) we have $|S|=2^{7}$, and $|\bar{W}|=2^{2}$. Also $\left|\left[W, Y_{L}\right]\right|=8$ and $Y_{L} \not 又 Q$, so $Q \cap Y_{L}=\left[W, Y_{L}\right]=W \cap Y_{L}$, Therefore $|W|=2^{5}$. Set $C=C_{Q}(W)$. Then C centralizes $\left[Y_{L}, Q\right]$ which has order 2^{3} and so $C \leq C_{L}\left(\left[Y_{L}, Q\right]\right)=Y_{L}$. Thus $C \leq C_{Y_{L}}(W)$ which has order 2. Then, by (5.3.2), $W^{\prime}=Z=C$ and, as W is generated by involutions, we have W is extraspecial. Since $\left[Y_{L}, Q\right] \leq W$, W has +-type.

Observe $W / Z=J(Q / Z)$, so W is normal in $N_{G}(Q)$ and $N_{G}(Q) / Z$ embeds into $\operatorname{Aut}(W) \cong 2^{4}: \mathrm{O}_{4}^{+}(2)$.

Assume that $Y_{L} Q / Q$ normalizes a subgroup T of $O_{3}\left(N_{G}(Q)\right) / Q$ which has fixed points on W / Z. Then $W=[W, T] C_{W}(T)$ and $[W, T] \cong C_{W}(T) \cong \mathrm{Q}_{8}$ and these subgroups are normalized by Y_{L}. But then

$$
\left[W, Y_{L}\right]=\left[C_{W}(T), Y_{L}\right]\left[W, T, Y_{L}\right]
$$

Since $\left[W, Y_{L}\right]$ is elementary abelian and $\Omega_{1}(P)=Z(P)$ for $P \cong \mathrm{Q}_{8}$, we conclude that

$$
\left[C_{W}(T), Y_{L}\right]=\left[W, T, Y_{L}\right]=Z
$$

and then $\left[W, Y_{L}\right]$ has order 2 which is nonsense as Y_{L} is the natural module. Therefore Y_{L} normalizes no such subgroup.

Let $F=O_{2,3}\left(N_{G}(Q)\right)$. Assume that $|F / Q|=9$. Then the previous argument implies that $C_{F / Q}\left(Y_{L}\right) \neq 1$. Let T_{1} be the preimage of this subgroup. Then $\left[Y_{L}, Q\right]$ is normalized by T_{1}. Hence $Y_{L}=C_{Y_{L} Q}\left(\left[Y_{L}, Q\right]\right)$ is normalized by T_{1}. Using the fact that Q is weakly closed in any 2 -group which contains it, for $w \in Y_{L}^{\#}$, we let Q_{w} be the unique conjugate of Q in $O_{2}\left(C_{G}(w)\right)$. Then T_{1} permutes the elements of Y_{L} and so T_{1} normalizes $L^{\circ}=\left\langle Q_{w} \mid w \in Y_{L}^{\#}\right\rangle$. Since $L=L^{\circ} Y_{L}$, we have that T_{1} normalizes L. On the other hand, $W Y_{L}$ is normalized by T_{1} and, as T_{1} acts fixed-point freely on $W / Z, T_{1}$ acts transitively on $W Y_{L} / Y_{L} \cong W /\left[Y_{L}, Q\right] \cong 2^{2}$ and this is impossible as $W \cap O^{2}(L)$ is a maximal subgroup of W and is normalized by T_{1}.

Hence $|F / Q|=3, N_{G}(Q)=F S$ and $N_{G}(Q) / Q \cong \mathrm{SL}_{2}(2)$. In particular, $|Q|=2^{6}, S=Y_{L} Q$, and $F Y_{L} / W \cong 2 \times \mathrm{SL}_{2}(2)$. It follows that
$[W, Q]$ is elementary abelian of order 8.
et $E=C_{S}([W, Q])$. As W is normal in $N_{G}(Q)$, so is E. As $|S|=2^{7}$ and $\left|\mathrm{GL}_{3}(2)\right|_{2}=2^{3}$, we have $|E| \geq 2^{4}$. Since F acts fixed-point freely on W / Z (being normalized by Y_{L}), we have $E \leq Q$ and then E is normal in $N_{G}(Q)$. Since $E \cap W=[W, Q]$, we find $|E|=2^{4}$. Let $S \leq L_{1} \leq L$ be such that $L_{1} / Q_{L} \cong \operatorname{Sym}(4)$ has index 5 in L. Notice that $O_{2}\left(L_{1}\right)=S_{0}$. Then $E \leq C_{L}\left(\left[Y_{L}, Q, Q\right]\right)=Y_{L} S_{0}$. Also $Y_{L} \leq S_{0}$, so $S_{0}=Y_{L} S_{0}$. Therefore $E \leq S_{0}$. Now $E Y_{L} / Y_{L}$ acts as a Sylow 2-subgroup of $\mathrm{SL}_{2}(4)$ on the natural module. In particular for any involution $e \in E \backslash Y_{L}$ we have that $C_{Y_{L}}(e)=$
$E \cap Y_{L}$. This implies that all involutions in $E Y_{L}$ are contained in $Y_{L} \cup E$ and therefore E and Y_{L} are the only elementary abelian subgroups of S_{0} of order 2^{4}. In particular, L_{1} normalizes E. Now $N_{G}(E) \geq\left\langle L_{1}, N_{G}(Q)\right\rangle \in$ $\mathcal{L}_{G}(S)$. Notice that L_{1} has orbits of lengths 3 , and 12 on E and that $N_{G}(Q)$ does not preserve these orbits. Hence $N_{G}(E)$ acts transitively on $E^{\#}$. As $N_{G}(Q)=C_{G}(Z)$, we now have that $\left|N_{G}(E)\right|=15\left|N_{G}(Q)\right|=2^{7} \cdot 3^{2} \cdot 5$. We have that $X=N_{G}(E) / E$ is isomorphic to a subgroup of $\mathrm{GL}_{4}(2) \cong$ Alt(8) of order $2^{3} \cdot 3^{2} \cdot 5$. We consider the action of X on a set of size 8 . As Alt(8) has no subgroups of order $45, X$ is not transitive. Hence X is isomorphic to a subgroup of $\operatorname{Alt}(7), \operatorname{Sym}(6)$ or $X \cong(\operatorname{Alt}(5) \times 3): 2$. Suppose that $X \cong(\operatorname{Alt}(5) \times 3): 2$. As $N_{G}(Q) / Q \cong \operatorname{Sym}(4)$, we see that $E Q / E \leq$ Alt(5). Since E is the natural $\mathrm{SL}_{2}(4)$-module, we get that $|Z(Q)|=4$. But, by (5.3.2), $|Z(Q)|=2$. Hence we have one of the first two possibilities and then obviously $X=N_{G}(E) / E \cong \operatorname{Alt}(6)$.

We just have to show that L is a maximal 2-local subgroup. Let M be a 2-local subgroup with $L \leq M$. As $Q \leq M$, we have that M is of characteristic 2. Then $Y_{L}=Y_{M}$ and $C_{G}\left(Y_{L}\right)=Y_{L}$. As $\left|N_{G}(Q): S\right|=3$ and Y_{L} is not normal in $N_{G}(Q)$, we have $N_{M}(Q)=S=N_{L}(Q)$. As L acts transitively on $Y_{L}^{\#}$, we conclude $M=N_{M}(Q) L=N_{L}(Q) L=L$.
(5.3.7) If $Y_{L}=V_{L}$, then G has just one conjugacy class of involutions.

By (5.3.6) $N_{G}(E) / E \cong \operatorname{Alt}(6)$. As $Y_{L} \not \leq E$, there is an involution $y \in$ $Y_{L} \backslash E$. Now y inverts an element of order 5 in $N_{G}(E)$ and so $|[E, y]|=$ $\left|C_{E}(y)\right|=4$. This shows that all involutions in $E y$ are conjugate. As all involutions in S / E are conjugate in $\operatorname{Alt}(6)$ and all the involutions in Y_{L} are L-conjugate, this proves the claim.

We have now proved that (i) holds when $Y_{L}=V_{L}$.
(5.3.8) Suppose that $Y_{L}>V_{L}$. Then G has a subgroup of index 2.

We have that $|S|=2^{8}$. By (5.3.4) and (5.3.5), $S=Q Y_{L}$. We are going to show that $J(S)=Y_{L}$. For this let $A \leq S$ be elementary abelian of maximal order and assume that $A \neq Y_{L}$. Then $\left|A Y_{L} / Y_{L}\right| \leq 4$. As there are no transvections on V_{L}, we get $\left|A Y_{L} / Y_{L}\right|=4$ and we may assume that A acts quadratically on Y_{L} by [GLS2, Theorem 25.2]. As $W \not \leq S_{0}$ by Lemma 3.2 and $|\bar{W}|=4$ by (5.3.2), W does not act quadratically on $Y_{L}, A Y_{L} / Y_{L} \leq$ S_{0} / Y_{L} and $S_{0}=A Y_{L}$. Now $A \cap Y_{L}$ has order 8 and so $\left|C_{Y_{L}}\left(S_{0}\right)\right|=8$. But $\left(L^{\circ}\right)^{\prime}$ is generated by two conjugates of S_{0}, which gives $C_{Y_{L}}\left(L^{\circ}\right) \neq 1$ a contradiction to Lemma 2.10(i). Thus $Y_{L}=J(S)$ is the Thompson subgroup of S. In particular, $N_{G}\left(Y_{L}\right)$ controls G-fusion of elements in Y_{L}. As $S \in$ $\operatorname{Syl}_{2}(G)$ and $C_{S}\left(Y_{L}\right)=Q_{L}, Q_{L} \in \operatorname{Syl}_{2}\left(C_{G}\left(Y_{L}\right)\right)$ and we have $N_{G}\left(Y_{L}\right)=$ $C_{G}\left(Y_{L}\right) N_{N_{G}\left(Y_{L}\right)}\left(Q_{L}\right)$. By Lemma 5.2
V_{L} is normal in $N_{G}\left(Y_{L}\right)$.
Suppose that $O^{2}(L) \geq Y_{L}$. Then $O^{2}(L) / V_{L} \cong \mathrm{SL}_{2}(5)$ has quaternion Sylow 2-subgroups and $\left|L: O^{2}(L)\right|=2$. On the other hand, there exists $g \in$ $N_{G}(Q) \backslash N_{G}\left(Y_{L}\right)$ with $W Y_{L} \geq\left(Y_{L}^{g} \cap Q\right) Y_{L} \neq Y_{L}$ and $\left(Y_{L}^{g} \cap Q\right) V_{L} / V_{L}$ is elementary abelian, which is a contradiction. Therefore $O^{2}(L) / V_{L} \cong \mathrm{SL}_{2}(4)$
and, as W does not act quadratically on Y_{L}, we see that $\left|W: W \cap O^{2}(L)\right|=2$ and thus $O^{2}(L) W / V_{L} \cong \Gamma \mathrm{SL}_{2}(4)$. Hence L has a subgroup $L_{0}=O^{2}(L) W$ of index 2 with $Y_{L} \cap L_{0}=V_{L}$.

Let $T \in \operatorname{Syl}_{2}\left(L_{0}\right)$ and $w \in Y_{L} \backslash T$. Suppose that for some $x \in G, w^{x} \in T$ and $\left|C_{S}\left(w^{x}\right)\right| \geq\left|C_{S}(w)\right|$. As L° has orbits of length 6 and 10 on $Y_{L} \backslash V_{L}$, we may assume $\left|C_{S}\left(w^{x}\right)\right| \geq|S| / 2$. But then as V_{L} is the natural module, it does not admit transvections and so $w^{x} \in V_{L}$. As $N_{G}\left(Y_{L}\right)=N_{G}\left(V_{L}\right)$ and $N_{G}\left(Y_{L}\right)$ controls fusion in Y_{L}, this is not possible. Hence the supposed condition cannot hold. Application of [GLS2, Proposition 15.15], shows that G has a subgroup of index 2 . This proves (5.3.8).

Let G_{0} be a subgroup of G of index 2 , and set $Q_{0}=Q \cap G_{0}$. We have $V_{L} \leq L^{\circ} \leq G_{0}$. Hence $W=\left\langle\left[V_{L}, Q\right]^{D}\right\rangle \leq G_{0}$. In particular, $W \leq Q_{0}$ and so $Z\left(Q_{0}\right)=Z$ and Q_{0} is large in G_{0}. Set $L_{0}=O^{2}(L) Q_{0}=O^{2}(L) W$. Then $L_{0}^{\circ} / V_{L} \cong \Gamma \mathrm{SL}_{2}(4)$ and $Y_{L_{0}}=V_{L_{0}}=V_{L} \not \leq Q_{0}$. Thus $\left(G_{0}, L_{0}\right)$ satisfies the hypotheses of (i). This proves (ii) holds if $V_{L} \neq Y_{L}$.

Proof of Proposition 5.1: By Lemma 5.3 we just have to examine the structure in Lemma 5.3(i), so we may assume that Lemma 5.3(i) holds.

By Lemma 2.1

$$
N_{G}(E) \text { splits over } E .
$$

As $N_{G}(Q) \leq N_{G}(E)$, for a 2-central involution z we have that $C_{G}(z)$ is a split extension of E by $\operatorname{Sym}(4)$. As $O\left(C_{G}(z)\right)=1$ coprime action yields $O(G)=\left\langle C_{O(G)}(e) \mid e \in E^{\#}\right\rangle=1$. In particular $F(G)=1$ and $E(G) \neq 1$. Suppose that J^{*} is a non-trivial subnormal subgroup of G normalized by $\left\langle L, N_{G}(E)\right\rangle$. Then $S \cap J^{*} \neq 1$. Since $1 \neq J^{*} \cap N_{G}(E)$ is normal in $N_{G}(E)$ and $1 \neq J^{*} \cap L$ is normal in L, it follows that $J^{*} \cap N_{G}(E) \geq J^{*} \cap S \geq E Y_{L}$. Hence $J^{*} \geq\left\langle Y_{L}^{N_{G}(E)}\right\rangle=N_{G}(E) \geq S$ and $J^{*} \geq\left\langle S^{L}\right\rangle=L$. Therefore there is a unique non-trivial subnormal subgroup of G of minimal order normalized by $\left\langle L, N_{G}(E)\right\rangle$. It follows that $\left\langle L, N_{G}(E)\right\rangle$ is contained in a component J of G. Since $O(G)=1$ and $S \leq J, J=E(G)$. As J has just one conjugacy class of involutions by Lemma 5.3 (i) and, for $z \in E^{\#}, C_{G}(z) \leq N_{G}(E)$, it follows that $G=J$ is simple. Using G has just one conjugacy class of involutions and applying [J, Theorem] yields $G \cong \operatorname{Mat}(22)$. This proves the proposition when Lemma 5.3(i) holds. If Lemma 5.3(ii) holds, then $G \cong \operatorname{Aut}(\operatorname{Mat}(22))$.

$$
\text { 6. } \overline{L^{\circ}} \cong \mathrm{SL}_{2}(4)
$$

In this section we investigate the configuration in Proposition 3.5(iii). Thus $\overline{L^{\circ}} \cong \mathrm{SL}_{2}(4),\left|Y_{L}: V_{L}\right|=2$ and V_{L} is the natural $\mathrm{SL}_{2}(4)$-module.

As $Q \leq L^{\circ}, C_{V_{L}}\left(S_{0}\right)=C_{V_{L}}(Q) \leq Z(Q)$, so Q is normal in $N_{L^{\circ}}\left(C_{V_{L}}\left(S_{0}\right)\right)$ and hence $\bar{Q}=\overline{S_{0}}$ is a Sylow 2-subgroup of $\overline{L^{0}}$. In particular $Z(Q) \cap Y_{L}=$ $Z(Q) \cap V_{L}$ is of order 4 .

Lemma 6.1. The subgroup Q is elementary abelian. In particular, $Q \cap Y_{L}=$ $Q \cap V_{L}=C_{Y_{L}}(Q)=Z,\left|Y_{L} Q / Q\right|=2^{3}$ and $\left|V_{L} Q / Q\right|=2^{2}$.

Proof. We know that $\left[Q, V_{L}\right]=C_{V_{L}}(Q)=Q \cap V_{L}$ and, as \bar{Q} is elementary abelian, $\Phi(Q) \leq Q_{L}$. If $\Phi(Q) \neq 1$, then, since $Z(S) \cap \Phi(Q) \neq 1$, we deduce
$\Phi(Q) \cap V_{L} \neq 1$. As $N_{L}\left(Q Q_{L}\right)$ normalizes Q and is irreducible on $\left[V_{L}, Q\right]$, $\left[V_{L}, Q\right] \leq \Phi(Q)$. But then V_{L} centralizes $Q / \Phi(Q)$, so $V_{L} \leq O_{p}\left(N_{G}(Q)\right)=Q$, a contradiction. This shows Q is elementary abelian and then also $Y_{L} \cap Q=$ $V_{L} \cap Q=C_{Y_{L}}(Q)$.

Proposition 6.2. Suppose $L \in \mathcal{L}_{G}(S)$ and $L \notin N_{G}(Q)$ with \bar{L} in the unambiguous wreath product case. If $Y_{L} \notin Q, \overline{L^{\circ}} \cong \mathrm{SL}_{2}(4)$ and $\left|Y_{L}: V_{L}\right|=2$, then G is $\operatorname{Aut}(\operatorname{Mat}(22))$.

Proof. We start by observing that the action of L on Y_{L} gives
(i) $\left|V_{L} Q / Q\right|=\left|Q: C_{Q}\left(V_{L}\right)\right|=2^{2}$;
(ii) for all $v \in V_{L} \backslash Q, C_{Q}(v)=C_{Q}\left(V_{L}\right)$; and
(iii) for all $w \in Q \backslash Q_{L},\left[w, V_{L}\right]=\left[Q, V_{L}\right]$.

Let $B=N_{L}\left(Q Q_{L}\right)$. Then B contains an element β of order 3 which acts fixed-point freely on V_{L} and irreducibly on $\left[V_{L}, Q\right]=C_{Y_{L}}(Q)$.

Using (6.2.1) (ii) and Lemma 2.8 yields $\left[V_{L}, F\left(N_{G}(Q) / Q\right)\right]=1$. Let $K \geq$ Q be the preimage of

$$
\left[E\left(N_{G}(Q) / Q\right), V_{L} Q / Q\right] .
$$

Then K is non-trivial, normalized by B and Lemma 2.8 implies $V_{L} Q / Q$ acts faithfully on K / Q.

The three involutions of $Q Q_{L} / Q_{L}$ each centralize a subgroup of Y_{L} of order 2^{3} and by Lemma 2.10(i), there are three elements of $Y_{L} Q / Q$ which act on Q as $\operatorname{GF}(2)$-transvections, they generate $Y_{L} Q / Q$ and are permuted transitively by B / Q. As B normalizes K and as $V_{L} Q / Q$ acts faithfully on K / Q, at least one and hence all of the transvections in $Y_{L} Q / Q$ act faithfully on K / Q.

If $C_{Q}(K) \neq 1$, then $C_{C_{Q}(K)}(S) \neq 1$. As $\Omega_{1}(Z(S))=C_{V_{L}}(S)$ by Lemma 2.10 (ii), and $C_{Q}(K)$ is normalized by B, we have $\left[Q, V_{L}\right] \leq C_{Q}(K)$. But then $K=\left\langle V_{L}^{K}\right\rangle Q$ centralizes $Q / C_{Q}(K)$ contrary to $C_{K}(Q)=Q$. Hence $C_{Q}(K)=$ 1.

Let V be a non-trivial minimal $K Y_{L}$-invariant subgroup of Q. Then $K Y_{L}$ acts irreducibly on V. Moreover, as Y_{L} does not centralize $V, V \nsubseteq Q_{L}$ and, as V_{L} is the natural $\overline{L^{0}}$-module we have $\left[Y_{L}, V\right]=\left[Y_{L}, Q\right]=Y_{L} \cap Q \leq V$. It follows that K centralizes Q / V and so K / Q acts faithfully on $V=[Q, K]$ which is normalized by B. Hence $C_{Y_{L}}(V)=Y_{L} \cap V=Y_{L} \cap Q$ and $Y_{L} Q / Q$ acts faithfully on V. Recall that $Y_{L} Q / Q$ is generated by elements which operate as transvections on Q and hence on V. Therefore [McL, Theorem] applies to give $K Y_{L} / Q \cong \mathrm{SL}_{m}(2)$ with $m \geq 3, \mathrm{Sp}_{2 m}(2)$ with $m \geq 2, \mathrm{O}_{2 m}^{ \pm}(2)$ with $m \geq 2$, or $\operatorname{Sym}(m)$ with $m \geq 7$. Furthermore, $V=[Q, K]$ is the natural module in each case.
Since $C_{Y_{L} Q / Q}(S / Q)$ contains a transvection and has order $2^{2}, K Y_{L} / Q \neq$ $\mathrm{SL}_{m}(2)$ with $m \geq 3$ or $\mathrm{O}_{2 m}^{ \pm}(2)$ with $m \geq 2$. Suppose that $K Y_{L} / Q \cong \operatorname{Sym}(m)$ with $m \geq 7$. Then, as $Y_{L} Q / Q$ is generated by three transvections, we see that $Y_{L} Q / Q$ is generated by three commuting transpositions in $K Y_{L} / Q$. Let t be the product of these transpositions. Then, as $m \geq 7,|[V, t]|=2^{3}$. However, $\left|\left[V, Y_{L}\right]\right|=2^{2}$, and so we have a contradiction. We have demonstrated
(6.2.2) $K Y_{L} / Q \cong \operatorname{Sp}_{2 m}(2), m \geq 2$ and $[Q, K]=\left[Q, K Y_{L}\right]$ is the natural module.

Since $[Q, K]$ is the natural $K Y_{L} / Q$-module and $\left[V_{L}, Q\right] \leq[Q, K]$ has order 2^{2}, we have $\left[\left[V_{L}, Q\right], S\right] \neq 1$. In particular, $Q Q_{L} / Q_{L}<S / Q_{L} \cong \operatorname{Dih}(8)$ and $S Q / Q \cap K / Q$ acts non-trivially on $\left[Q, V_{L}\right]$.

Consider $Q^{*}=O_{2}(K S)$. Since Q^{*} centralizes $[Q, K], Q^{*}$ centralizes $\left[V_{L}, Q\right]$ and so $Q^{*} Q_{L}=Q Q_{L}$. Hence $\Phi\left(Q^{*}\right) \leq Q_{L}$. If $\Phi\left(Q^{*}\right) \neq 1$, then

$$
[Q, K]=\left\langle\Omega_{1}(Z(S))^{K}\right\rangle \leq \Phi\left(Q^{*}\right)
$$

and so also $\left[Q^{*}, K\right]=\left[Q^{*}, K, K\right] \leq[Q, K] \leq \Phi\left(Q^{*}\right)$ which is impossible. Hence Q^{*} is elementary abelian and it follows that $Q \leq Q^{*}=C_{Q^{*}}(Q) \leq Q$. Since $K S$ acts on $[Q, K]$ and $K Y_{L} / Q \cong \operatorname{Sp}_{2 m}(2)$, we now deduce $S \leq K Y_{L}$ from the structure of $\operatorname{Out}(K / Q)$. Hence $B=\left\langle S^{B}\right\rangle \leq K Y_{L}$ as B normalizes $K V_{L}$. It follows that B / Q is the minimal parabolic subgroup P of K / Q irreducible on $\left[Y_{L}, V\right]$ and with $O^{2}(P)$ centralizing $\left[Y_{L}, V\right]^{\perp} /\left[Y_{L}, V\right]=$ $C_{Y_{L}}(V) /\left[Y_{L}, V\right]$. Therefore there is $\beta \in K$ of order three such that $\langle\beta\rangle$ is transitive on the transvections in $Y_{L} Q / Q$ and normalizes $Q_{L} Q / Q$ which has index 2 in S / Q. In particular, from the structure of the natural $\operatorname{Sp}_{2 m}(2)$ module β centralizes

$$
C_{V}\left(Y_{L}\right) /\left[V, Y_{L}\right]=\left(V \cap Q_{L}\right) /\left(V \cap Y_{L}\right)=\left(V \cap Q_{L}\right) Y_{L} / Y_{L} \leq\left[Q_{L}, V\right] Y_{L} / Y_{L}
$$

As V is abelian, V acts quadratically on Q_{L} / V_{L}. By Lemma $2.2, Q_{L} / V_{L}$ involves only natural $\mathrm{SL}_{2}(4)$-modules and trivial modules as L-chief factors. We know β acts fixed-point freely on the natural module and so, as β centralizes $\left[Q_{L}, V\right] Y_{L} / Y_{L}$, all the L-chief factors of Q_{L} / V_{L} are centralized by L. In particular, V_{L} is the unique non-central L-chief factor in Q and so $Y_{L} \cap \Phi\left(Q_{L}\right)=1$. As $\Omega_{1}(Z(S)) \leq V_{L}$ by Lemma 2.10 (ii), $\Phi\left(Q_{L}\right)=1$, so $Q_{L}=\Omega_{1}\left(Z\left(Q_{L}\right)\right)=Y_{L}$, which together with $S / Q_{L} \cong \operatorname{Dih}(8)$ implies
(6.2.3) $Y_{L}=Q_{L}$ has order 2^{5} and $|S|=2^{8}$.

Together (6.2.2) and (6.2.3) give
(6.2.4) $|Q|=2^{4}$ and $N_{G}(Q) / Q \cong \operatorname{Sym}(6)$.

We next show that G has a subgroup of index two. In $N_{G}(Q)$ we have a subgroup U of index 2 of shape 2^{4}. Alt(6). Furthermore $Y_{L} \not \leq U$ and $V_{L} \leq U$. Since $[v, Q]=C_{Q}(v)$ for $v \in V_{L} \backslash Q$ and U / Q has one conjugacy class of involutions, all the involutions in $U \backslash Q$ are U-conjugate. Since L acts transitively on V_{L} and U is transitive on $Q^{\#}$, we have that all the involutions in U are G-conjugate. As Q is large, we have $C_{G}(z) \leq N_{G}(Q)$ for $z \in Q^{\#}$. Hence all the involutions in U have centralizer which is a $\{2,3\}$-group. There is an involution t in $Y_{L} \backslash V_{L}$, which is not in U and centralized by an element of order 5 in L. Hence t is not conjugate to any involution of U. Application of [GLS2, Proposition 15.15] gives a subgroup G_{1} of index two in G. We have $N_{G_{1}}(Q) / Q \cong \operatorname{Alt}(6)$. By Lemma 2.1 this extension splits and we have that the centralizer of a 2 -central involution $z \in G_{1}$ is a split extension of an elementary abelian group of order 16 by $\operatorname{Sym}(4)$. In particular $O\left(C_{G}(z)\right)=1$ and so by coprime action $O(G)=\left\langle C_{O(G)}(e) \mid e \in Q^{\#}\right\rangle=1$. As $Y_{L} \not \leq Q$, there is an involution $y \in N_{G_{1}}(Q) \backslash Q$. Since all involutions in $Q y$ and in $N_{G_{1}}(Q) / Q$ are conjugate, G_{1} has just one conjugacy class of involutions. In particular
$F^{*}\left(G_{1}\right)$ is simple. Application of [J, Theorem] gives that $F^{*}\left(G_{1}\right) \cong \operatorname{Mat}(22)$ and so $G \cong \operatorname{Aut}(\operatorname{Mat}(22))$.

Acknowledgment

We thank the referee for numerous comments which have improved the readability and clarity of our work. The second author was partially supported by the DFG.

References

[GH] D. Gorenstein, K. Harada, On finite groups with Sylow 2-subgroups of type A_{n}, $n=8,9,10,11$, Math. Z., 117 (1970), 207-238.
[GLS2] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Amer. Math. Soc. Surveys and Monographs 40(2), (1996).
[J] Z. Janko, A characterization of the Mathieu simple groups, I, J. Algebra 9, 1968, 1-19.
[Mas] D. Mason, Finite simple groups with Sylow 2-subgroup dihedral wreath Z_{2}, J. Algebra 26, (1973), 10-68.
[MSS1] U. Meierfrankenfeld, B. Stellmacher, G. Stroth, Finite groups of local characteristic p: an overview in Groups, combinatorics and geometry, Durham 2001 (eds. A. Ivanov, M. Liebeck, J. Saxl), Cambridge Univ. Press, 155-191.
[MSS2] U. Meierfrankenfeld, B. Stellmacher and G. Stroth, The local structure theorem for finite groups with a large p-subgroup, Mem. Amer. Math. Soc. 242, Nr. 1147 (2016).
[McL] J. McLaughlin, Some subgroups of $\mathrm{SL}_{n}\left(F_{2}\right)$, Illinois J. Math 13, 1969, 105-115.
[PPS] Chr. Parker, G. Parmeggiani, B. Stellmacher, The P!-Theorem, Journal of Algebra 263 (2003), 17-58.
[Pr] A. R. Prince, On 2-groups admitting A_{5} or A_{6} with an element of order 5 acting fixed point freely. J. Algebra 49 (1977), no. 2, 374-386.

Chris Parker, School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

Email address: c.w.parker@bham.ac.uk
Gernot Stroth, Institut für Mathematik, Universität Halle - Wittenberg, Theordor Lieser Str. 5, 06099 Halle, Germany

Email address: gernot.stroth@mathematik.uni-halle.de

[^0]: General rights
 Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

 - Users may freely distribute the URL that is used to identify this publication.
 - Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
 \cdot User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
 - Users may not further distribute the material nor use it for the purposes of commercial gain.

 Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
 When citing, please reference the published version.

 ## Take down policy

 While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

 If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

