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• Riparian shading can moderate river
temperature extremes, but data needed
to model this effect can be difficult to
obtain

• We combine Structure-from-Motion
(SfM) photogrammetry with river tem-
perature modelling to simulate the ef-
fect of tree shading

• Our approach simulates river tempera-
ture with a high degree of accuracy
and can help better understand thermal
processes in rivers
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Climatic warmingwill increase river temperature globally, with consequences for coldwater-adapted organisms. In
regions with low forest cover, elevated river temperature is often associated with a lack of bankside shading. Con-
sequently, rivermanagers have advocated riparian tree planting as a strategy to reduce temperature extremes.How-
ever, the effect of riparian shading on river temperature varies substantially between locations. Process-based
models can elucidate the relative importance of woodland and other factors driving river temperature and thus im-
prove understanding of spatial variability of the effect of shading, but characterising the spatial distribution and
height of riparian tree cover necessary to parameterise these models remains a significant challenge. Here, we doc-
ument a novel approach that combines Structure-from-Motion (SfM) photogrammetry acquired from a drone to
characterise the riparian canopy with a process based temperature model (Heat Source) to simulate the effects of
tree shading on river temperature. Our approach was applied in the Girnock Burn, a tributary of the Aberdeenshire
Dee, Scotland. Results show that SfM approximates true canopy elevation with a good degree of accuracy (R2 =
0.96) and reveals notable spatial heterogeneity in shading. When these data were incorporated into a process-
based temperature model, it was possible to simulate river temperatures with a similarly-high level of accuracy
(RMSE b0.7 °C) to a model parameterised using ‘conventional’ LiDAR tree height data. We subsequently demon-
strate the utility of our approach for quantifying the magnitude of shading effects on stream temperature by com-
paring simulated temperatures against another model from which all riparian woodland has been removed. Our
findings highlight drone-based SfM as an effective tool for characterising riparian shading and improving river tem-
peraturemodels. This research provides valuable insights into the effects of riparianwoodland on river temperature
and the potential of bankside tree planting for climate change adaptation.
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1. Introduction

There is increasing evidence that climate change will raise water
temperatures in temperate- and high-latitude rivers (Garner et al.,
2017a; Hardenbicker et al., 2017; Isaak and Rieman, 2013). Many of
the organisms that inhabit such water courses are cold water-adapted
species (e.g. salmonids) that are intolerant of high temperatures
(Elliott and Elliott, 2010; Jonsson and Jonsson, 2009). It is therefore
likely that climate changewill alter the thermal suitability of these envi-
ronments for fish and other aquatic fauna (e.g. Hedger et al., 2013;
Lynch et al., 2016; Poesch et al., 2016), potentially leading to geograph-
ical redistribution or structural changes in populations (e.g. Comte et al.,
2013; Myers et al., 2017; Ruiz-Navarro et al., 2016). In regions with re-
duced forest cover, elevated river temperatures in summer are often as-
sociated with a lack of bankside shading (e.g. Detenbeck et al., 2016;
Jackson et al., 2017; Johnson and Wilby, 2015). Consequently, riparian
tree planting is increasingly advocated as a strategy for mitigating in-
creased river temperature extremes in summer (see Davies-Colley
et al., 2009; Garner et al., 2017b; Ghermandi et al., 2009; Guillozet,
2015; Orr et al., 2015). However, while the processes by which riparian
shading (and tree planting or clearcutting) modifies stream tempera-
ture are increasingly well-understood (e.g. Dugdale et al., 2018;
Garner et al., 2014; Gomi et al., 2006; Guenther et al., 2014; Guenther
et al., 2012; Hannah et al., 2008; Leach and Moore, 2017; Leach and
Moore, 2011; Roth et al., 2010; Sun et al., 2015), the effect of shading
on temperature varies substantially between locations (e.g. Brown and
Krygier, 1970; Bowler et al., 2012; Holtby, 1988; Moore et al., 2005a)
with contrasting environmental characteristics. This means that the ef-
ficacy of riparian planting schemes can be highly variable between dif-
ferent rivers and regions. A better understanding of how and why the
effects of riparian tree cover vary between rivers and regions is there-
fore central to informing optimal riparian tree planting strategies.

Process-based stream temperature models simulate the real-world
mass and energy fluxes driving stream temperature dynamics (e.g.
Baker et al., 2018; Dugdale et al., 2017; Loinaz et al., 2013; Null et al.,
2010; Yearsley, 2009) and consequently have the potential to elucidate
the spatially and temporally variable effect of riparian tree cover on
river temperature. These models often contain routines capable of sim-
ulating the impact of riparian shading on radiative (and to a lesser ex-
tent, turbulent) fluxes at the stream surface (e.g. Chen et al., 1998a;
LeBlanc et al., 1997; Rutherford et al., 1997; Sun et al., 2015). However,
they are often difficult to parameterise, requiring extensive and detailed
topographic data on catchment and channel characteristics and riparian
tree heights, in addition to spatio-temporally variable
hydroclimatological data (e.g. Chen et al., 1998b; Garner et al., 2017b;
Justice et al., 2017; Trimmel et al., 2018; Fabris et al., 2018). While ade-
quate data on catchment topography can usually be obtained using
readily available mapping products and/or digital terrain models
(DTMs), detailed information on riparian tree heights (which are
often spatially heterogeneous and vary over time) can be challenging
to obtain. This represents a key limitation for the use of process based
models in remote regions or areas with highly variable forest cover.

There are several existing approaches for obtaining data on the spa-
tial distribution and height of riparian vegetation. Hemispheric photog-
raphy of the riparian canopy taken from the stream surface can be used
to directly measure the amount of solar radiation blocked by bankside
vegetation (Davies-Colley and Payne, 1998; Davies-Colley and Ruther-
ford, 2005; Garner et al., 2014; Leach and Moore, 2010, 2014;
MacDonald et al., 2014; Moore et al., 2005b). While this approach pro-
duces arguably the highest-resolution representation of riparian shad-
ing, it is very field and laboratory intensive and so only practical over
relatively short stream reaches. Consequently, many process-based
stream temperature studies have used coarsely-spaced field observa-
tions (e.g. vegetation elevation angles; Rutherford et al., 1997) or GIS
polygons describing riparian buffer heights (Chen et al., 1998a; Fabris
et al., 2018; Cox and Bolte, 2007; Sridhar et al., 2004). With the
exception of plantation agroforestry, these simplified approaches gen-
erally result in an imprecise representation of shading that reflects un-
realistic spatial homogeneity in tree heights and locations (Loicq et al.,
2018).More recently, a number of studies have demonstrated the utility
of LiDAR-derived digital elevation data for accurately representing the
impacts of bankside shading (Bachiller-Jareno et al., 2019; Justice
et al., 2017; Loicq et al., 2018; Wawrzyniak et al., 2017).When incorpo-
rated in a process-based temperature model with appropriate shading
routines, such data can help elucidate the stream temperature response
to riparian shading over large distances (Loicq et al., 2018). However,
despite these considerable advances, LiDAR data are a) often unavail-
able for remote/rural areas (e.g. Scotland; see Scottish Government,
2012), b) can be costly to obtain and c) can be ill-suited for the charac-
terisation of riparian shading as survey flights are often conducted for
other purposes (e.g. flood risk assessment) and hence coincide with
the leaf-off period (see Bachiller-Jareno et al., 2019).

Given these limitations, there is pressing need for alternative ap-
proaches that can provide detailed spatially heterogeneous information
on tree locations and heights across intermediate spatial scales
(1–10km) for relatively low cost. Advances in image-derived topographic
reconstruction using Structure-from-Motion (SfM) photogrammetry (see
Fonstad et al., 2013;Westoby et al., 2012) mean that it is now possible to
acquire high-accuracy, low-cost digital elevation data from small unoccu-
pied aerial systems (sUAS; Carbonneau and Dietrich, 2017). As a result,
drone-based SfM has seen considerable interest in the river sciences for
the derivation of a range of in-channel habitat metrics (e.g. Dietrich,
2017;Woodget and Austrums, 2017). SfM has also been used to quantify
riparian buffer vegetation (e.g. Michez et al., 2016, 2017) and forest can-
opy height (e.g. Birdal et al., 2017; Lisein et al., 2013; Wallace et al.,
2016) with a high degree of accuracy. Indeed, the ability of SfM to gener-
ate high-resolution digital elevation data at relatively low cost suggests it
could provide riparian tree height data of a similar quality to LiDAR but at
a much reduced cost over smaller or intermediate spatial scales. Such an
approach would allow for the accurate characterisation of riparian shad-
ing in streams previously too small or remote to warrant LiDAR surveys,
but too difficult to cover with extensive field sampling such as hemi-
spheric photography. This could substantially improve river temperature
modelling in smaller sub-catchments of data-poor regions, where river
temperatures can be highest and riparian shading most effective
(Jackson et al., 2018). Furthermore, because of the low deployment
costs of sUAS, it would be possible to acquire data during the optimal
leaf-on period or at multiple time points to inform models relating to
land management activities such as forest harvesting or tree planting.
However, despite showing considerable potential, the utility of SfM-
derived riparian tree heights for computing shading effects on stream
temperature has not yet been explored, and its utility for generating accu-
rate stream temperature predictions remains unknown.

This paper therefore assesses the potential of a new methodology
combining drone-based SfM and process-based river temperature
modelling for characterising and understanding the effects of riparian
woodland on the spatio-temporal variability of river temperature at in-
termediate spatial scales (10–10 km). We used SfM to measure tree
heights in a 2.2 km stretch of the Girnock Burn, an intensively studied
tributary of the Aberdeenshire Dee, Scotland, and subsequently input
these measurements into the Heat Source (Boyd and Kasper, 2003)
process-based stream temperature model to generate spatially and
temporally variable water temperature predictions. Our specific objec-
tives are to:

1. assess the ability of SfM to characterise spatial variability in riparian
tree shading;

2. evaluate the accuracy of a stream temperature model parameterised
using SfM tree height data;

3. compare stream temperature predicted using the SfM-
parameterised model against the same model parameterised using
LiDAR tree height data and;
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4. demonstrate the ability of this combination of SfM and process-
based modelling to improve understanding of the effects of riparian
shading on river temperature by comparing simulated temperatures
to those from a model in which tree cover has been ‘removed’.

2. Methods

2.1. Study area

The Girnock Burn drains the 30.3 km2 catchment of Glen Girnock
into the Aberdeenshire River Dee, a Special Area of Conservation
(SAC) for Atlantic salmon that originates in the Cairngorm Mountains
of the eastern Highlands of Scotland. The Girnock catchment ranges in
height from 862 m to 230 m at the confluence with the River Dee
(57.0515° N, 3.1048°W). Land use is predominantly heather moorland,
although amix of commercially planted conifer and semi-natural decid-
uous woodland is present within the lower 3.7 km of Girnock Burn
where this study was focused. Low permeability igneous andmetamor-
phic bedrock overlain with glacial and glacio-fluvial sediments drive
spatially variable groundwater inputs within the burn (Malcolm et al.,
2005), although studies indicate that there are no major point-source
groundwater contributions in the lower reaches that could substantially
affect surface water temperature (Malcolm et al., 2005). The catchment
receives ~1100mm of annual precipitation (Tetzlaff et al., 2005b).Win-
ter air temperatures generally remain between 0.5 and 4.0 °C while
mean daily summer temperatures are generally between 11.0 and
Fig. 1. a) Girnock Burnwith location of study reachmarked (blue dashed polygon). b) Location
within study reach.
13.5 °C (Langan et al., 2001; Hannah et al., 2004), although tempera-
tures ranging from −27 to 31 °C have previously been recorded in the
catchment (Moir et al., 2002). Mean discharge measured at a Scottish
Environmental Protection Agency (SEPA) gauging station (gauge ID
12004) located 1.3 km upstream from the confluence with the Dee is
0.52 m3 s−1.

Our study focuses on a 2.2 km stretch situated immediately up-
stream of the confluence with the River Dee flowing in a north to
north-east orientation (Fig. 1). The stretch is dominated by cobble and
boulder morphology and has a mean bed width of ~8.0 m and a mean
gradient of 0.016. The upstream limits of the study area mark a transi-
tion from open heather moorland terrain towards persistent bankside
vegetation, which drives a substantial increase in the quantity of ripar-
ian shading. This increase in riparian shading has been shown to have
a significant moderating effect on temperatures within the lower parts
of Girnock Burn using a variety of physically and statistically based as-
sessment approaches and qualitative description (Fabris et al., 2018;
Garner et al., 2014, Garner et al., 2017b; Imholt et al., 2013; Malcolm
et al., 2008; Malcolm et al., 2004).

2.2. SfM data

2.2.1. Generation of SfM tree height raster
Aerial photography of a ~4 km by ~250 m strip covering the study

stretch was acquired using a DJI Inspire 1 quadcopter equipped with a
Zenmuse X3 gimbal-stabilised camera (4000 × 3000 px, standard RGB
visible bands) in summer 2017. Owing to UK sUAS flight regulations
of temperature loggers, automated weather stations and Marine Scotland gauging station
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which require drones to be flown within 500 m horizontal distance (and
within line of sight) of the operator, the area was divided into five sub-
sections which were each acquired separately. Following the recommen-
dations of Carbonneau andDietrich (2017) and James andRobson (2014),
each sub-section was imaged from two separate altitudes (80 m and
100 m), with convergent imagery acquired at the higher of the two alti-
tudes to minimise systematic error in the resulting SfM datasets. Flights
were conducted over two days (14 and 17 July 2017); hydrometeorolog-
ical conditions (river level, cloud cover) were relatively consistent be-
tween these periods. Ground control was provided by 61 ground
control points (GCPs) distributed across the study stretch. The GCPs,
consisting of 40 × 40 cm squares of blue tarpaulin pegged to the ground,
were surveyed using a Leica Viva GS15 differential GPS running in RTK
Fig. 2. a) sUAS orthophoto of study reachwithmodel nodes and ground control points (GCPs)m
(DTM) created through from classification of SfM ground points. d) Tree height raster generate
mode. Agisoft PhotoScan Professional (Agisoft, 2017) was subsequently
applied to the dataset (1660 images in total) to generate a ~10 cm resolu-
tion orthophoto (Fig. 2a) and digital surface model (DSM; Fig. 2b) of the
area. Root mean square error (RMSE) of the SfM-derived DSM calculated
against the GCPs was 0.11 m, 0.17 m and 0.10 m in the x-, y- and z-
coordinates respectively. Following creation of the DSM, the SfM point
cloud was classified using Agisoft PhotoScan's automatic ground point
classification routine. The resulting ‘ground only’ point cloud was
inspected and manually edited to ensure that points were correctly clas-
sified. A 10 cm ‘bare earth’digital terrainmodel (DTM; Fig. 2c)was subse-
quently generated from the points corresponding to the (below-canopy)
ground surface. Finally, a tree height raster of the study area was created
by subtracting the DTM from the DSM (Fig. 2d).
arked. b) SfM-derived digital surfacemodel (DSM) of study reach. c) Digital terrainmodel
d by subtracting DTM from DSM. Note north offset of−30°.
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2.2.2. Assessing the accuracy of the SfM tree height raster
Although LiDAR data for the lower 1.7 km of the Girnock Burn exists

as part of the LiDAR for Scotland Phase I dataset (Scottish Government,
2012), the large temporal and seasonal differences between the LiDAR
dataset (leaf-off, acquired between March and May 2012) and the SfM
survey (leaf-on, July 2018) meant that it was not appropriate to carry
out a direct comparison of the SfM and LiDAR-derived tree height ras-
ters due to changes in leaf cover. Instead, we assessed the accuracy of
the SfM-derived DSM and DTM separately, first by comparing canopy
elevations in the SfM DSM to total station-derived observations ac-
quired in the field, and then by comparing ground elevations in the
SfM DTM to values derived from the LiDAR dataset.

To assess the extent to which the SfM-derived DSM approximated
true riparian canopy elevation,we positioned a LeicaViva TS12 total sta-
tion on a slope overlooking a ~800m long (streamwise distance) section
of the study stretch comprising variable tree cover (i.e. a broad range of
canopy elevations). Using the total station in reflectorless mode, we
measured the elevations of the top of 63 tree crowns. Efforts were
made to ensure that, despite some wind movement, measurements
were taken as close to the top of the tree as possible. We subsequently
extracted tree canopy elevations from the corresponding points in the
SfM DSM. Comparison of the total station canopy elevations against
those derived from theDSM indicates that SfMprovides a goodmeasure
of ‘true’ canopy elevation (Fig. 3A, R2 = 0.96, RMSE = 1.16 m).

Because SfM is not able to penetrate the tree canopy as readily as
other topographic reconstruction techniques (e.g. LiDAR), it was also
necessary to assess error in the ‘bare earth’ SfM digital terrain model,
as any substantial error would propagate into the final tree height ras-
ter. The vertical accuracy of the resulting SfM DTMwas therefore evalu-
ated by comparing it to a LiDAR DTM of the lower 1.7 km of Glen
Girnock derived from the LiDAR for Scotland Phase I dataset (Scottish
Government, 2012). CloudCompare (CloudCompare, 2018) was used
to separate the LiDAR point cloud into tree canopy points (first returns)
and ground points (last returns). The ground returns were densified
(afterWawrzyniak et al., 2017) and rasterised to create a 1m resolution
LiDAR DTM. Elevations from the SfM and LiDAR DTMs were sampled
using a mesh of gridded points at 10 m intervals located within a
100 m buffer of the stream channel. Only sections of the DTM that oc-
curred under areas of tree canopy were sampled to avoid over
favourable comparisons (as bare-ground elevations in areas absent of
tree cover were extremely similar between the two datasets). Results
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Fig. 3. a) Comparison between SfM-derived tree canopy elevations (extracted from DSM) and
derived below-canopy elevations (extracted from DTM). Total station elevations are given rela
relative to mean sea level.
of this comparison indicated that the SfMDTMwas able to approximate
the LiDAR ground elevations below the tree canopy with a high degree
of accuracy (Fig. 3B, R2 = 0.98, RMSE = 1.25 m, bias = −0.35 m).

Given the logistical difficulty offield sampling tree heights over large
areas and uncertainty in the ‘real’ treetop heights (owing to leaf cover
and wind movement) a field measurement error on the order of ~1 m
might be expected. In light of the small differences between measured
and modelled canopy elevations and good agreement between the
ground points in the SfM and LiDAR DTMs, we determined that the
SfM tree height raster was a good reflection of true tree heights in
Girnock Burn.

2.3. Temperature model

Stream temperature was modelled using Heat Source version
9.0.0b19 (available at https://github.com/rmichie/heatsource-9). An
in-depth explanation of themodel is beyond the scope of this article, al-
though exhaustive details can be found in Boyd and Kasper (2003) and
Trimmel et al. (2018). In brief, Heat Source is a process-based coupled
hydraulic/river temperature model that simulates temperatures in a
single (streamwise) dimension by calculating the net energy fluxes at
each model node/timestep:

Htotal ¼ Hsw þ Hlw þ He þ Hs þ Hb þ Ha ð1Þ

where Htotal represents the total energy gain (loss) by the river channel,
Hsw is the net solar (shortwave) radiation flux, Hlw is the net longwave
radiation flux, He is the latent heat flux, Hs is the sensible heat flux, Hb

represents heat conducted to or from the river bed and Ha is advective
flux from tributaries, diffuse and local groundwater inputs and
hyporheic exchange (all in W m−2). The change in water temperature
at each model node and timestep is computed as a function of energy
gained or lost from the channel. Heat Source functions by simulating
all of the above fluxes (with the exception of the tributary and ground-
water components of Ha which are manually specified) using a series of
physically-based and empirically-derived equations applied to input
hydrometeorological and geomorphological data (see Section 2.4).
However, to improve model performance, we edited the Python source
code to allow the use of direct observations of Hsw and Hb.

We chose to use Heat Source because it is one of the few readily
available (i.e. public and well-documented) process-based river
225 230 235 240 245 250 255 260 265
LiDAR DTM ground eleva�on (m ASL)

225

230

235

240

245

250

255

260

265

Sf
M

 D
TM

 g
ro

un
d 

el
ev

a�
on

 (m
 A

SL
)

B

y = 0.96x + 8.98

R 2 = 0.98
RMSE = 1.25 m, n = 1038

total station observations (field measurements). b) Comparison between SfM and LiDAR-
tive to the total station (set at 100 m in the X,Y and Z coordinates), all other elevations are

https://github.com/rmichie/heatsource-9


331S.J. Dugdale et al. / Science of the Total Environment 678 (2019) 326–340
temperature model that a) incorporates a detailed riparian shading
model, b) can simulate stream hydraulics, c) allows for separate
parameterisation of advective, groundwater (diffuse and localised)
and hyporheic inputs and d) is easily customisable via modifications
to its source code (see Dugdale et al., 2017 for a detailed review). Fur-
thermore, Heat Source is specifically adapted to allow input of tree
heights from raster geospatial data (such as SfM or LiDAR), and is thus
ideally suited to this study. While we appreciate that Heat Source pro-
vides a slightly simplified representation of tree shading in comparison
to some more comprehensive riparian shade routines (e.g. DeWalle,
2008, 2010; Li et al., 2012; Rutherford et al., 2018a, 2018b), none of
these models are readily available and/or permit the input of SfM/
LiDAR data. Furthermore, the time required to develop a new model
based on these principles was deemed prohibitive and inappropriate
in a management context where the emphasis is often on the use of
existing tools. Given that the purpose of our study is the demonstration
of SfM as a potential source of tree height data for river temperature
models, and in light of the fact that Heat Source is a well-established
model in the literature (e.g. Bond et al., 2015; Guzy et al., 2015; Justice
et al., 2017; Kalny et al., 2017; White et al., 2017; Woltemade and
Hawkins, 2016; Trimmel et al., 2018), it was deemed well-suited to
this task.

2.3.1. Field data
Hydrometeorological, geomorphological and water temperature

data for implementation/calibration of the Heat Source model were al-
most identical to those described byGarner et al. (2014).Meteorological
data were recorded by four automated weather stations (AWSs) de-
ployed within the 2.2 km study stretch (Fig. 1b) from October 2011 to
July 2013. The upstream-most AWS was located outside of the forested
riparian zonewithin an area of openmoorland and thus recordedmete-
orological data uninfluenced by tree cover (Hannah et al., 2004); the re-
maining three AWSs were installed downstream of the transition from
moorland to semi-natural forest cover under tree canopy cover. Each
AWS measured air temperature (°C), relative humidity (%), wind
speed (ms−1), incoming shortwave (solar) radiation and bed heat flux
(all Wm−2) at 15 min intervals. Sensors for radiative and turbulent ex-
changes were installed at 2 m above the water surface under base flow,
while the heat flux plate was buried at 5 cm depth in the stream bed;
details on the specific instrumentation are the same as in Hannah
et al. (2008). Heat Source requiresmeasurements of cloud cover to com-
pute Hlw; in the absence of direct observations, cloud cover was calcu-
lated using the equation (Bond et al., 2015):

CC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:54 1−Hsw;received=Hsw;potential

� �q
ð2Þ

where Hsw,received and Hsw,potential are respectively the observed solar
shortwave radiation (at the unshaded AWS) and the maximum solar
shortwave radiation that would be possible under a cloudless sky (esti-
mated from Heat Source's built-in solar radiation flux routines).

In terms of physiographic model input data, bed widths, channel
gradient and near stream topography (for calculation of topographic/
bank shading) were measured directly from the sUAS orthomosaic
and DSM. River stage was recorded at a Marine Scotland Science
(MSS) gauging station installed approximately 0.65 km upstream from
the confluence with the River Dee (Fig. 1b); a stage discharge rating
curve for the site (established using the velocity-area method; R2 =
0.97) was used to generate a 15 min upstream boundary discharge se-
ries for Girnock Burn. An additional inflow discharge series for the
Bruntland Burn tributary was calculated by scaling the discharge data
by basin area. In the absence of observed discharge data for Bruntland
Burn, we acknowledge that this scalingmay influence temperature pre-
dictions at model nodes downstream of Bruntland Burn. However, be-
cause the majority of temperature loggers used in model calibration
were located upstream of this point (Fig. 1b), it is unlikely that this
will greatly affect our findings. Velocities to calibrate Heat Source's hy-
draulic module were calculated from the discharge–mean-velocity
function developed by Tetzlaff et al. (2005a). Previous research
(Garner et al., 2014; Malcolm et al., 2005) using flow accretion surveys
and hydrochemical data suggest that groundwater gains along the
study stretch are diffuse in nature and negligible in size; therefore, the
model was run without any groundwater inputs. Heat Source requires
input of a range of further hydromorphic parameters (e.g. sediment
thermal conductivity, % hyporheic exchange, Manning's roughness co-
efficient; see Bondet al., 2015 for full list). Given the difficulty associated
with measuring these values in the field, or via remote sensing, they
were held spatially constant and were calibrated during the model op-
timisation process (see Section 2.4).

Stream temperatures used for model calibration were recorded by
12 TinyTag Aquatic 2 data loggers (cross-calibrated to give accuracy of
±0.02 °C) situated along the stretch (loggers G1-G12; Fig. 1b) and sup-
plemented by Campbell Scientific 107 thermistor probes (accuracy of±
0.2 °C) at the Forest US and Forest DS AWS (total of 14 points). A further
temperature logger (B1) installed near the mouth of Bruntland Burn
(the only significant tributary present within the study stretch) was
used to characterise the temperature of the tributary inflow to the
Girnock Burn; all loggers/probes were installed from October 2011 to
July 2013 and recorded temperature at a resolution of 15 min. Temper-
ature loggers and probes were cross-calibrated prior to installation and
housed within white PVC tubing to shield them from radiative biases.
All loggers/probes were installed within the well-mixed zone to avoid
possible water column stratification.

2.3.2. Tree height data
Heat Source contains routines capable of simulating the effects of ri-

parian tree shading on radiative fluxes (and, in turn, on stream temper-
ature) as a function of input tree height (Boyd and Kasper, 2003). These
routines are parameterised by supplying Heat Source with data on the
height and canopy density (i.e. the proportion of diffuse solar radiation
blocked by the canopy) of vegetation within the riparian zone. Heat
Source can also incorporate data on overhanging vegetation and vegeta-
tion growing within the channel. Heat Source subsequently uses this
data to compute the reduction in radiation caused by tree cover, by
partitioning Hsw into its direct and diffuse components (Loicq et al.,
2018; Oke, 1987) and computing at each model node the proportion
of direct or diffuse solar radiation attenuated by the tree canopy. Full de-
tails of the shading routines for the current model can be found in the
model's source code (modified from their original formulation in Boyd
and Kasper, 2003). However, in short, Heat Source computes the posi-
tion of the sun relative to input riparian tree cover at each model
node/timestep. For times/locations whereby the solar arc falls below
the elevation of riparian vegetation (at a given point along the transect),
the direct beam radiation is attenuated as a function of its path length
through the riparian vegetation and the canopy density (using the
Beer-Lambert law). Diffuse radiation is attenuated as a function of the
node's ‘view-to-sky’ value (VTS), essentially the proportion of the hemi-
sphere that is void of canopy; VTS is computed for each node as a func-
tion of canopy density and the angle and azimuth of vegetation at each
sample point with respect to the model node.

Input tree height data are assembled using the TTools GIS package
that accompanies Heat Source to sample a raster dataset of riparian
tree heights. Heat Source also requires inputs of riparian canopy density.
Although this property can be measured directly in the field, it is diffi-
cult to quantify using remote sensing or over large river corridors. The
majority of stream temperature modelling studies using GIS/remote
sensing approaches to obtain riparian vegetation data therefore use a
look-up table approach (i.e. based on tree species/age) or derive canopy
density values from the literature or from sparse field estimates, with
values of 40% - 100% being reported commonly (see Bond et al., 2015;
Kalny et al., 2017; Loicq et al., 2018; Trimmel et al., 2016; Wawrzyniak
et al., 2017; Woltemade and Hawkins, 2016). Given the difficulty of



Table 1
Parameter set for optimised model of Girnock Burn.

Parameter Units Value

Sediment thermal conductivity W m−1 °C−1 1.14
Sediment thermal diffusivity m−2 s−1 6.40 × 10−3

Sediment porosity Unitless 0.40
Manning's roughness coefficient s−1 m1/3 0.71
Thickness of hyporheic layer m 0.39
Hyporheic exchange % 4.83
Wind function coefficient a mb−1 m s−1 2.94 × 10−9

Wind function coefficient b mb−1 1.20 × 10−9

Deep alluvium temperature °C 9.00
Canopy density % 72.38
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estimating canopy density, we specified an initial value situated in the
mid-range of literature-derived values (60%) and allowed this value to
vary by ±15% during model optimisation (see Section 2.4). This ap-
proach ensured values stayed close to those commonly used for model-
ling stream temperatures in mixed deciduous/coniferous woodland
typical of sites like Girnock Burn.

We developed three different stream temperature models. A first
model was developed by parameterising Heat Source using tree heights
extracted from the SfM tree height raster. Thismodel, hereafter referred
to as the ‘SfMmodel’, was used to assess the ability of SfM data to char-
acterise spatial variability in riparian tree shading (objective 1). Spatial
variability in shading was assessed by examining downstream variabil-
ity in incoming solar radiation computed by Heat Source, as well as the
effective shade (defined as the ratio of potential to received solar radia-
tion at the stream surface; Boyd and Kasper, 2003) and VTS data gener-
ated by the model. This model was also used to assess the accuracy of a
stream temperaturemodel parameterised using SfM data (objective 2);
further details of model performance criteria are given in Section 2.4.

To compare the accuracy of a stream temperature model
parameterised with SfM data against a LiDAR-sourced model (objective
3), a second model was parameterised using a LiDAR tree height raster
for the lower 1.7 km of Glen Girnock (hereafter referred to as the LiDAR
model). The LiDAR tree height raster was derived by subtracting the
LiDAR DTM assembled in Section 2.2.2 from a LiDAR DSM generated in
the same manner. Because the LiDAR data only covers the lower
~1.7 km of Girnock Burn (rather than the full 2.2 km study area), we
populated the upper ~0.5 km of the LiDAR tree height map with values
derived from the SfM dataset. However, because riparian tree cover is
largely absent in the upper ~0.5 km of the study section, the impact of
including these non-LiDAR data on stream temperature simulations
was thought to be negligible. While it may have been desirable to also
compare the SfM-derived shading model against one parameterised
using measurements of vegetation obtained from hemispheric photog-
raphy and/or clinometer data, there are currently nomodels that are ca-
pable of incorporating both geospatial data (e.g. SfM/LiDAR) and field
observations from hemispheric photography or clinometer data. Thus,
it was not possible to compare these approaches in the current study.
Nevertheless, given that LiDAR is widely accepted as a suitable tree
height input for river temperature models (e.g. Loicq et al., 2018;
Justice et al., 2017; Wawrzyniak et al., 2017) and that field based data
collection methods are generally more time consuming and less spa-
tially detailed than LiDAR, we feel that the current analysis is the most
useful for indicating the potential of SfM for process-based river tem-
perature modelling.

A third Heat Source model was also developed in order to demon-
strate the utility of the SfM approach for assessing the effect of riparian
shading on stream temperature (objective 4). In this third instance, all
tree heights were set to zero, meaning that the model was run without
considering the impact of tree cover on radiative or turbulent fluxes.
However, all other parameters were kept the same as the SfM/LiDAR
models, allowing us to quantify the temperature difference generated
by the presence/absence of tree cover. This model is hereafter referred
to as the ‘no-trees model’.

2.4. Model implementation and optimisation

Heat Source was used to model stream temperatures during the
same 7-day period (1 to 7 July 2013) as Garner et al. (2014). The period
was characterised by relatively high air temperatures for the study site
(mean, minimum and maximum of 15.6 °C, 1.3 °C and 22.0 °C respec-
tively at the upstream-most AWS) and low flows (0.12 m3 s−1). The
model was run using an hourly timestep and with a spatial resolution
(node spacing) of 50 m. We chose a resolution of 50 m because the
greatly increased model runtime associated with finer node spacings
made model optimisation impractical. However, we acknowledge that
only one set of tree height samples every 50 m may lead to under- or
over-representation of the true impacts of riparian shading at some
model nodes. Values of air temperature, relative humidity, wind speed
and bed heat flux at each model node were obtained from the nearest
AWS. For solar radiation, all nodes were assigned values observed at
the upstream-most AWS (i.e. values in the absence of riparian shading);
Heat Source's shading routine was used to generate spatially-explicit
shade-corrected solar radiation values for each model node as a func-
tion of the input tree height raster.

Heat Source (parameterisedwith the SfM tree heights data)was cal-
ibrated to stream temperatures observed within the 2.2 km stretch by
adjusting model parameters (see Table 1) to minimise model root
mean square error (RMSE) between observed and simulated stream
temperatures at each of the 14water temperature observation sites. Al-
though Heat Source allowsmodel parameters to vary spatially, we used
a fixed set of parameters to reducemodel calibration/optimisation time.
Model calibration was achieved by manually adjusting calibration pa-
rameters to explore the range of parameters that generated reasonable
RMSE results while permitting simulated heat fluxes and velocities to
stay within real world values. Thereafter, Latin hypercube sampling
was used to generate 5000 unique parameter combinations from across
the parameter space defined by these limits, and aMonte Carlo-type ap-
proach used to find the parameter combination that minimised RMSE
against the 14 observation sites (see Table 1 for optimised parameter
set). The parameter set that produced the optimal RMSE was thus se-
lected. Following this initial model optimisation phase, Heat Source
was re-run three times using the different tree heightmodels described
in Section 2.3.2; these models were subsequently quantified in terms of
their RMSE, bias and simulated temperature.

3. Results

3.1. SfM-derived shading data

Fig. 4a highlights spatio-temporal variability in incoming shortwave
radiation received at the stream, as computed from the SfM-
parameterised Heat Sourcemodel.While temporal variability in incom-
ing solar radiation is typical of the diurnal insolation cycle (y-axis), the
spatial (downstream) dimension is more irregular indicating the pres-
ence of substantial tree shading within these reaches (x-axis). This is
summarised in the effective shade data yielded by Heat Source, which
indicates that the SfM approach is capable of characterising the consid-
erable spatial variability in shading that exists along the 2.2 km study
stretch (Fig. 4b). The view to sky data generated by Heat Source
shows matching, but dampened, trends (Fig. 4c). This reduced variabil-
ity in VTS in comparison to effective shade is due to the fact that VTS in-
tegrates tree cover across the entire hemisphere, whereas the effective
shade data characterises the specific impact shading has on the amount
of solar radiation received as the sun travels across its arc.

Comparison of the shading data (Fig. 4) with the SfM-derived
orthophoto and tree height raster (fig. 2a and 2d) explains downstream
variability in shading. As expected, shade is generally lowest (b10%) at
the upstream-most model nodes (2.2–1.9 km), corresponding to the



Fig. 4.Variability in a) computedHsw received at the streamsurface following application ofHeat Source shading routines to SfM-derived tree heights, b) time-averaged effective shade and
c) view to sky (VTS). Solid lines in b) and c) indicate LOESS-smoothed average effective shade and VTS.
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open moorland section of Girnock Burn where riparian vegetation is
sparse with the exception of a few individual trees. Effective shade in-
creases (~40–50%) as the Girnock Burn enters an area of more consis-
tent forest cover (tree heights ≈ 5–15 m) between 1.85 and 1.5 km
downstream, before reducing slightly (20–30%) between 1.45 and
0.9 km. Here, the reduction in effective shading coincides with a de-
crease in forest density where the river is oriented S\\N followed by
an increase in channel width associated with diminished riparian over-
hang. Shade increases (60–70%) as the stream re-enters a densely
wooded reach (0.85–0 km), characterised by a SW-NE orientation and
greater tree heights (15–25m). This downstream-most reach generally
exhibited the highest effective shade/VTS and lowest computed solar
radiation.

3.2. SfM model performance and simulated temperature patterns

Temperatures simulated by the SfM model are close to those ob-
served by loggers installed in the lower Girnock Burn. The high degree
of similarity (±0.5 °C) between the 100 ‘best’ optimisation runs
(Fig. 5) indicates relatively low uncertainty in the optimised parameter
set. RMSE computed between the optimal model and the 14 tempera-
ture observations sites (including logger G12) indicates that the SfM
model performs well (RMSE≈ 0.18–0.69 °C; Table 2). The general pat-
tern of increasing RMSE in a streamwise direction is to be expected, as a
function of the propagation of minor errors resulting from model cali-
bration inadequacies with increasing distance from the upstream
boundary condition. Bias in simulated temperatures indicates a weak
over prediction (0.12 °C) compared to the observed data. Closer inspec-
tion of the temperature series reveals that the model tends to over-
estimate daytime peak temperature and (to a lesser extent) under-
predict night-time lows (Fig. 6). This is the case especially on 2nd July,
when the low simulated temperature in comparison to observed values
likely relates to the model's inability to represent advective inputs from
a small rainfall event on this day. These biases may also result from in-
adequacies in the parameterisation of Heat Source's hydraulic model
component leading to under- or overestimates in the stream surface
width (and thus, the energy exchange surface). Nevertheless, the low
RMSE and bias indicate that the model is capable of simulating temper-
atures in Girnock Burnwith a similar degree of accuracy to related stud-
ies (see Section 4.2).

Both observed and simulated stream temperatures reflected a gen-
eral trend of instantaneous downstream temperature reductions within
the study stretch, with a time-averaged downstream temperature gra-
dient of −0.7 °C km−1 over the study period (Fig. 7). However, closer
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Fig. 5. Time-averaged river temperature long profile for 100 best optimisation runs (based on RMSE). Bestmodel (lowestmean RMSE) given by thick black line. Vertical bars give standard
deviation of temperatures observed at logger sites; crosses give mean recorded river temperature.
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inspection of the simulated temperatures reveals finer-scale spatial pat-
terns. While the time-averaged temperature decrease over the
upstream-most nodes (2.2–1.8 km) is relatively low (corresponding to
lower riparian tree shading in this section), the rate of temperature de-
crease downstream of this section is more pronounced until approxi-
mately 1.3 km, where the cool input from Bruntland Burn yields a
large temperature drop that persists downstream over several model
nodes. Stream temperature is relatively stable between 1.25 and
0.9 km, but the negative temperature trend re-asserts over the
downstream-most 900m (up to the confluencewith the River Dee), co-
inciding with the tallest/densest riparian vegetation. The downstream
temperature trend exhibits strong diurnal variability (Fig. 8a), whereby
the negative downstream trend persists during the daytime but is re-
placed by a weak positive signal during the night. The greatest instanta-
neous negative trend in temperature between the upstream- and
downstream-most model nodes (−5.4 °C) was observed at 13:00 on 7
July 2013, while the largest instantaneous temperature increase (1.8
°C) was observed at 04:00 on 6 July 2013 (Fig. 8b). These values equate
to minimum and maximum instantaneous downstream temperature
gradients of −2.5 and 0.8 °C km−1 respectively.
Table 2
Model performancemetrics for SfM and LiDARmodels across all temperature observation
sites.

Site SfM model LiDAR model No trees model

RMSE Bias RMSE Bias RMSE Bias

G1 0.18 0.15 0.18 0.15 0.19 0.16
G2 0.31 0.17 0.31 0.17 0.35 0.25
G3 0.32 0.19 0.32 0.19 0.42 0.27
G4 0.47 0.24 0.47 0.24 0.62 0.38
G5 0.46 0.21 0.46 0.21 0.70 0.42
Forest US AWS 0.42 0.12 0.42 0.11 0.73 0.39
G6 0.46 0.14 0.46 0.14 0.87 0.51
G7 0.51 0.14 0.51 0.14 0.97 0.57
G8 0.58 0.15 0.57 0.15 1.05 0.62
G9 0.51 0.16 0.49 0.01 1.10 0.63
G10 0.55 0.15 0.53 −0.02 1.16 0.63
Forest DS AWS 0.53 −0.09 0.62 −0.32 1.09 0.40
G11 0.58 0.22 0.52 −0.01 1.27 0.71
G12 0.69 −0.23 0.71 −0.41 1.57 0.64
Mean 0.47 0.12 0.47 0.05 0.86 0.47
3.3. Comparison of SfM and LiDAR models

Average RMSE yielded by the LiDAR model was almost identical to
that of the SfM model (both equal to 0.47 °C), suggesting that the per-
formance of a stream temperature model parameterised using SfM
data is broadly comparable with one parameterised using a more con-
ventional LiDAR approach (Table 2). Indeed, the difference in reach-
averaged RMSE between the two models was b1/1000th of a degree
over the entire study period. Mean bias of the LiDAR model (0.05 °C)
was lower (i.e. better) than that of the SfMmodel (0.12 °C), correspond-
ing to a reduction in the (minor) systematic overprediction exhibited by
the SfM model in the lower reaches of Girnock Burn. However, the dif-
ference between the models is nonetheless small.

Closer inspection of Figs. 6 and 7 indicates that while the SfM model
tends to overestimate daytime peak temperatures (and underestimate
nighttime lows), peak temperatures estimated by the LiDAR model are
generally closer to observed data (although night time lows are still
underestimated). This results in a model which is on average 0.22 °C
cooler than that of the SfM model (Fig. 7; calculated for nodes down-
stream of 1.7 km). The slightly reduced temperature of the LiDAR model
is likely a function of bias in the SfM DTM ground heights. This means
that that calculated tree heights are marginally higher in the LiDAR
model, leading to a systematic reduction in the computed radiative flux
reaching the stream surface. However, the fact that the difference in tem-
perature between the two models stays relatively constant as a function
of distance downstream indicates this systematic bias is very small, lead-
ing to little substantial downstreamdifferences in shading.More localised
variability in simulated temperature between the two models is likely a
result of small differences in computed tree height resulting from the dif-
ference in acquisition date between the SfM and LiDAR datasets.

3.4. Quantifying the effect of riparian woodland on stream temperature

The space-time averaged difference in simulated temperatures be-
tween the SfM and no-trees models indicates that riparian tree cover
drives a mean ‘cooling’ effect of ~0.66 °C in the lower Girnock Burn. Al-
though this suggests that riparian shading has a relatively minor (i.e. b1
°C) impact on stream temperature, inspection of the temperature time-
series (Fig. 6) reveals notable temporal variability in the magnitude of
this shading effect. Indeed, the no-trees model yields much higher day-
timemaxima (studyperiodmeanof 3.3 °Cwarmer) at the downstream-
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Fig. 6. Observed vs. simulated (SfM, LiDAR and no trees models) stream temperature at a) upstream, b) mid-stream and c) downstream logger sites. Note that simulations for SfM and
LiDAR models at logger G1 are identical.
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most model node. This indicates that in the absence of tree cover, peak
stream temperature in the lower reaches of Girnock Burn would be in-
creased substantially during the daytime. Furthermore, the timing of
daily temperature maxima/minima is shifted in comparison to the SfM
model, with daytime highs/night-time lows occurring on average 130
and 50 min earlier respectively.

In terms of spatial temperature patterns, the no-trees model suggests
an extremely weak time-averaged downstream negative temperature
trend (−0.001 °C km−1). However, closer inspection of the simulation
(Fig. 7) indicates that this longitudinal pattern is very dependent on
cool water inputs from the Bruntland Burn at 1.3 km, with reaches up-
and downstream of this point (2.2 km–1.35 km and 0.75–0 km) showing
positive downstream temperature gradients (0.1 °C km−1 and 0.2
°C km−1) of themagnitude commonly associatedwith unshaded reaches.
Excluding the influence of Burntland Burn, the no-trees model generated
a consistent increasing temperature trend that contrasts with the SfM
model, especially in the downstream-most reaches (Fig. 7).

4. Discussion

4.1. Utility of SfM for parameterising process-based temperature models of
shade-impacted rivers

SfM represents a cost-effective solution for obtaining spatially de-
tailed tree height data to parameterise shading routines in process-
Fig. 7. Time-averaged temperature long profiles for Girnock Burn simulated with SfMmodel (g
95th percentiles around mean. Note that simulations for the SfM and LiDAR models upstream
based river temperature models. Collection of the sUAS and field data
necessary for the development of the SfM tree height raster took ap-
proximately two days (two fieldworkers present), with a further
3–4 days (not including computer runtime) necessary for the genera-
tion of the SfM dataset. Following refinement of the workflow, we be-
lieve that the SfM processing could be further reduced to 1–2 days'
work. While we acknowledge that prerequisite training in sUAS and
SfM software use is required, we believe that this still represents a sub-
stantial time and cost saving in comparison to traditional field ap-
proaches for characterising riparian shading, given that the costs of
lab/office work (i.e. SfM processing) are generally much lower than
those of fieldwork. Indeed, the acquisition of hemispheric photography
of the same section of Girnock Burn at a streamwise resolution ap-
proaching that of our SfM dataset (e.g. Garner et al., 2014) took consid-
erably longer (N1 week), with several days' additional office work still
needed for image processing. Conversely, while it may be feasible to ob-
tain numerous coarsely-spaced laser or clinometer measurements of ri-
parian tree heights in a similar timewindow to that needed for SfM data
acquisition, the spatial resolution of such measurements would still be
of several orders of magnitude lower than that of SfM, and the accuracy
of such observations may also not be substantially improved, given the
error and operator bias that is commonly associated with such field in-
struments (e.g. Williams et al., 1994; Larjavaara and Muller-Landau,
2013). Given that river scientists andmanagers increasingly have access
to (andproficiency in) technologies such as sUAS and SfM, our proposed
reen line), LiDARmodel (red line) and no trees model (grey line). Shaded area represents
of 1.7 km are identical.
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Fig. 8. Spatio-temporal variability in simulated water temperature for SfM model showing a) absolute temperature and b) instantaneous difference between 1st and nth model nodes.
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approach represents a substantial time/cost saving in comparison to
these ‘conventional’ field techniques, while providing data of a compa-
rable accuracy at much higher resolution.

In addition to its potential for reducing the costs associated with
fieldwork in remote locations, the high degree of spatial variability pres-
ent within the Heat Source shading outputs demonstrates the capacity
of SfM to characterise fine-scale patchiness in riparian shading. This,
coupled with the good model performance metrics (e.g. RMSE b 0.7
°C) confirms SfM as a viablemethod for parameterising riparian shading
routines in a process-based temperature model. Indeed, the SfM-
parameterised model produced very similar performance metrics
(RMSE, bias) to the model parameterised using high quality ‘conven-
tional’ LiDAR tree heights, indicating that the SfM approach is able to re-
produce riparian shading (and thus,model stream temperatures)with a
level of accuracy approaching this more commonly applied technique.

Despite these promising results, the cost and benefits of these two
techniques depends heavily upon the spatial scale of a given study.
sUAS-based SfM is well adapted to the generation of reach-scale
(100 km) tree height datasets, and is thus ideally suited for use in
small streams where the acquisition of LiDAR data is not cost effective.
However, the acquisition of sUAS-based data becomes increasingly
challenging as the size of the study area increases due to legal (line of
sight flights, requirement for exclusion around people and property)
and logistical (flight times and battery life) constraints. For larger
(101–102 km) studies, there will inevitably be a point at which LiDAR-
based techniques may prove more appropriate or cost effective for
characterising tree heights over entire river corridors. Nonetheless, pre-
vious studies have demonstrated the utility of SfM for assemblingwhole
river-scale topographic datasets (e.g. Dietrich, 2016) from conventional
airborne remote sensing platforms, meaning that SfM still represents a
viable solution for generating riparian shading data at 101–102 km
scales. Furthermore, in rivers across the UK and Europe where forest
cover is often patchy and discontinuous, several sUAS-based SfM sur-
veys of smaller afforested reaches are still likely to cost less than one
LiDAR survey of an entire river. In addition, SfM lends itself well to tem-
poral monitoring, potentially allowing for the incorporation of season-
ally variable shading in river temperature models or assessment of the
long-term effects of riparian tree planting activities. The ability to rap-
idly generate riparian shadingdata could aid change detection following
forest harvesting or forest fires. Taken together, these findings empha-
sise the utility of SfM for river scientists and managers looking to
a) understand how spatial/temporal variability in shading impacts
stream temperature and b) inform strategies for optimal riparian plant-
ing to reduce impacts of future climate change.

4.2. Comparison to previous temperaturemodelling studies in Girnock burn

Results of both our SfM and LiDAR models are very similar to the
findings of previous river temperature modelling studies in Girnock
Burn (Garner et al., 2014, 2017b; Fabris et al., 2018). Indeed, the simu-
lated spatio-temporal distribution of stream temperatures support the
findings of Garner et al. (2014, 2017b) and Fabris et al. (2018) who
noted the presence of an instantaneous negative downstream tempera-
ture trend within the Girnock Burn during the daytime. This trend re-
sulted from a combination of a) cool water advected from upstream,
and b) greatly reduced net energy gain in comparison to open reaches
(Garner et al., 2017b). Although our study simulated slightly higher
magnitude negative (daytime) and positive (night-time) temperature
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gradients (−2.5 °C km−1 and 0.8 °C km−1) than those reported by
Garner et al. (2014; −2.4 °C km-1 and 0.5 °C km-1), it is likely that this
disparity results from the advective input from the Bruntland Burn
which is downstream of the study reach in Garner et al. (2014). Indeed,
when limiting our comparison to the same reach used in their study, the
negative downstream temperature gradient (−2.4 °C km−1) simulated
by our model was identical. However, our model did produce a notably
higher night-time temperature increase (1.2 °C km−1) over this reach;
it is possible that parameter uncertainty pertaining to turbulent and
longwave heat fluxes (which dominate night-time heat exchanges;
Hannah et al., 2008) is responsible for this discrepancy. Similar to all re-
mote sensing and modelling studies, the approaches used within this
investigation are simplifications of reality and as such, inaccuracies
resulting from model parameterisation uncertainty are expected. For a
detailed discussion of potential error arising from a) uncertainty in
input meteorological data, b) bed/hyporheic energy flux estimates and
c) flow accretion/groundwater inputs see Garner et al. (2014; 2017b).
Nevertheless, the similarity in spatio-temporal temperature patterns
between our investigation and previous process-based modelling stud-
ies of Girnock Burn indicates that the SfM model is performing well.

Themodels presented in this study, parameterised using an SfM tree
height raster, compare favourably to previously published approaches
where shortwave radiation was scaled using more traditional and
time-consuming methods of canopy characterisation. Garner et al.
(2014) developed a process-based river temperature model that used
spatially-explicit hemispheric photography of the riparian canopy to
simulate the effects of riparian shading on stream temperatures. They
reported model RMSE values of 0.2–0.4 °C for the section of Girnock
Burn corresponding to the upper 1050 m of our study stretch. More re-
cently, Fabris et al. (2018) applied a different approach, using GIS poly-
gons to characterise the locations of riparian woodland, reducing Hsw at
model nodes falling within these polygons by a parameterised coeffi-
cient to approximate the effects of shading on solar radiation. They re-
ported a mean RMSE of 0.7 °C for four temperature observation sites
covering a ~4 km section of the stream. The mean RMSE of 0.47 °C re-
ported in our study compares well to these investigations; furthermore,
when focusing on the same reach as Garner et al. (2014), mean RMSE
(0.45 °C) is only marginally poorer. Given that temperature simulations
in Garner et al. (2014) were generated using an extremely highly re-
solved (5 m) river temperature model incorporating detailed hemi-
spheric photography and geomorphological data, these results are
extremely promising in light of our model's much reduced resolution
(50 m), and further emphasise the potential utility of the SfM approach
for characterising the spatially-explicit effects of tree shading on stream
temperature.

Spatial variability in the SfM-derived effective shade/VTS data
(Fig. 4) was consistent with the findings of a range of recent studies
(e.g. DeWalle, 2008, 2010; Garner et al., 2017b; Li et al., 2012) demon-
strating that channel orientation is a key determinant of riparian shad-
ing and thus the effectiveness of riparian woodland in reducing river
temperature. Li et al. (2012) found that variability in tree height and
overhang only significantly affected E-W oriented streams, while
Garner et al. (2017b) simulated riparian shading under a range of chan-
nel orientations and forest densities, and found that S\\N aligned chan-
nels only provide substantial shading when forest cover is very dense
and overhangs the channel. Similarly, DeWalle (2010) noted that sub-
stantially wider riparian buffers were needed to produce shade in
S\\N oriented streams. This, in combination with a reduction in over-
hanging vegetation (which has a proportionally greater effect in small
streams; DeWalle, 2008) presumably explains why effective shade/
VTS in our model is substantially reduced between 1.45 and 1.2 km,
where the combination of an S\\N aligned channel and a single strip
of riparian cover only generated a small amount of shading in relation
to themore densely forested S\\Naligned reach immediately upstream.
Similarly, the increase in effective shade/VTS towards the downstream-
most end of the study stretch (0.85 km to confluence) is likely due in
part to the change in orientation from S\\N to SW-NE, which leads to
increased shading over the course of the day given the position of the
solar arc in comparison to the river channel (see Garner et al., 2017b).
Ourfindings therefore further emphasise the importance of channel ori-
entation (in addition to residence time, width, forest height, density and
overhang; e.g. Li et al., 2012) in controlling riparian shading and thus,
stream temperature.

4.3. Towards a better understanding of the effect of riparian woodland on
stream temperature

The paired ‘trees/no-trees’ modelling approach detailed here
allowed us to quantify the effect of riparian woodland, i.e. the amount
by which riparian vegetation moderates stream temperatures in the
Girnock Burn. Inspection of the no-trees model simulations indicates
that, in the absence of riparian shading, peak daytime temperature in
the lower reaches of Girnock Burn would have been an average of 3.3
°Cwarmer during the studyperiod. Notably,without tree cover, Girnock
Burn could have exceeded the upper growth limit for juvenile Atlantic
salmon (~23 °C; Elliot and Elliot, 2010; Breau et al., 2007; Dugdale
et al., 2016) for several hours during the study period, potentially lead-
ing to thermoregulatory behaviour amongst salmonids resident within
the stream. Given that river managers in some parts of the UK and
Europe are actively involved in the removal of riparian woodland
(CASS, 2010) with the stated aim of improving salmonid productivity
(to increasemean temperature in cool reaches or to improve other hab-
itat characteristics such as invertebrate taxonomic richness), these re-
sults emphasise the importance of running similar paired-model
approaches prior to ripariandeforestation to ensure that the importance
of riparian woodland to the stream's thermal regime is appropriately
quantified.

While the ability of riparian woodland to moderate stream temper-
ature extremes has been known for some time (e.g. Brown and Krygier,
1970; Moore et al., 2005a; Rishel et al., 1982), further information is
needed regarding the exact environmental settings under which ripar-
ian woodland generates greatest reductions in stream temperatures
(Garner et al., 2017b). We suggest that the low cost and good perfor-
mance of the SfM methodology described here is ideally suited for ad-
dressing this key knowledge gap using similar modelling approaches
to the presented here, applied systematically across a larger geographic
and environmental range. By acquiring riparian tree height data from a
series of different rivers and repeating our trees/no-trees modelling
strategy at each location, it should be possible to gain an improved un-
derstanding of the impacts of riparianwoodland on stream temperature
across a range of different environmental settings (i.e. varying wood-
land species composition, geomorphology and hydrogeology). Such in-
formation would not only help inform climate change adaptation
strategies for temperature-impacted watersheds, but would also help
in the development of best-practise strategies to ensure that riparian
tree planting is prioritised to areas where it will have the greatest im-
pact on stream temperature. Thus, the SfM modelling approach repre-
sents an encouraging methodology with which to systematically
assess riparianwoodland effects on stream temperature at intermediate
scales in a way that has not been previously possible owing to the high
costs (e.g. LiDAR, hemispheric photography) or low accuracy (e.g. GIS
polygons) of alternative sources of riparian shading data.

4.4. Limitations and future work

Despite these promising results, it is necessary to discuss potential
limitations arising from our approach. One potential disadvantage of
SfM for the characterisation of riparian shading is its limited ability to
measure ground elevation beneath dense forest canopies. This has im-
plications for the derivation of ‘bare earth’ digital terrainmodels needed
for tree height calculation. In this study, there were sufficient canopy
gaps that many ground points were present in the SfM point cloud.
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This allowed for the generation of a ‘bare earth’DTMwith an acceptable
level of accuracy (RMSE = 1.25 m) for the derivation of tree heights
through DSM−DTM subtraction. Inmore dense (particularly commer-
cial conifer; e.g. Dugdale et al., 2018) forests, SfM may not be able to
generate enough ground points for the derivation of a DTM of reason-
able accuracy. In such cases, it may be possible to derive a ‘bare earth’
DTM from other remote sensing products (e.g. radar, photogrammetry)
or conventional topographic surveys, but this could introduce further
errors into tree height estimates. Researchers/managers attempting to
use SfM to characterise riparian tree heights should be aware of this po-
tential limitation of the technique.

The difficulty in resolving ground elevations has implications for the
characterisation of riparian canopy density needed for the diffuse shad-
ing routines of Heat Source or similar models (see Dugdale et al., 2017).
In true LiDAR forestry applications, canopy density can be estimated as
the ratio of ground to canopy LiDAR returns (Lee and Lucas, 2007; Lim
et al., 2003). Although this technique has also been successfully applied
to SfM datasets in sparse agriculture/agroforestry contexts (Mathews
and Jensen, 2013; Messinger et al., 2016; Wallace et al., 2016), this
method is not as readily applicable to (semi-) natural multi-species for-
est stands such as that present in Glen Girnock. Furthermore, while
LiDAR data does exist for the lower stretch of Girnock Burn, it was ac-
quired relatively early in the growing season, and the extraction of can-
opy density from ‘leaf-off’ LiDAR data is prone to complications
(Bachiller-Jareno et al., 2019). In this study, we supplied Heat Source
with a literature-derived estimate of canopy density (subsequently re-
fined duringmodel optimisation) to compute the attenuation of the dif-
fuse solar radiation component through the riparian canopy. Although
the use of literature-derived estimates of canopy density in this manner
is by nomeans uncommon amongst river temperature modelling stud-
ies (even amongst those which used LiDAR to compute vegetation
height; Loicq et al., 2018; Wawrzyniak et al., 2017), it is nonetheless
suboptimal compared to real data on canopy density. Therefore, it is
pertinent to note that such an approach may yield under- or over-
estimates of the true impact of riparian vegetation on diffuse shortwave
fluxes. Potential solutions to this issue include hybrid approaches com-
bining SfM-derived tree heights with limited hemispheric photography
surveys and/or data from lookup-tables. However, these solutions
would both require significant model development (and validation
prior to application). Alternatively, recent advances in drone-based for-
estry applications indicate that ‘common’ forest properties such as leaf
area index (LAI), leaf volume and even tree species are now obtainable
from sUAS-based approaches (Alonzo et al., 2018; Jensen andMathews,
2016; Mathews and Jensen, 2013; Michez et al., 2016; Roth et al., 2018;
Tang and Shao, 2015). Given that Heat Source already contains routines
capable of estimating diffuse solar radiation attenuation as a function of
LAI and extinction coefficient (k), it is possible that such approaches
could be applied to the current model to refine the estimated radiative
flux under tree-lined reaches and thus improve simulated tempera-
tures. We therefore advocate future diffusometry work to compare dif-
fuse radiative fluxes computed under these contrasting approaches.

A more complex solution to both of these problems would be to use
SfM to generate a ‘true’ 3D model of the riparian tree canopy (rather
than the ‘2.5D’ digital elevation data used in this study) by flying both
under and over the tree canopy, or by integrating the SfM-derived
tree canopymodelwith below-canopy data froma terrestrial laser scan-
ner or even selective hemispheric photography. Such a dataset would
allow for the detailed characterisation of canopy structure and density
(including digital representations of individual branches and leaves).
By combining such data with advanced riparian shading routines (e.g.
DeWalle, 2010; Li et al., 2012; Rutherford et al., 2018a) or even ray trac-
ing methods common to computer vision (e.g. Bittner et al., 2012), it
may be possible to arrive at a highly accurate representation of the com-
plex interaction between incoming solar radiation, riparian tree shad-
ing, and river temperature heterogeneity. However, such a study
would require significant investment in fieldwork, field equipment
and computing power, putting it beyond the remit of many river scien-
tists and managers for whom simpler models such as Heat Source nor-
mally suffice.

Ourmodel focused on a relatively short time serieswhenwater tem-
perature inGirnockBurnwas high and therewere few significant inputs
of precipitation to the model. The decision to focus on this period was
predicated upon the fact that we wanted to directly compare our
modelling approach to the results of Garner et al. (2014) who simulated
temperatures for the same period. In doing so, we demonstrate that our
approach provided simulations of a similar degree of accuracy to a
model incorporating much higher resolution hemispheric
photography-derived measurements of riparian shading. However, we
acknowledge that this shortmodelling period limits our ability to deter-
mine the performance of the model over longer simulation periods. In-
deed, while we assume that our model would perform similarly well
during other periods with analogous hydrometeorological conditions,
its performance during other seasons or especially under periods of per-
sistent rainfall is currently unknown. Inspection of Fig. 6 indicates the
existence of possible negative biases during cooler, high-precipitation
conditions. Future researchwill therefore focus on achievingmodel cal-
ibration during longer time periods incorporating increased hydrome-
teorological variability, with a view to further refining simulated
stream temperature.

5. Conclusion

This paper has demonstrated that drone-based SfM mapping can
provide an accurate and detailed spatial representation of riparian tree
cover that can be used to parameterise shading routines in process-
based river temperaturemodels. The results illustrate that the combina-
tion of SfM data and process-based temperature models are capable of
characterisingfine-scale variability in riparian shading and that temper-
ature simulations incorporating this shading are of comparable accuracy
to those achieved using either ‘conventional’ LiDAR data or previous
studies parameterised using ground-based measurements of canopy
density. Taken together, these findings highlight SfM as a viable tool
for parameterising temperature model shading routines, particularly
in small streams or river environments comprising patchy or inconsis-
tent tree cover where more conventional approaches are too costly
(e.g. LiDAR) or too coarse (e.g. GIS polygons) for accurate shading repre-
sentation. By comparing our SfM-derived (tree cover) stream tempera-
ture model to a model without tree cover, we also demonstrate the
extent to which riparian shading moderates stream temperatures in
the Girnock Burn.We advocate the use of similar modelling approaches
in other locations to better understand fundamental heat exchange pro-
cess and controls, which may underpin assessment of optimal riparian
tree planting for stream temperature outcomes. In light of the relative
ease with which this sUAS-based SfM data can be obtained, we believe
that the approach detailed herein represents a practical solution to the
acquisition of riparian tree height data for headwater areas and for loca-
tions where LiDAR surveys are infeasible. Given the threat posed by cli-
mate change to river ecosystems, the ability to a) better characterise
riparian shading in rivers and b) better understand the effects of wood-
land on stream temperature across multiple locations is likely to be
valuable for developing riparian land management strategies to miti-
gate river thermal degradation.
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