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THE LOCAL STRUCTURE THEOREM: THE WREATH

PRODUCT CASE

CHRIS PARKER AND GERNOT STROTH

Dedicated to the memory of Kay Magaard

Abstract. Groups with a large p-subgroup, p a prime, include almost
all of the groups of Lie type in characteristic p and so the study of such
groups adds to our understanding of the finite simple groups. In this
article we study a special class of such groups which appear as wreath
product cases of the Local Structure Theorem [MSS2].

1. Introduction

Throughout this article p is a prime and G is a finite group. We say that
L ≤ G has characteristic p if

CG(Op(L)) ≤ Op(L).

For T a non-trivial p-subgroup of G, the subgroup NG(T ) is called a p-
local subgroup of G. By definition G has local characteristic p if all p-local
subgroups of G have characteristic p and G has parabolic characteristic p if
all p-local subgroups containing a Sylow p-subgroup of G have characteristic
p.

A group K is called a K-group if all its composition factors are from the
known finite simple groups. So, if K is a simple K-group, then K is a cyclic
group of prime order, an alternating group, a simple group of Lie type or
one of the 26 sporadic simple groups. A group G is a Kp-group, provided
all subgroups of all p-local subgroups of G are K-groups. This paper is
part of a programme to investigate the structure of certain Kp-groups. See
[MSS1, MSS2] for an overview of the project.

Of fundamental importance to the development of the programme are
large subgroups of G: a p-subgroup Q of G is large if

(i) CG(Q) ≤ Q; and
(ii) NG(U) ≤ NG(Q) for all 1 6= U ≤ CG(Q).

For example, if G is a simple group of Lie type defined in characteristic p,
S ∈ Sylp(G) and Q = Op(CG(Z(S))), then Q is a large subgroup of G unless
there is some degeneracy in the Chevalley commutator relations which define
G. This means that Q is a large subgroup of G unless G is one of Sp2n(2k),
n ≥ 2, F4(2

k) or G2(3
k).

If Q is a large subgroup of G, then it is easy to see that Op(NG(Q)) is
also a large p-subgroup of G. Thus we also assume that

(iii) Q = Op(NG(Q)).

One of the consequences of G having a large p-subgroup is that G has par-
abolic characteristic p. In fact any p-local subgroup of G containing Q is
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of characteristic p [MSS2, Lemma 1.5.5 (e)]. Further, if Q ≤ S ∈ Sylp(G),
then Q is weakly closed in S with respect to G (Q is the unique G-conjugate
of Q in S) [MSS2, Lemma 1.5.2 (e)]. A significant part of the programme
described in [MSS1] aims to determine the groups which possess a large p-
subgroup. This endeavour extends and generalizes earlier work of Timmes-
feld and others in the original proof of the classification theorem where
groups with a so-called large extraspecial 2-subgroup were investigated. The
state of play at the moment is that the Local Structure Theorem has been
completed and published [MSS2]. To describe this result we need some fur-
ther notation.

For a finite group L, YL denotes the unique maximal elementary abelian
normal p-subgroup of L with Op(L/CL(YL)) = 1. Such a subgroup exists
[MSS1, Lemma 2.0.1(a)]. From now on assume that G is a finite Kp-group,
S a Sylow p-subgroup of G and Q a large p-subgroup of G with Q ≤ S and
Q = Op(NG(Q)). We define

LG(S) = {L ≤ G | S ≤ L,Op(L) 6= 1, CG(Op(L)) ≤ Op(L)}.

Under the assumption that S is contained in at least two maximal p-local
subgroups, for L ∈ LG(S) with L 6≤ NG(Q), the Local Structure Theorem
provides information about L/CL(YL) and its action on YL. Given the Local
Structure Theorem there are two cases to treat in order to fully understand
groups with a large p-subgroup. Either there exists L ∈ LG(S) with YL 6≤ Q
or, for all L ∈ LG(S), YL ≤ Q. Research in the first case has just started
and, for this situation, this paper addresses the wreath product scenario in
the Local Structure Theorem [MSS2, Theorem A (3)]. This case is separated
from the rest because of the special structure of L and YL. This structure
allows us to use arguments measuring the size of certain subgroups to re-
duce to three exceptional configurations and has a distinct flavour from the
remaining cases. For instance, the groups which are examples in the wreath
product case typically have Q of class 3 whereas in the more typical cases
it has class at most 2. The configurations in the Local Structure Theorem
which are not in the wreath product case and have YL 6≤ Q will be exam-
ined in a separate publication as there are methods which apply uniformly
to cover many possibilities at once. Contributions to the YL ≤ Q for all
L ∈ LG(S) are the subject of [PPS].

For L ∈ LG(S) with Q not normal in L we set

L◦ = 〈QL〉, L = L/CL(YL) and VL = [YL, L
◦]

and use this notation throughout the paper. Set q = pa. We recall from
[MSS2, Remark A.25] the definition of a natural wreath SL2(q)-module for
the group X with respect to K: suppose that X is a group, V is a faithful
X-module and K is a non-empty X-invariant set of subgroups of X. Then
V is a natural SL2(q)-wreath product module for X with respect to K if and
only if

V =
⊕
K∈K

[V,K] and 〈K〉 = ×
K∈K

K,

and, for each K ∈ K, K ∼= SL2(q) and [V,K] is the natural SL2(q)-module
for K.
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We now describe the wreath product case in [MSS2, Theorem A (3)]. For
L ∈ LG(S) with L 6≤ NG(Q), L is in the wreath product case provided

• there exists a unique L-invariant set K of subgroups of L such that
VL is a natural SL2(q)-wreath product module for L with respect
to K.
• L◦ = Op(〈K〉)Q and Q acts transitively on K by conjugation.
• YL = VL or p = 2, |YL : VL| = 2, L◦ ∼= SL2(4) or ΓSL2(4) and
VL 6≤ Q.

We say that L is properly wreathed if |K| > 1.
There are overlaps between the wreath product case and some other di-

visions in the Local Structure Theorem.
If L◦ ∼= SL2(q) with VL = YL, then this situation can be inserted in

the linear case of [MSS2, Theorem A (1)] by including n = 2 is that case.
Suppose that |K| = 2 and K ∼= SL2(2). If Q is a fours group, then, as Q
conjugates K1 to K2,

L◦ ∼= Ω+
4 (2) ∼= SL2(2)× SL2(2)

and YL is the tensor product module. This is an example in the tensor prod-
uct case of [MSS2, Theorem A (6)]. We declare L to be in the unambiguous
wreath product case if these two ambiguous configurations do not occur. The
ambiguous cases will be handled in a more general setting in a forthcoming
paper mentioned earlier.

Main Theorem. Suppose that p is a prime, G is a finite group, S a Sylow
p-subgroup of G and Q ≤ S is a large p-subgroup of G with Q = Op(NG(Q)).
If there exists L ∈ LG(S) with L in the unambiguous wreath product case
and VL 6≤ Q, then G ∼= Mat(22), Aut(Mat(22)), Sym(8), Sym(9) or Alt(10).

The proof of this theorem splits into four parts. First, in Section 3, we
show that in the properly wreathed case we must have q = |K| = 2 and, as L
is unambiguous, S = Q ∼= Dih(8) and L◦ ∼= O+

4 (2). If |K| = 1, we show that

L◦ ∼= ΓSL2(4) or SL2(4) and VL is the natural module with |YL : VL| ≤ 2,
where, if L◦ ∼= SL2(4), |YL : VL| = 2 holds. In the following three sections, we
determine the groups corresponding to these three cases. Finally the Main
Theorem follows by combining Propositions 3.5, 4.1, 5.1 and 6.2.

In [PPS] the authors proved that the unambiguous wreath product case
does not lead to examples if for all L ∈ LG(S) we have YL ≤ Q, with the
additional assumption that G is of local characteristic p. In this paper we
do not make the assumption that G is of local characteristic p.

In the Local Structure Theorem there is also a possibility that L ∈ LG(S)
is of weak wreath type. Any such group is contained in one, which is of
unambiguous wreath type. A corollary of our theorem is

Corollary. Suppose that p is a prime, G is a finite group, S a Sylow p-
subgroup of G and Q ≤ S is a large p-subgroup of G with Q = Op(NG(Q)).
If L ∈ LG(S) is of weak wreath product type, then either G is as in the Main
Theorem or VL ≤ Q.

In addition to the notation already introduced, we will use the following
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Notation. For p a prime, G a group with a large p-subgroup Q = Op(NG(Q))
and L ∈ LG(S), we set QL = Op(L) and assume that VL 6≤ Q. Define

D = 〈V NG(Q)
L 〉(L ∩NG(Q)) ∈ LG(S). Furthermore, set

W = 〈(VL ∩Q)D〉,

UL = 〈(W ∩QL)L〉
and

Z = CVL
(Q).

Notice that for L0 = NL(S ∩ CL(YL)), we have L = CL(YL)L0 and
CL(YL) ≤ D. Further

YL0 = YL = Ω1(Z(Op(L0)))

by [MSS2, Lemma 1.2.4 (i)]. Since CL(YL) normalizes Q,

L◦ = 〈QL〉 = 〈QCL(YL)L0〉 = 〈QL0〉 = L◦0.

Therefore, if L is in the unambiguous wreath product case, then so is L0.
Hence we also assume that L = L0 and so

YL = Ω1(Z(QL)).

2. Preliminaries

In this section we present some lemmas which will be used in the forth-
coming sections.

Lemma 2.1. Suppose that X is a group, E = O2(X) is elementary abelian
of order 16 and X/E ∼= Alt(6) induces the non-trivial irreducible part of the
6-point permutation module on E. Then X splits over E.

Proof. Choose R ≤ X such that R/E ∼= Sym(4) and Z(R) = 1. Let T ∈
Syl3(R). As T acts fixed-point freely on O2(R), NR(T ) ∼= Sym(3) and so
there are involutions in X/E. Hence, as X/E has one conjugacy class of
involutions, there are involutions in O2(R)\E. Therefore O2(R)/Z(O2(R)) is
elementary abelian of order 16. Now we consider O2(R). The fixed-point free
action of T on O2(R)/Z(O2(R)) implies there is partition of this group into
five T -invariant subgroups of order 4. As T acts fixed-point freely on O2(R)
the preimages of all these fours groups are abelian. As there are involutions
in O2(R) \ E, there is a T -invariant fours group F ∗ ≤ O2(R)/Z(O2(R))
with F ∗ 6= E/Z(O2(R)) and such that the preimage F of F ∗ is elementary
abelian of order 16. Now the action of X on E shows that for any involution
i ∈ R \ E all involutions in the coset Ei are conjugate to i by an element
of E. Hence all involutions in O2(R) \ E are in F . This shows that F is
invariant under NR(T ).

Again there is a partition of F into five groups of order four invari-
ant under T . Let t be an involution in NR(T ). Then |CF (t)| = 4, where
|CE∩F (t)| = 2. Hence there is some fours group F1 ≤ F , F1 6= E ∩ F and
CF1(t) 6= 1. This shows that F1 is normalized by t. Then F1〈t〉 ∼= Dih(8) is
a complement to E. Using a result of Gaschütz [GLS2, Theorem 9.26] , X
splits over E. �

The next lemma is well-known.
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Lemma 2.2. Suppose that X ∼= Sym(5), F1 and F2 are fours groups of X
with F1 ≤ Alt(5) and V is a non-trivial irreducible GF(2)X-module. Then

(i) V is either the non-trivial irreducible part of the permutation mod-
ule, which is the same as the natural O−4 (2)-module, or V is the
natural ΓL2(4)-module.

(ii) F1 acts quadratically on V if and only if V is the natural ΓL2(4)-
module.

(iii) F2 acts quadratically on V if and only if V is the natural O−4 (2)-
module.

Lemma 2.3. Suppose that p is a prime, X is a group of characteristic p
and U is a normal p-subgroup of X. Let R be a normal subgroup of X with
R ≤ CX(U/[U,Op(X)]). If [Op(X), Op(R)] ≤ U , then R ≤ Op(X).

Proof. It suffices to prove that Op(R) = 1. Suppose that n ≥ 1 is such that
[U,Op(R)] ≤ [U,Op(X);n]. Then

[Op(X), Op(R)] = [Op(X), Op(R), Op(R)] ≤ [U,Op(R)] ≤ [U,Op(X);n]

and so

[Op(X), Op(R), U ] ≤ [[U,Op(X);n], Op(X)] = [U,Op(X);n+ 1].

We also have

[U,Op(R), Op(X)] ≤ [[U,Op(X);n], Op(X)] = [U,Op(X);n+ 1]

and thus the Three Subgroups Lemma implies

[U,Op(X), Op(R)] ≤ [U,Op(X);n+ 1].

This yields

[U,Op(R)] = [U,Op(R), Op(R)] ≤ [U,Op(X), Op(R)] ≤ [U,Op(X);n+ 1].

Since Op(X) is nilpotent, we deduce [U,Op(R)] = 1. Hence

[Op(X), Op(R)] = [Op(X), Op(R), Op(R)] ≤ [U,Op(R)] = 1.

As X has characteristic p, Op(R) = 1 and so R ≤ Op(X) as claimed. �

Lemma 2.4. Assume that X is a group, Y is a normal subgroup of X
and xCX(Y ) ∈ Z(X/CX(Y )). If [Y, x] ≤ Z(Y ), then Y/CY (x) ∼= [Y, x] as
X-groups.

Proof. Define

θ : Y → [Y, x]

y 7→ [y, x].

Then θ is independent of the choice of the coset representative in xCX(Y ).
For y, z ∈ Y ,

(yz)θ = [yz, x] = [y, x]z[z, x] = [y, x][z, x] = (y)θ(z)θ,

and, for y ∈ Y and ` ∈ X, as [x, `] ∈ CR(Y ), x` = xc for some c ∈ CX(Y ),
and so

(yθ)` = [y, x]` = [y`, x`] = [y`, xc] = [y`, c][y`, x]c = [y`, x] = (y`)θ.

Thus θ is an X-invariant homomorphism from Y to [Y, x]. As ker θ = CY (x),
we have Y/CY (x) ∼= [Y, x] as X-groups. �
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Lemma 2.5. Assume that p is a prime, X is a group, Y is an abelian normal
p-subgroup of X and R is a normal p-subgroup of X which contains Y .
Suppose that Y = [Y,Op(X)], [R,Op(X)] ≤ CR(Y ) and R acts quadratically
or trivially on Y . Suppose that no non-central X-chief factor of Y/CY (R)
is isomorphic to an X-chief factor of [Y,R]. Then Y ≤ Z(R).

Proof. Assume that R > CR(Y ). Using [R,Op(X)] ≤ CR(Y ), we may select
x ∈ R\CR(Y ) such that xCX(Y ) ∈ Z(X/CX(Y ))#. As Y is abelian, [Y, x] ≤
Z(Y ) and so Lemma 2.4 applies to give Y/CY (x) ∼= [Y, x] as X-groups. As
R acts quadratically on Y ,

CY (x) ≥ CY (R) ≥ [Y,R] ≥ [Y, x]

and so the hypothesis on non-central X-chief factors now gives Y/CY (x)
and [Y, x] only have central X-chief factors. In particular, Y = [Y,Op(X)] ≤
CY (x) and this contradicts the initial choice of x ∈ R \ CR(Y ). Hence Y ≤
Z(R). �

Lemma 2.6. Suppose that p is a prime, X is a group, V ≤ U are normal
p-subgroups of X, and Q is a large p-subgroup of X which is not normal in
X. Assume that V is a non-trivial irreducible GF(p)X-module and U/V is
centralized by Op(X).Then

(i) U is elementary abelian; and
(ii) if U 6≤ Ω1(Z(Op(X))), then Op(X)/COp(X)(U) contains a non-

central chief factor isomorphic to V as a GF(p)X-module.

Proof. Set ZX = Ω1(Z(Op(X))). We have [U,Op(X)] ≤ V ≤ ZX as V is
irreducible. As Op(X) does not centralize U/Φ(U) by Burnside’s Lemma
[GLS2, Proposition 11.1] and V is a non-trivial irreducible X-module, V 6≤
Φ(U) and Φ(U) is centralized by Op(X). Therefore Φ(U)∩ZX is centralized
by Op(X) and is normalized by Q. Since Q is large and Op(X) 6≤ NX(Q),
we deduce Φ(U) ∩ ZX = 1. Thus Φ(U) = 1 and so U is elementary abelian.
Hence (i) holds.

Set Y = Op(X) and assume that U 6≤ ZX . Select x ∈ U \ ZX such that
[X,x] ≤ U ∩ ZX ≤ Z(Y ). Then xCX(Y ) ∈ Z(X/CX(Y )). Thus Lemma 2.4
implies Y/CY (x) ∼= [Y, x] ≤ U ∩ ZX and this isomorphism is as X-groups.
Since [Y, x] is normalized by Q, [Y, x] 6= 1 and Q is large, Op(X) does not
centralize [Y, x]. Thus [Y, x] ≥ V as [U,Op(X)] ≤ V . This proves (ii). �

Lemma 2.7. Assume that p is a prime, X is a group, U is an elementary
abelian normal subgroup of X, U = [U,Op(X)] and Op(X) acts quadratically
and non-trivially on U . Set R = Op(X), W = R/CR(U), and Z = [U,R].
Then W , U/Z and Z are X/R-modules and W is isomorphic to an X/R-
submodule of Hom(U/Z,Z). In particular, if Z is centralized by X, then the
set of X-chief factors of W can be identified with a subset of the GF(p)-duals
of the X-chief factors of U/Z.

Proof. Since R acts quadratically on U , W is elementary abelian. Further-
more, R centralizes W , U/Z and Z. Hence all of these groups can be regarded
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as GF(p)X/R-modules. For w ∈ R, define

θ : R → Hom(U/Z,Z)

w 7→ θw : U/Z → Z
uZ 7→ [u,w]

.

The calculation in the proof of Lemma 2.4 shows that the commutator [u,w]
defines a homomorphism from U to Z and, as w centralizes Z, θw is a
well-defined homomorphism from U/Z to Z. Thus θ is a well-defined map.
Consider w1, w2 ∈ R, uZ ∈ U/Z and ` ∈ X. Then

(uZ)θw1w2 = [u,w1w2] = [u,w2]
w1 [u,w1] = [u,w1][u,w2] = (uZ)θw1(uZ)θw2

which means θw1w2 = θw1θw2 and so θ is a group homomorphism. We show
that θ is an X-module homomorphism. So let ` ∈ X, uZ ∈ U/Z and w ∈ R.
Then (w`)θ = θw` and

(uZ)θw` = [u,w`] = [u`
−1
, w]` = (u)(θw · `).

Since ker θ = CR(U), this completes the proof of the main claim.
If Z is centralized by X, then

Hom(U/Z,Z) ∼= (U/Z)∗ ⊗ Z =
n⊕

i=1

(U/Z)∗

where n is such that |Z| = pn. This completes the proof of the lemma. �

Lemma 2.8. Suppose that V is a p-group and X is a group which acts
faithfully on V with Op(X) = 1. Assume A ≤ X is an elementary abelian
p-subgroup of order at least p2 which has the property CV (A) = CV (a) for
all a ∈ A#. If L is a non-trivial subgroup of X and L = [L,A], then A acts
faithfully on L.

In particular, A centralizes every p′-subgroup which it normalizes, [A,F (X)] =
1, E(X) 6= 1 and, if L is a component of X which is normalized but not cen-
tralized by A, then A acts faithfully on L.

Proof. Suppose that L = [L,A] is a non-trivial subgroup of X. Assume
that there is b ∈ A# with [L, b] = 1. Then L normalizes CV (b) and so, as
CV (b) = CV (A), L = [L,A] centralizes CV (b). Since L = [L,A], L = Op(L)
and the Thompson A×B-Lemma implies [L, V ] = 1, a contradiction. Hence
A acts faithfully on L.

Let F be a p′-subgroup of X which is normalized by A. Then F = 〈CF (a) |
a ∈ A#〉. If A does not centralizes F , then there exists a ∈ A# such that
1 6= [CF (a), A] = [CF (a), A,A]. Hence, taking L = [CF (a), A], we have
L = [L,A] and a ∈ CA(L), a contradiction. Hence [F,A] = 1. Now A
centralizes F (X) and therefore E(X) 6= 1.

If L is a component of X which is normalized by A, then either [L,A] = L
or [L,A] = 1. If [L,A] 6= 1, then we have A acts faithfully on L. �

Lemma 2.9. Let X be a group, N a normal subgroup of G and T ∈ Sylp(X).
Assume that X = NT , CT (N) = 1, q = pa and

N = N1 ×N2 · · · ×Ns,

where Ni
∼= SL2(q) for 1 ≤ i ≤ s. Then the p-rank of G is sa.
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Proof. Assume first that q = 2. Then T acts faithfully on O3(N). As the
2-rank of GLs(3) is s, we are done. Similarly, if q = 3, then T acts faithfully
on O2(N)/Z(N), which is elementary abelian of order 22s we are done as
GL2s(2) has 3-rank s.

Thus we may assume that q > 3. In particular, the subgroups Ni are
quasisimple and T permutes the set {Ni | 1 ≤ i ≤ s}.

Assume that p is odd. Let A be an elementary abelian subgroup in T of
maximal rank and assume that A 6≤ N . Then by Thompson replacement
[GLS2, Theorem 25.2] we may assume that A acts quadratically on T ∩N .
This shows that A has to normalize each Ni. As non-trivial field automor-
phisms are not quadratic on T ∩Ni, we get that A centralizes T ∩N and so
A ≤ T ∩N , the assertion.

Assume that q = 2a with a ≥ 2. Let B = NN (T ∩ N). We have that
T normalizes B and T/(T ∩ N) acts faithfully on B/(T ∩ N). Now the
Thompson dihedral Lemma [GLS2, Lemma 24.1] says that for any ele-
mentary abelian subgroup A of T we have a B-conjugate Ag such that
U = 〈A,Ag〉(T ∩N)/(T ∩N) is a direct product of r dihedral groups where
2r = |A/(A ∩ N)| ≤ 2s and A(T ∩ N)/(T ∩ N) is a Sylow 2-subgroup of
U . Set T1 = [O2′(U), T ∩N ]. As U is generated by two conjugates of A we
see that |T1| = |CT1(A/A ∩ N)|2. This now shows that |A| ≤ |T ∩ N |, the
assertion again. This proves the lemma. �

In the next two lemmas we use the notation presented in the introduction
though we do not assume that L is unambiguous.

Lemma 2.10. Suppose that L ∈ LG(S), L 6≤ NG(Q) and VL = [YL, L
◦].

Then

(i) CYL
(L◦) = 1.

(ii) Ω1(Z(S)) ≤ VL.
(iii) If VL is an irreducible L-module, VL 6≤ Q and Ω1(Z(QL)) < QL,

then VL ≤ Q′L ≤ Φ(QL).

Proof. As CYL
(L◦) ≤ CG(Q) is normalized by L, (i) is a consequence of Q

being large.
By [MSS2, Lemma 1.24 (g)], Ω1(Z(S)) ≤ YL now Gaschütz Theorem

[GLS2, Theorem 9.26] and (i) give (ii).
Assume that N is a non-trivial normal p-subgroup of L. Then Ω1(Z(S))∩

N 6= 1. Since VL is irreducible as a L-module, (ii) gives VL ≤ N . In partic-
ular, as VL 6≤ Q, N 6≤ Q.

Suppose that QL is abelian. Then, as Q = Op(NG(Q)) and [Q,QL, QL] ≤
Q′L = 1, QL is quadratic on Q, and hence QLQ/Q is elementary abelian
and so Φ(QL) ≤ Q. By the remark earlier taking N = Φ(QL) we obtain
Φ(QL) = 1, contrary to Ω1(Z(QL)) < QL. Hence QL is non-abelian. Thus
Q′L 6= 1 and so, as VL is irreducible, VL ≤ Q′L ≤ Φ(QL). This proves (iii). �

Lemma 2.11. Suppose that L ∈ LG(S), L 6≤ NG(Q) and VL = [YL, L
◦].

Assume that YL = Ω1(Z(QL)), m ∈ L and Op(L)QL ≤ KQL, where K =
〈W,Wm〉. Then Op(L) ≤ K and the following hold

(i) [Op(L), QL] ≤ [W,QL][Wm, QL] ≤ (W ∩QL)(Wm ∩QL) = UL.
(ii) If [W,W ] ≤ VL, then W acts quadratically on the non-central chief

factors of QL/VL.
8



Assume, in addition, that VL is irreducible as a K-module, [VL,W,W ] 6= 1,
and [W,W ] ≤ VL. Then

(iii) W ∩Wm ∩QL ≤ YL;
(iv) UL/YL is elementary abelian or trivial; and
(v) either QL = YL or U ′L ≥ VL.

Proof. Since W and Wm are normalized by QL, K = 〈W,Wm〉 is normalized
by QLK and so Op(L) ≤ K. Since W , Wm, [QL,W ] and [QL,W

m] are
normalized by QL, we have

[QL, O
p(L)] ≤ [QL, 〈W,Wm〉] = [QL,W ][QL,W

m] ≤ (W ∩QL)(Wm ∩QL).

In particular, A = (W ∩ QL)(Wm ∩ QL) is normalized by Op(L). Since

(W ∩QL)L = (W ∩QL)SO
p(L) = (W ∩QL)O

p(L), we have A = UL. Thus (i)
holds.

By the additional hypothesis,

[QL,W,W ] ≤ [W,W ] ≤ VL

and so W acts quadratically on all the non-central L-chief factors in QL/VL,
which is (ii).

Notice that part (ii), VL irreducible as a K-module and [VL,W,W ] 6=
1 together imply that the non-central K-chief factors in QL/VL are not
isomorphic to VL.

Set I = W ∩Wm ∩QL. Then I ≤W ∩Wm and so

[I,W ] ≤ [W,W ] ≤ VL

and

[I,Wm] ≤ [Wm,Wm] ≤ V m
L = VL.

Hence IVL/VL is centralized by 〈W,Wm〉 = K. As W acts quadratically on
all the non-central chief factors of K in QL/VL by (ii) and by assumption, W
does not act quadratically on VL, Lemma 2.6 implies that I ≤ Ω1(Z(QL)) =
YL. This proves (iii).

Since W is generated by elements of order p, W/[W,W ] is elementary
abelian and therefore, as [W,W ] ≤ VL, WVL/VL is also elementary abelian.
Since W ∩ QL and QL ∩Wm normalize each other parts (i) and (iii) give
(iv).

If VL 6≤ U ′L and QL 6= YL, then, as UL/YL is elementary abelian by (iv),
Lemma 2.10 (ii) implies UL is elementary abelian. Select E with QL ≥ E >
VL of minimal order such that E = [E,Op(L)] and E/VL has a non-central
K-chief factor. Then

E ≤ [QL, O
p(L)] ≤ [QL,W ][QL,W

m] ≤ UL ≤ CL(E).

Furthermore, VL[E,QL] < E and so [[E,QL], Op(L)] ≤ VL. Therefore Lemma 2.6
implies that [E,QL] ≤ YL and soQL acts quadratically on E. Hence Lemma 2.5
implies that E ≤ YL, a contradiction. Hence U ′L is non-trivial and it follows
that VL ≤ U ′L. �
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3. The reduction

We use the notation presented in the introduction. For the rest of this
article we have L ∈ LG(S) with Q not normal in L and L is in the unam-
biguous wreath product case. This means that YL = VL unless we are in the
special case that L◦ ∼= SL2(4) or ΓSL2(4), |YL : VL| = 2 and

VL 6≤ Q.
We start with a general result which just requires VL 6≤ Q.

Lemma 3.1. The following hold.

(i) 〈V D
L 〉 is not a p-group;

(ii) [Q, 〈V D
L 〉] ≤W ; and

(iii) W 6≤ CG(VL).

Proof. Let C̃ = NG(Q) and K = 〈V C̃
L 〉. As D = KNL(Q) and NL(Q) acts

on VL we have 〈V D
L 〉 = 〈V K

L 〉 is subnormal in H. If 〈V D
L 〉 is a p-group, we

obtain VL ≤ Op(NG(Q)) = Q which is a contradiction. This proves (i).
We have [Q,VL] ≤ Q ∩ VL ≤ W . As W and Q are normalized by D, (ii)

holds.
Assume W ≤ CG(VL). Then [W,VL] = 1 and so [W, 〈V D

L 〉] = 1. Hence
X = Op(〈V D

L 〉) centralizes Q by (ii). Since CG(Q) ≤ Q, we have X ≤ Q.
Thus X = 1 and 〈V D

L 〉 is a p-group, which contradicts (i). Hence W 6≤
CG(VL). �

We adopt the following notation. Let B ≥ CL(VL) be such that B = 〈K〉
and let S0 = S ∩ B. We write B = K1 . . .Ks where Ki ≥ CL(VL), Ki ∈ K,
Ki
∼= SL2(q) and, for 1 ≤ i ≤ s, put

Si = S ∩Ki

V i
L = [VL,Ki],

Zi = CV i
L
(Si) = CV i

L
(S0)

and

Z0 = Z1 . . . Zs = CVL
(S0).

We begin by showing that W is not contained in the base group B.

Lemma 3.2. Suppose that L is either properly wreathed, or q = pa (where p
divides a) and some element of L◦ induces a non-trivial field automorphism
on Op(L◦) ∼= SL2(q). Then W is not contained in S0. In particular, if L is
properly wreathed with q = s = 2, then Q is not cyclic of order 4.

Proof. Set F =
⋂

g∈D CQ(VL)g.

Suppose that W is contained in S0. As Q normalizes W and acts transi-
tively on K when L is properly wreathed and, as VL is the natural SL2(q)-
module when s = 1, and field automorphisms are present, the structure of
VL yields

[VL, S0] = [VL,W ] = CVL
(W ) = Z0.

Suppose that g ∈ D. Then using Lemma 3.1(ii) and (VL)g = VLg yields

(3.2.1) [Z0, [VLg , Q]] ≤ [Z0,W ] = 1.
10



We also remark that as W ≤ Q, Z0 ≤ [VL, Q] ≤ W = W g ≤ Sg
0 and

Z0 ≤ Z(W ). In particular, as Sg
0 normalizes every element of Kg, so does Z0.

Therefore, for 1 ≤ i ≤ s, Z0 also normalizes each Kg
i and so also [Y g

L ,K
g
i ] =

(V i
L)g.

If s = 1 and we have field automorphisms in L◦, then [VL, Q] > Z0 and
so (3.2.1) provides Z0 ≤ CQ([VLg , Q]) = CQ(VLg). Thus

[VL,W ] = Z0 ≤ F

in this case.
We will show that the same holds in the properly wreathed case. Because

Q acts transitively on Kg,

VLg = V 1
Lg [VLg , Q] = V 2

Lg [VLg , Q].

As [Z0, [VLg , Q]] = 1 by (3.2.1),

[VLg , Z0] = [V 1
Lg [VLg , Q], Z0] ∩ [V 2

Lg [VLg , Q], Z0]

= [V 1
Lg , Z0] ∩ [V 2

Lg , Z0] ≤ V 1
Lg ∩ V 2

Lg = 1.

Hence Z0 ≤ CQ(VLg) and this implies that

[VL,W ] = Z0 ≤ F

in the properly wreathed case too. Therefore,

[Q,VL] ≤ W
[W,VL] = Z0 ≤ F ∩W

[F ∩W,VL] = 1.

Hence VL stabilizes the normal series Q ≥ W ≥ W ∩ F ≥ 1 in D and so
VL ≤ Op(D). But then 〈V D

L 〉 is a p-group contrary to Lemma 3.1 (i). We
conclude that W 6≤ S0 as claimed.

If q = s = 2 and Q is cyclic of order four, then, as W is generated by
involutions, W = Q∩S0, a contradiction. Thus Q is not cyclic of order 4 in
this case. �

We now reduce the properly wreathed case to one specific configuration
which will be handled in detail in Section 4.

Proposition 3.3. Assume that L is properly wreathed and unambiguous.
Then |K| = 2, q = 2, and W permutes K transitively by conjugation. Fur-
thermore, Q = S ∼= Dih(8), L◦ ∼= O+

4 (2) and YL = VL is the natural O+
4 (2)-

module.

Proof. Since Q permutes K transitively by conjugation and S0 normalizes
Q, we have

(3.3.1)

(i) Q ∩ S0 contains [Q,S0];
(ii) |S0 : Q ∩ S0| ≤ |S0 : [Q,S0]| ≤ q; and

(iii) [Q,S0]CL(Ki)/CL(Ki) ∈ Sylp(KiCL(Ki)/CL(Ki)). �
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As W = 〈VLg ∩ Q | g ∈ D〉, Lemma 3.2 implies there exists g ∈ D such
that VLg ∩Q 6≤ S0. We fix this g.

(3.3.2) We have VLg ∩Q ∩ S0 6= 1.

Suppose that VLg ∩Q ∩ S0 = 1. Then, as Q ∩ S0 and VLg ∩Q normalize
each other, VLg ∩Q centralizes Q ∩ S0. If VLg ∩Q normalizes some Ki ∈ K,
then, as Q acts transitively on K and normalizes VLg ∩Q, VLg ∩Q normal-
izes every member of K. As VLg ∩Q centralizes [Q,S0], (3.3.1) (iii) implies
that

VLg ∩Q ≤ [Q,S0]CL(Ki).

Since Q acts transitively on K, this is true for each Ki ∈ K. Thus

VLg ∩Q ≤
s⋂

i=1

[Q,S0]CL(Ki) =

s⋂
i=1

SiCL(Ki) = S0,

which contradicts the choice of g ∈ D.
Hence VLg ∩Q does not normalize any member of K. As B is a direct

product we calculate that CS0
(VLg ∩Q) has index at least qp−1 in S0. How-

ever (3.3.1) (ii) states that Q ∩ S0 has index at most q in S0 and, as this
subgroup is centralized by VLg ∩Q, we deduce that

p = 2.

Furthermore, as VLg ∩Q does not normalize any member of K, if s > 2, we
have CS0

(VLg ∩Q) has index at least q2 in S0, and so we must have

s = 2.

Since VLg ∩Q centralizes [S0, Q] by (3.3.1)(iii), no element in VLg ∩Q
can act as a non-trivial field automorphism on K1 and so we infer from
VLg ∩Q ∩ S0 = 1, that |VLg ∩Q| = 2. In particular, |CVL

(VLg ∩Q)| = q2 as
VLg ∩Q exchanges V 1

L and V 2
L .

We know that |VLg | = q4. As |[VLg , Q]| ≥ q3, we have

|VLg : VLg ∩Q| ≤ q,

and we have just determined that

|VLg ∩Q : VLg ∩Q ∩ CG(VL)| = |VLg ∩Q| = 2.

Hence VLg ∩Q ∩ CG(VL) has order at least 23a−1, where q = 2a.
Assume that a 6= 1. Then, as V 1

Lg has order q2,

VLg ∩Q ∩ CG(VL) ∩ V 1
Lg 6= 1.

It follows that VL∩Q normalizes bothKg
1 andKg

2 . As (VL∩Q)CLg(VLg)/CLg(VLg)
is normalized byQ andQ permutes {Kg

1 ,K
g
2} transitively, (VL∩Q)CLg(VLg)/CLg(VLg)

does not centralize Kg
i /CLg(VLg) for i = 1, 2. Thus |CV i

Lg
(VL ∩ Q)| ≤ q for

i = 1, 2. But then

23a−1 ≤ |VLg ∩Q ∩ CG(VL)| ≤ |CVLg (VL ∩Q)| ≤ 22a,

which contradicts a 6= 1. We conclude that q = s = 2 and |VLg ∩Q| = 2.
Furthermore, VLg ∩Q is centralized by Q and so Q is elementary abelian of
order 4. It follows that L◦ ∼= Ω+

4 (2) and VL is the natural module. Hence L
12



is ambiguous and we conclude that VLg ∩Q ∩ S0 6= 1. �

(3.3.3) We have |CVL
(VLg ∩Q)| ≤ qs/p.

We know VLg ∩Q 6≤ S0 and VLg ∩Q ∩ S0 6= 1 by (3.3.2). As VLg ∩Q is
normalized by Q, VLg ∩Q ∩ S0 6= 1 implies that

CVL
(VLg ∩Q) = CZ0(VLg ∩Q).

If some element d ∈ VLg ∩Q induces a non-trivial field automorphism on Ki

for some Ki ∈ K, then CV i
L
(VLg ∩Q) ≤ CZi(d) has order q1/p and the result

follows by transitivity of Q on K. On the other hand, if d ∈ VLg ∩ Q has
an orbit of length p on K, then C〈(V 1

L)〈d〉〉(VLg ∩Q) ≤ C〈Z〈d〉1 〉
(d) which has

order q. Using the transitivity of Q on K, we deduce |CVL
(VLg ∩Q)| ≤ qs/p.

This proves the result. �

As Q acts transitively on the {Vi | 1 ≤ i ≤ s}, we have VL = [VL, Q]V1.
By (3.3.2) Q ∩ S0 6= 1 and so |[V1, Q]| ≥ q. In particular

|VL : [VL, Q]| ≤ q.

Since VL ∩Q∩CLg(VLg) ≤ CVL
(VLg ∩Q), (3.3.3) and |VL| = q2s together

give

|(VL ∩Q)CLg(VLg)/CLg(VLg)| ≥ q2s−1−s/p.
On the other hand, by Lemma 2.9 the p-rank of L is as where q = pa. Hence

s ≥ 2s− 1− s/p

and so

s = p = 2.

In particular, Lemma 2.9 implies

(3.3.4) |(VL ∩Q)CLg(VLg)/CLg(VLg)| = q2 = 22a.

Assume that q > 2. Since Sg/Sg
0 has 2-rank 2 and VL ∩ Q is elementary

abelian, (VL ∩ Q ∩ Sg
0)CLg(VLg)/CLg(VLg) has rank at least 2a − 2 6= 1.

Since VL ∩ Q ∩ Sg
0 is normalized by Q and Q permutes {Kg

1 ,K
g
2} transi-

tively, VL ∩ Q ∩ Sg
0 contains an element which projects non-trivially on to

both Sg
1CLg(VLg)/CLg(VLg) and Sg

2CLg(VLg)/CLg(VLg). Thus VL ≥ [VL ∩
Q, [VLg , Q]] ≥ Zg

0 . But then, using (3.3.3) yields the contradiction

q2 = |Zg
0 | ≤ |CVL

(VLg ∩Q)| ≤ q.

Thus q = s = 2. It follows from Lemma 3.2 that W is transitive on K and
Q ∼= Dih(8) or Q is elementary abelian of order 4. The second possibility
gives L◦ ∼= Ω+

4 (2), which is ambiguous. This proves Proposition 3.3. �

Next we deal with the case s = 1.

Proposition 3.4. Suppose that Op(L◦) ∼= SL2(q) where q = pa = rp, VL =
YL is the natural Op(L◦)-module and that some element of L◦ induces a
non-trivial field automorphism on Op(L◦). Then p = 2 = r.
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Proof. We may assume that rp > 4. By Lemma 3.2 we have that W 6≤ S0
and, as W is generated by elements of order p, we have that |S0W : S0| = p.
As Q is normal in S, 1 6= Q∩S0, so Z0 ≤ Q∩YL. Furthermore, as Q contains
elements which act as field automorphisms on Op(L◦),

|VL ∩Q : Z0| ≥ |[VL, Q] : Z0| ≥ rp−1 > p,

by assumption. Thus no element in S \ QL centralizes a subgroup of index
p in VL ∩Q.

Set W1 = 〈ZD
0 〉. As Z0 centralizes W ∩S0, every element of Z0 centralizes

a subgroup of index at most p in W . As W1 is generated by conjugates of
Z0, and these conjugates all contain elements which centralize a subgroup
of index at most p in W , W1 is generated by elements which centralize a
subgroup of index at most p in VL ∩ Q. As no element in S \ QL has this
property, we conclude that W1 ≤ QL. Hence [VL,W1] = 1. In particular
[VL ∩ Q,W1] = 1 and so also [W,Z0] = [W,W1] = 1. This shows W ≤ S0
and contradicts Lemma 3.2. �

We collect the results of this section in the following proposition:

Proposition 3.5. Suppose that L ∈ LG(S), L 6≤ NG(Q), VL 6≤ Q and L is
in the unambiguous wreath product case. Then one of the following holds:

(i) L◦ ∼= O+
4 (2) , Q = S ∼= Dih(8) and YL = VL is the natural module.

(ii) L◦ ∼= ΓSL2(4), VL is the natural SL2(4)-module and |YL : VL| ≤ 2.
(iii) L◦ ∼= SL2(4), VL is the natural module and |YL : VL| = 2.

Proof. If |K| > 1, then (i) holds by Proposition 3.3, so we may assume that
|K| = 1. As L is unambiguous, either YL 6= VL or L◦ 6∼= SL2(q). If YL 6= VL,
then by definition of the wreath product case, (ii) or (iii) holds. So we may
assume YL = VL and L◦ 6∼= SL2(q). Now (ii) holds by Proposition 3.4. �

4. L◦ ∼= O+
4 (2)

In this section we analyse the configuration from Proposition 3.5(i). We
prove

Proposition 4.1. Suppose that L ∈ LG(S), L 6≤ NG(Q) and L in the
unambiguous wreath product case. If YL 6≤ Q and L◦ ∼= O+

4 (2), then G ∼=
Sym(8), Sym(9) or Alt(10).

Proof. By Proposition 3.5 we have Q ∼= Dih(8). Since YL is the natural
O+

4 (2)-module for L/CL(YL) and VL is also the wreath product module for

L/CL(YL) with respect to {K1,K2}, we have the following well known facts.

(4.1.1)

(i) |[YL, Q]| = 23, |[YL, Q,Q]| = 22 and CYL
(Q) = [YL, Q,Q,Q] has

order 2.
(ii) [YL, S0] = CYL

(S0) has order 22;
(iii) |[YL, Q′]| = 22;
(iv) CL([YL, Q]) ≤ CL(YL).

Our first aim is to prove

(4.1.2) W is elementary abelian of order 22, [YL,W ] = [YL, Q] = YL ∩ Q
and [YL,W,W ] = CYL

(W ) = CYL
(Q) = Z.
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Applying Lemma 3.1, we consider x ∈ D such that YLx ∩ Q 6≤ CL(YL).
Then YLx ∩Q is normalized by Q and so

YLx ∩Q contains a 2-central involution in Q.

In particular, (4.1.1)(iii) gives

|[YL, YLx ∩Q]| ≥ 22.

As YL is elementary abelian, YLx ∩Q is elementary abelian.
Suppose that [YL, YLx ∩Q,YLx ∩Q] = 1. Then

[YL, YLx ∩Q] ≤ CSx([YLx , Q]) = QLx

by (4.1.1) (iv). Hence [YL, YLx ∩ Q,YLx ] = 1. Then as |[YL, YLx ∩ Q]| = 22

and |YL ∩Q| = 23, we conclude that (YL ∩Q)CLx(YLx)/CLx(YLx) has order
2. Thus [YLx , YL ∩Q,YL ∩Q] = 1. Now the argument just presented implies
that |YLx ∩Q| = 2 and so, as Q normalizes YLx ∩ Q, YLx ∩Q = Z(Q). In
particular, as [YL, S0, S0] = 1, we have proved that

if YLx ∩Q ≤ S0, then YLx ∩Q = Z(Q).

For a moment let Q1 be the fours subgroups of Q not equal to S0. Then
as Φ(YLx ∩Q) = 1 the displayed line implies that W ≤ Q1 and Lemma 3.2

and Q
′ ≤ YLx ∩Q imply W = Q1. The remaining statements in (4.1.2) now

follow from the action of L on YL. �

We have that Z(Q) centralizes [YL, Q] and so Z(Q) ≤ S ∩ CL(YL) = QL.
Hence using (4.1.2) we obtain

[W,W ] = [〈[YL, Q]D〉,W ] = 〈[[YL, Q],W ]D〉

= 〈ZD〉 = Z[Z, 〈V NG(Q)
L 〉] ≤ Z[Z(Q), 〈V NG(Q)

L 〉]
= Z〈[Z(Q), VL]NG(Q)〉 = Z.

(4.1.3) We have QL = YL.

Suppose that QL > YL. Let m ∈ L be such that K ∼= SL2(2) × SL2(2),
where K = 〈W,Wm〉. Recall that by the choice of L in the Notation at the
end of the introduction, we have YL = Ω1(Z(QL)) and by Proposition 3.5
and (4.1.2),K acts irreducibly on YL = VL. Hence we may apply Lemma 2.11
(iii), (iv) and (v) which combined yield UL/YL is elementary abelian and

U ′L = YL.

Since [QL,W,W ] ≤ [W,W ] = Z ≤ YL, we have W acts quadratically on
every chief factor of L in QL/YL. In particular, no non-central L-chief factor
of QL/YL is isomorphic to YL.

Let E be the preimage of CUL/YL
(K). Then E is normal in L and applica-

tion of Lemma 2.6 implies that E = YL. LetX ∈ Syl3(K). By Lemma 2.11(i),
[K,CL(YL)] ≤ UL, so XUL is normal in L. As L is solvable, CL(YL) =
CX(YL)QL and either CX(YL) = 1 or X ∼= 31+2

+ . The latter case is im-

possible as W is quadratic on UL/YL. Hence UL = [UL, O
2(L)] and UL/YL

contains no central L-chief factors. We know that every L-chief factor in
15



UL/YL is a wreath product module for SL2(2) o 2 with W acting quadrati-
cally. In particular, for every non-central chief factor F of L in UL/YL we
have [F,W ] = [F,Z(Q)]. Set W1 = [W,D]. Then

W1 ≥ [W,Q] = Z(Q).

Hence [F,W ] = [F,W1] for every non-central chief factor F of L in UL/YL.

Set L̃ = L/YL and let z ∈ Q with Z(Q) = 〈z〉. As CF (Z(Q)) = [F,Z(Q)]

for each F , we have C
ŨL

(z) = [ŨL, z]; then as W acts quadratically on ŨL,

we have [W, ŨL] = C
ŨL

(W ). Thus [UL,W ]YL = [UL,W1]YL. In particular,

[W/W1, UL] = [UL,W ]W1/W1 = (YL∩Q)[UL,W1]W1/W1 = (YL∩Q)W1/W1

and so UL acts quadratically onW/W1. Therefore ULCD(W/W1)/CD(W/W1)
is elementary abelian. Hence

YL = U ′L ≤ CD(W/W1).

Set R = 〈Y D
L 〉. Then, as YL 6≤ O2(D) by Lemma 3.1 (i), YL ∩ O2(D) =

YL ∩Q ≤ W and so R centralizes O2(D)/W and W/W1. Lemma 2.3 yields
YL ≤ O2(D) and this contradicts Lemma 3.1 (i). We have shown QL = YL. �

(4.1.4) |S| = 27 and NG(Q)/Q ∼= Sym(3).

Since QL = YL = VL and Q ∼= Dih(8), |S| = 27 and |Q| = 26. Then
NG(Q) = SX, where X is a Hall 2′-subgroup of NG(Q) and QX is normal
in NG(Q). Furthermore W is extraspecial of order 25. As W/Z = J(Q/Z),
we have W is normal in NG(Q). Hence X acts faithfully on W and embeds
in O+

4 (2). As [W,Q] = Z(Q), S/W is faithful on W/Z, so NG(Q)/W embeds
into O+

4 (2). Because O+
4 (2) ∼= Sym(3) o 2, and O2(NG(Q)/W ) 6= 1, we get

the claim. �

Taking T ∈ Syl3(L), we have NL(T ) is a complement to QL and so L =
QLNL(T ) is a split extension of QL by O+

4 (2). In particular, the isomorphism
type of S is uniquely determined. As Sym(8) has a subgroup isomorphic to
L and Sym(8) has odd index in Alt(10), we have S is isomorphic to a Sylow
2-subgroup of Alt(10).

Let z ∈ CYL
(Q)#, then as YL is a +-type space for L, there is a fours

group A of YL which has all non-trivial elements L-conjugate to z. Since
CG(z) has characteristic 2, CO(G)(z) = 1 and so by coprime action

O(G) = 〈CO(G)(a) | a ∈ A#〉 = 1.

Assume that G has no subgroup of index two. Then S is isomorphic
to a Sylow 2-subgroup of Alt(10). Therefore [Mas, Theorem 3.15] implies
that F ∗(G) ∼= Alt(10), Alt(11), PSL4(r), r ≡ 3 (mod 4), or PSU4(r), r ≡
1 (mod 4). Notice that Z(Q) = CYL

(Q) = 〈z〉 and so CG(z) = NG(Q)
has characteristic 2. In Alt(11), z corresponds to (12)(34)(56)(78) and so
CG(z) ≤ (Alt(8)× Z3) : 2, which implies that CG(z) is not of characteristic
2. In the linear and unitary groups CG(z) has a normal subgroup isomorphic
to SL2(r) ◦ SL2(r), and this contradicts (4.1.4). Hence G ∼= Alt(10).
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Assume now that G has a subgroup of index two. As VL ≤ G′ we also
have W ≤ G′. Therefore (G′ ∩ L)/YL ∼= Ω+

4 (2) and so G′ has Sylow 2-
subgroups isomorphic to those of Alt(8). Applying [GH, Corollary A*] we
have F ∗(G) ∼= Alt(8), Alt(9) or PSp4(3). Again in G′ ∼= PSp4(3), we have
that G′ contains a subgroup of shape SL2(3)◦SL2(3). This contradicts (4.1.4)
and proves the proposition. �

5. L◦ ∼= ΓSL2(4)

In this section we attend to the case from Proposition 3.5(ii). Hence we
have p = 2, L◦ ∼= ΓSL2(4), VL is the natural SL2(4)-module and either
YL = VL or |YL/VL| = 2. Notice that as L 6≤ NG(Q) and L centralizes
YL/VL, if YL > VL, YL does not split over VL and CYL

(Q) = CVL
(Q) has

order 2. Furthermore, CS([YL, Q]) = QL.
Our aim is to prove

Proposition 5.1. Suppose L ∈ LG(S) and L 6≤ NG(Q) with L in the
unambiguous wreath product case. If YL 6≤ Q and L◦ ∼= ΓSL2(4), then
G ∼= Mat(22) or Aut(Mat(22)).

Notice that as QL ∈ Syl2(CL(YL)), CL(YL)/QL is centralized by L◦, and
so CL◦(YL) = QL∩L◦ as the Schur multiplier of SL2(4) has order 2. We also
have |Q| ≥ 4 and |Z(Q) ∩ VL| = 2.

Lemma 5.2. For N = NG(QL) we have (Z(Q) ∩ VL)N ∩ YL ⊆ VL. In
particular, N normalizes VL.

Proof. If VL = YL, there is nothing to prove. Assume that |YL : VL| = 2.
Choose g ∈ N , put U = (Z(Q) ∩ VL)g and assume that U 6≤ VL. Recall
that YL = Ω1(Z(QL)) and so U ≤ YL and YL is normalized by N . Then

CL(U)CN (YL)/CN (YL) ∼= 5 : 4 or 2 × Sym(3). As CN (Ug−1
) normalizes

Q∩YL, CN (Ug−1
) is not irreducible on YL/U

g−1
. This excludes the possibility

CL(U)CN (YL)/CN (YL) ∼= 5 : 4 which is irreducible on YL/U . Hence we see
that Z(Q) ∩ VL has exactly 15 + 10 = 25 conjugates under N , but 25 does
not divide the order of SL5(2) = Aut(YL). This contradiction proves the
lemma. �

Lemma 5.3. We have QL = YL and either

(i) |S| = 27, L/QL
∼= ΓSL2(4), NG(Q)/Q ∼= SL2(2), there exists a

subgroup E ≤ S of order 24 which is normalized by NG(Q) such
that NG(E)/E ∼= Alt(6) and NL(E) has index 5 in L. Furthermore
all the involutions in 〈NG(E), L〉 are conjugate.

(ii) G has a subgroup of index 2 which satisfies the conditions in (i).

Proof. We have S ∼= Dih(8) and Q 6≤ S0 as L◦ ∼= ΓSL2(4). Lemma 3.2
implies that W 6≤ S0. By assumption, we either have YL = VL or |YL : VL| =
2. In particular, 24 ≤ |YL| ≤ 25. Since Q is normal in S and contains W we
know

(5.3.1) Either Q is elementary abelian of order 4 or Q = S

As VL is a natural SL2(4)-module and L 6≤ NG(Q), we have CYL
(Q) =

CYL
(S) has order 2 and [YL, Q] = [VL, Q] has order 8. Furthermore, as W
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is normal in S and is not contained in S0, we have [YL, Q,W ] = Z where
Z = CVL

(S) has order 2. Thus, arguing exactly as before (4.1.3) and in the
proof of (4.1.2) we obtain

(5.3.2) |W | = 4, [W,W ] = Z and [QL,W,W ] ≤ YL.

(5.3.3) Assume that QL > YL. Then [QL, O
2(L)] 6≤ YL.

Suppose that [QL, O
2(L)] ≤ YL. Then VL 6≤ Φ(QL) by Burnside’s Lemma

[GLS2, Proposition 11.1], which contradicts Lemma 2.10(iii). This proves
the claim �

(5.3.4) If VL < YL, then Q = S.

If Q has order 4, then Q = W by (5.3.2), so Q normalizes a Sylow
3-subgroup T of L and so Q normalizes CYL

(T ) which has order 2 and
complements VL. Hence CYL

(T ) ≤ Z(Q), so T ≤ NG(Q) and therefore

L = 〈T, S〉 ≤ NG(Q), a contradiction. Thus Q = S has order 8. �

(5.3.5) We have QL = YL.

Suppose false. By (5.3.2) W acts quadratically on QL/YL and |W | = 4.
Also W 6≤ S0, so Lemma 2.2 implies that the non-central L-chief factors in
QL/YL are orthogonal modules for L ∼= O−4 (2). In particular, as L-modules,
the non-central L-chief factors of QL/YL are not isomorphic to VL.

Choose E ≤ QL normal in L and minimal so that E/YL contains a non-
central L-chief factor and let F be the preimage of CE/YL

(O2(L)). Then

[F,O2(L)] ≤ YL and Lemma 2.6 applies to yield F ≤ YL. In particular,
[E,E] ≤ YL.

We claim E′ ≤ VL. This is obviously the case if VL = YL. So suppose that
|YL : VL| = 2. If E′ 6≤ VL. Then the minimal choice of E and E′VL = YL
implies that E/VL is extraspecial of order 25. Notice that [E,W ] ≤ W and
W/Z is elementary abelian as [W,W ] = Z by (5.3.2). Hence, as [E,W ]YL/VL
has order 23, we infer that E/VL has +-type contrary to L ∼= ΓSL2(4). Hence
E/VL is elementary abelian. If [QL, E] = VL, then E/VL has order 24 by
Lemma 2.2 and so QL/CQL

(E) embeds into

HomL(E/VL, VL) ∼= (E/VL)∗ ⊗ VL ∼= (E/VL)⊗ VL
by Lemma 2.7. Since QL/CQL

(E) involves only trivial and orthogonal mod-
ules this contradicts [Pr, Lemma 2.2].

Thus [E,QL] = YL > VL.
By (5.3.4)

Q = S has order 8.

In summary we now know |W | = 4 and [W,Q] = [W,S] = Z(S).
We calculate using Z is normal in D by (5.3.2) that

[W,Q,Q] = 〈[VL, Q,Q,Q]D〉 = 〈ZD〉 = Z.

Therefore
[E, [W,Q], Q] ≤ E ∩ [[W,Q], Q] ≤ Z ≤ YL.
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As |[Z(S), E/YL]| = 4 and Q = S, this implies that |CE/YL
(S)| = 4. As

E/YL is the orthogonal O−4 (2)-module for L, this is impossible. We have
proved the claim. �

(5.3.6) Suppose that YL = VL. Then L is a maximal 2-local subgroup of
G, NG(Q)/Q ∼= SL2(2), there exists a subgroup E ≤ S of order 24 which is
normalized by NG(Q) such that NG(E)/E ∼= Alt(6) and NL(E) has index 5
in L.

By (5.3.5) we have |S| = 27, and |W | = 22. Also |[W,YL]| = 8 and YL 6≤ Q,
so Q ∩ YL = [W,YL] = W ∩ YL, Therefore |W | = 25. Set C = CQ(W ). Then
C centralizes [YL, Q] which has order 23 and so C ≤ CL([YL, Q]) = YL. Thus
C ≤ CYL

(W ) which has order 2. Then, by (5.3.2), W ′ = Z = C and, as W
is generated by involutions, we have W is extraspecial. Since [YL, Q] ≤ W ,
W has +-type.

Observe W/Z = J(Q/Z), so W is normal in NG(Q) and NG(Q)/Z embeds
into Aut(W ) ∼= 24:O+

4 (2).
Assume that YLQ/Q normalizes a subgroup T of O3(NG(Q))/Q which has

fixed points on W/Z. Then W = [W,T ]CW (T ) and [W,T ] ∼= CW (T ) ∼= Q8

and these subgroups are normalized by YL. But then

[W,YL] = [CW (T ), YL][W,T, YL].

Since [W,YL] is elementary abelian and Ω1(P ) = Z(P ) for P ∼= Q8, we
conclude that

[CW (T ), YL] = [W,T, YL] = Z

and then [W,YL] has order 2 which is nonsense as YL is the natural module.
Therefore YL normalizes no such subgroup.

Let F = O2,3(NG(Q)). Assume that |F/Q| = 9. Then the previous argu-
ment implies that CF/Q(YL) 6= 1. Let T1 be the preimage of this subgroup.
Then [YL, Q] is normalized by T1. Hence YL = CYLQ([YL, Q]) is normalized
by T1. Using the fact that Q is weakly closed in any 2-group which contains

it, for w ∈ Y #
L , we let Qw be the unique conjugate of Q in O2(CG(w)). Then

T1 permutes the elements of YL and so T1 normalizes L◦ = 〈Qw | w ∈ Y #
L 〉.

Since L = L◦YL, we have that T1 normalizes L. On the other hand, WYL is
normalized by T1 and, as T1 acts fixed-point freely on W/Z, T1 acts transi-
tively on WYL/YL ∼= W/[YL, Q] ∼= 22 and this is impossible as W ∩ O2(L)
is a maximal subgroup of W and is normalized by T1.

Hence |F/Q| = 3, NG(Q) = FS and NG(Q)/Q ∼= SL2(2). In particular,
|Q| = 26, S = YLQ, and FYL/W ∼= 2× SL2(2). It follows that

[W,Q] is elementary abelian of order 8.

et E = CS([W,Q]). As W is normal in NG(Q), so is E. As |S| = 27

and |GL3(2)|2 = 23, we have |E| ≥ 24. Since F acts fixed-point freely on
W/Z (being normalized by YL), we have E ≤ Q and then E is normal in
NG(Q). Since E ∩ W = [W,Q], we find |E| = 24. Let S ≤ L1 ≤ L be
such that L1/QL

∼= Sym(4) has index 5 in L. Notice that O2(L1) = S0.
Then E ≤ CL([YL, Q,Q]) = YLS0. Also YL ≤ S0, so S0 = YLS0. Therefore
E ≤ S0. Now EYL/YL acts as a Sylow 2-subgroup of SL2(4) on the natural
module. In particular for any involution e ∈ E \ YL we have that CYL

(e) =
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E ∩ YL. This implies that all involutions in EYL are contained in YL ∪ E
and therefore E and YL are the only elementary abelian subgroups of S0
of order 24. In particular, L1 normalizes E. Now NG(E) ≥ 〈L1, NG(Q)〉 ∈
LG(S). Notice that L1 has orbits of lengths 3, and 12 on E and that NG(Q)
does not preserve these orbits. Hence NG(E) acts transitively on E#. As
NG(Q) = CG(Z), we now have that |NG(E)| = 15|NG(Q)| = 27 · 32 · 5.
We have that X = NG(E)/E is isomorphic to a subgroup of GL4(2) ∼=
Alt(8) of order 23 · 32 · 5. We consider the action of X on a set of size 8.
As Alt(8) has no subgroups of order 45, X is not transitive. Hence X is
isomorphic to a subgroup of Alt(7), Sym(6) or X ∼= (Alt(5)× 3):2. Suppose
that X ∼= (Alt(5) × 3):2. As NG(Q)/Q ∼= Sym(4), we see that EQ/E ≤
Alt(5). Since E is the natural SL2(4)-module, we get that |Z(Q)| = 4. But,
by (5.3.2), |Z(Q)| = 2. Hence we have one of the first two possibilities and
then obviously X = NG(E)/E ∼= Alt(6).

We just have to show that L is a maximal 2-local subgroup. Let M be a
2-local subgroup with L ≤ M . As Q ≤ M , we have that M is of character-
istic 2. Then YL = YM and CG(YL) = YL. As |NG(Q) : S| = 3 and YL is not
normal in NG(Q), we have NM (Q) = S = NL(Q). As L acts transitively on

Y #
L , we conclude M = NM (Q)L = NL(Q)L = L. �

(5.3.7) If YL = VL, then G has just one conjugacy class of involutions.

By (5.3.6) NG(E)/E ∼= Alt(6). As YL 6≤ E, there is an involution y ∈
YL \ E. Now y inverts an element of order 5 in NG(E) and so |[E, y]| =
|CE(y)| = 4. This shows that all involutions in Ey are conjugate. As all
involutions in S/E are conjugate in Alt(6) and all the involutions in YL are
L-conjugate, this proves the claim. �

We have now proved that (i) holds when YL = VL.

(5.3.8) Suppose that YL > VL. Then G has a subgroup of index 2.

We have that |S| = 28. By (5.3.4) and (5.3.5), S = QYL. We are going
to show that J(S) = YL. For this let A ≤ S be elementary abelian of
maximal order and assume that A 6= YL. Then |AYL/YL| ≤ 4. As there are
no transvections on VL, we get |AYL/YL| = 4 and we may assume that A acts
quadratically on YL by [GLS2, Theorem 25.2]. As W 6≤ S0 by Lemma 3.2
and |W | = 4 by (5.3.2), W does not act quadratically on YL, AYL/YL ≤
S0/YL and S0 = AYL. Now A ∩ YL has order 8 and so |CYL

(S0)| = 8.
But (L◦)′ is generated by two conjugates of S0, which gives CYL

(L◦) 6= 1 a
contradiction to Lemma 2.10(i). Thus YL = J(S) is the Thompson subgroup
of S. In particular, NG(YL) controls G-fusion of elements in YL. As S ∈
Syl2(G) and CS(YL) = QL, QL ∈ Syl2(CG(YL)) and we have NG(YL) =
CG(YL)NNG(YL)(QL). By Lemma 5.2

VL is normal in NG(YL).

Suppose that O2(L) ≥ YL. Then O2(L)/VL ∼= SL2(5) has quaternion Sylow
2-subgroups and |L : O2(L)| = 2. On the other hand, there exists g ∈
NG(Q) \ NG(YL) with WYL ≥ (Y g

L ∩ Q)YL 6= YL and (Y g
L ∩ Q)VL/VL is

elementary abelian, which is a contradiction. Therefore O2(L)/VL ∼= SL2(4)
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and, as W does not act quadratically on YL, we see that |W : W∩O2(L)| = 2
and thus O2(L)W/VL ∼= ΓSL2(4). Hence L has a subgroup L0 = O2(L)W
of index 2 with YL ∩ L0 = VL.

Let T ∈ Syl2(L0) and w ∈ YL \ T . Suppose that for some x ∈ G, wx ∈ T
and |CS(wx)| ≥ |CS(w)|. As L◦ has orbits of length 6 and 10 on YL \ VL,
we may assume |CS(wx)| ≥ |S|/2. But then as VL is the natural module,
it does not admit transvections and so wx ∈ VL. As NG(YL) = NG(VL)
and NG(YL) controls fusion in YL, this is not possible. Hence the supposed
condition cannot hold. Application of [GLS2, Proposition 15.15], shows that
G has a subgroup of index 2. This proves (5.3.8). �

Let G0 be a subgroup of G of index 2, and set Q0 = Q ∩ G0. We have
VL ≤ L◦ ≤ G0. Hence W = 〈[VL, Q]D〉 ≤ G0. In particular, W ≤ Q0 and
so Z(Q0) = Z and Q0 is large in G0. Set L0 = O2(L)Q0 = O2(L)W . Then
L◦0/VL

∼= ΓSL2(4) and YL0 = VL0 = VL 6≤ Q0. Thus (G0, L0) satisfies the
hypotheses of (i). This proves (ii) holds if VL 6= YL. �

Proof of Proposition 5.1: By Lemma 5.3 we just have to examine the struc-
ture in Lemma 5.3(i), so we may assume that Lemma 5.3(i) holds.

By Lemma 2.1
NG(E) splits over E.

As NG(Q) ≤ NG(E), for a 2-central involution z we have that CG(z) is
a split extension of E by Sym(4). As O(CG(z)) = 1 coprime action yields
O(G) = 〈CO(G)(e) | e ∈ E#〉 = 1. In particular F (G) = 1 and E(G) 6= 1.
Suppose that J∗ is a non-trivial subnormal subgroup of G normalized by
〈L,NG(E)〉. Then S ∩ J∗ 6= 1. Since 1 6= J∗ ∩ NG(E) is normal in NG(E)
and 1 6= J∗ ∩L is normal in L, it follows that J∗ ∩NG(E) ≥ J∗ ∩ S ≥ EYL.

Hence J∗ ≥ 〈Y NG(E)
L 〉 = NG(E) ≥ S and J∗ ≥ 〈SL〉 = L. Therefore there is

a unique non-trivial subnormal subgroup of G of minimal order normalized
by 〈L,NG(E)〉. It follows that 〈L,NG(E)〉 is contained in a component J of
G. Since O(G) = 1 and S ≤ J , J = E(G). As J has just one conjugacy class
of involutions by Lemma 5.3(i) and, for z ∈ E#, CG(z) ≤ NG(E), it follows
that G = J is simple. Using G has just one conjugacy class of involutions and
applying [J, Theorem] yields G ∼= Mat(22). This proves the proposition when
Lemma 5.3(i) holds. If Lemma 5.3(ii) holds, then G ∼= Aut(Mat(22)). �

6. L◦ ∼= SL2(4)

In this section we investigate the configuration in Proposition 3.5(iii).
Thus L◦ ∼= SL2(4), |YL : VL| = 2 and VL is the natural SL2(4)-module.

As Q ≤ L◦, CVL
(S0) = CVL

(Q) ≤ Z(Q), so Q is normal in NL◦(CVL
(S0))

and hence Q = S0 is a Sylow 2-subgroup of L◦. In particular Z(Q) ∩ YL =
Z(Q) ∩ VL is of order 4.

Lemma 6.1. The subgroup Q is elementary abelian. In particular, Q∩YL =
Q ∩ VL = CYL

(Q) = Z, |YLQ/Q| = 23 and |VLQ/Q| = 22.

Proof. We know that [Q,VL] = CVL
(Q) = Q ∩ VL and, as Q is elementary

abelian, Φ(Q) ≤ QL. If Φ(Q) 6= 1, then, since Z(S) ∩ Φ(Q) 6= 1, we deduce
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Φ(Q) ∩ VL 6= 1. As NL(QQL) normalizes Q and is irreducible on [VL, Q],
[VL, Q] ≤ Φ(Q). But then VL centralizes Q/Φ(Q), so VL ≤ Op(NG(Q)) = Q,
a contradiction. This shows Q is elementary abelian and then also YL∩Q =
VL ∩Q = CYL

(Q). �

Proposition 6.2. Suppose L ∈ LG(S) and L 6≤ NG(Q) with L in the un-
ambiguous wreath product case. If YL 6≤ Q, L◦ ∼= SL2(4) and |YL : VL| = 2,
then G is Aut(Mat(22)).

Proof. We start by observing that the action of L on YL gives

(6.2.1)

(i) |VLQ/Q| = |Q : CQ(VL)| = 22;
(ii) for all v ∈ VL \Q, CQ(v) = CQ(VL); and
(iii) for all w ∈ Q \QL, [w, VL] = [Q,VL].

Let B = NL(QQL). Then B contains an element β of order 3 which acts
fixed-point freely on VL and irreducibly on [VL, Q] = CYL

(Q).
Using (6.2.1) (ii) and Lemma 2.8 yields [VL, F (NG(Q)/Q)] = 1. Let K ≥

Q be the preimage of

[E(NG(Q)/Q), VLQ/Q].

Then K is non-trivial, normalized by B and Lemma 2.8 implies VLQ/Q acts
faithfully on K/Q.

The three involutions of QQL/QL each centralize a subgroup of YL of
order 23 and by Lemma 2.10(i), there are three elements of YLQ/Q which
act on Q as GF(2)-transvections, they generate YLQ/Q and are permuted
transitively by B/Q. As B normalizes K and as VLQ/Q acts faithfully on
K/Q, at least one and hence all of the transvections in YLQ/Q act faithfully
on K/Q.

If CQ(K) 6= 1, then CCQ(K)(S) 6= 1. As Ω1(Z(S)) = CVL
(S) by Lemma 2.10

(ii), and CQ(K) is normalized by B, we have [Q,VL] ≤ CQ(K). But then

K = 〈V K
L 〉Q centralizes Q/CQ(K) contrary to CK(Q) = Q. Hence CQ(K) =

1.
Let V be a non-trivial minimal KYL-invariant subgroup of Q. Then KYL

acts irreducibly on V . Moreover, as YL does not centralize V , V 6≤ QL and,
as VL is the natural L◦-module we have [YL, V ] = [YL, Q] = YL ∩Q ≤ V . It
follows that K centralizes Q/V and so K/Q acts faithfully on V = [Q,K]
which is normalized by B. Hence CYL

(V ) = YL ∩ V = YL ∩ Q and YLQ/Q
acts faithfully on V . Recall that YLQ/Q is generated by elements which
operate as transvections on Q and hence on V . Therefore [McL, Theorem]
applies to give KYL/Q ∼= SLm(2) with m ≥ 3, Sp2m(2) with m ≥ 2, O±2m(2)
with m ≥ 2, or Sym(m) with m ≥ 7. Furthermore, V = [Q,K] is the natural
module in each case.

Since CYLQ/Q(S/Q) contains a transvection and has order 22, KYL/Q 6∼=
SLm(2) with m ≥ 3 or O±2m(2) with m ≥ 2. Suppose that KYL/Q ∼= Sym(m)
with m ≥ 7. Then, as YLQ/Q is generated by three transvections, we see that
YLQ/Q is generated by three commuting transpositions in KYL/Q. Let t be
the product of these transpositions. Then, as m ≥ 7, |[V, t]| = 23. However,
|[V, YL]| = 22, and so we have a contradiction. We have demonstrated
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(6.2.2) KYL/Q ∼= Sp2m(2), m ≥ 2 and [Q,K] = [Q,KYL] is the natural
module.

Since [Q,K] is the natural KYL/Q-module and [VL, Q] ≤ [Q,K] has order
22, we have [[VL, Q], S] 6= 1. In particular, QQL/QL < S/QL

∼= Dih(8) and
SQ/Q ∩K/Q acts non-trivially on [Q,VL].

ConsiderQ∗ = O2(KS). SinceQ∗ centralizes [Q,K],Q∗ centralizes [VL, Q]
and so Q∗QL = QQL. Hence Φ(Q∗) ≤ QL. If Φ(Q∗) 6= 1, then

[Q,K] = 〈Ω1(Z(S))K〉 ≤ Φ(Q∗)

and so also [Q∗,K] = [Q∗,K,K] ≤ [Q,K] ≤ Φ(Q∗) which is impossible.
Hence Q∗ is elementary abelian and it follows that Q ≤ Q∗ = CQ∗(Q) ≤ Q.
Since KS acts on [Q,K] and KYL/Q ∼= Sp2m(2), we now deduce S ≤ KYL
from the structure of Out(K/Q). Hence B = 〈SB〉 ≤ KYL as B normal-
izes KVL. It follows that B/Q is the minimal parabolic subgroup P of
K/Q irreducible on [YL, V ] and with O2(P ) centralizing [YL, V ]⊥/[YL, V ] =
CYL

(V )/[YL, V ]. Therefore there is β ∈ K of order three such that 〈β〉 is
transitive on the transvections in YLQ/Q and normalizes QLQ/Q which has
index 2 in S/Q. In particular, from the structure of the natural Sp2m(2)-
module β centralizes

CV (YL)/[V, YL] = (V ∩QL)/(V ∩ YL) = (V ∩QL)YL/YL ≤ [QL, V ]YL/YL.

As V is abelian, V acts quadratically on QL/VL. By Lemma 2.2, QL/VL
involves only natural SL2(4)-modules and trivial modules as L-chief factors.
We know β acts fixed-point freely on the natural module and so, as β cen-
tralizes [QL, V ]YL/YL, all the L-chief factors of QL/VL are centralized by
L. In particular, VL is the unique non-central L-chief factor in Q and so
YL ∩ Φ(QL) = 1. As Ω1(Z(S)) ≤ VL by Lemma 2.10 (ii), Φ(QL) = 1, so
QL = Ω1(Z(QL)) = YL, which together with S/QL

∼= Dih(8) implies

(6.2.3) YL = QL has order 25 and |S| = 28.

Together (6.2.2) and (6.2.3) give

(6.2.4) |Q| = 24 and NG(Q)/Q ∼= Sym(6).

We next show that G has a subgroup of index two. In NG(Q) we have a
subgroup U of index 2 of shape 24.Alt(6). Furthermore YL 6≤ U and VL ≤ U .
Since [v,Q] = CQ(v) for v ∈ VL \ Q and U/Q has one conjugacy class
of involutions, all the involutions in U \ Q are U -conjugate. Since L acts
transitively on VL and U is transitive on Q#, we have that all the involutions
in U are G-conjugate. As Q is large, we have CG(z) ≤ NG(Q) for z ∈ Q#.
Hence all the involutions in U have centralizer which is a {2, 3}-group. There
is an involution t in YL \VL, which is not in U and centralized by an element
of order 5 in L. Hence t is not conjugate to any involution of U . Application
of [GLS2, Proposition 15.15] gives a subgroup G1 of index two in G. We
have NG1(Q)/Q ∼= Alt(6). By Lemma 2.1 this extension splits and we have
that the centralizer of a 2-central involution z ∈ G1 is a split extension of an
elementary abelian group of order 16 by Sym(4). In particular O(CG(z)) = 1
and so by coprime action O(G) = 〈CO(G)(e) | e ∈ Q#〉 = 1. As YL 6≤ Q, there
is an involution y ∈ NG1(Q)\Q. Since all involutions in Qy and in NG1(Q)/Q
are conjugate, G1 has just one conjugacy class of involutions. In particular
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F ∗(G1) is simple. Application of [J, Theorem] gives that F ∗(G1) ∼= Mat(22)
and so G ∼= Aut(Mat(22)). �
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