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Distribution Algorithm to Deception and Where

Bivariate EDAs might help∗
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School of Computer Science
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Birmingham B15 2TT, United Kingdom

July 30, 2019

Abstract

We introduce a new benchmark problem called Deceptive Lead-

ing Blocks (DLB) to rigorously study the runtime of the Univariate

Marginal Distribution Algorithm (UMDA) in the presence of epistasis

and deception. We show that simple Evolutionary Algorithms (EAs)

outperform the UMDA unless the selective pressure µ/λ is extremely

high, where µ and λ are the parent and offspring population sizes,

respectively. More precisely, we show that the UMDA with a parent

population size of µ = Ω(log n) has an expected runtime of eΩ(µ) on

the DLB problem assuming any selective pressure µ
λ ≥

14
1000 , as op-

posed to the expected runtime of O
(
nλ log λ+ n3

)
for the non-elitist

(µ, λ) EA with µ/λ ≤ 1/e. These results illustrate inherent limitations

of univariate EDAs against deception and epistasis, which are common

characteristics of real-world problems. In contrast, empirical evidence

reveals the efficiency of the bi-variate MIMIC algorithm on the DLB

problem. Our results suggest that one should consider EDAs with

more complex probabilistic models when optimising problems with

some degree of epistasis and deception.

∗Preliminary version of this work will appear in the Proceedings of 15th ACM/SIGEVO

Workshop on Foundations of Genetic Algorithms (FOGA XV), Potsdam, Germany
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1 Introduction

Estimation of distribution algorithms (EDAs) [42, 43, 33] are a class of

randomised search heuristics with many real-world applications (see [27] and

references therein). Unlike traditional EAs, which define implicit models of

promising solutions via genetic operations such as crossover and mutation,

EDAs optimise objective functions by constructing and sampling explicit

probabilistic models to generate offspring for the next iteration. The work-

flow of EDAs is an iterative process, where the initial model is a uniform

distribution over the search space. The starting population consists of λ

individuals sampled from the uniform distribution. A fitness function then

scores each individual, and the algorithm selects the µ fittest individuals

to update the model (where µ < λ). The procedure is repeated until some

termination condition is fulfilled, which is usually a threshold on the number

of iterations or on the quality of the fittest offspring [27, 19].

Many variants of EDAs have been proposed over the last decades. They

differ in the way their models are represented, updated as well as sampled

over iterations. In general, EDAs are categorised into two main classes:

univariate and multivariate. Univariate EDAs take advantage of first-order

statistics (i.e. the mean) to build a probability vector-based model and

assume independence between decision variables. The probabilistic model is

represented as an n-vector, where each component is called a marginal (also

frequency) and n is the problem instance size. Typical univariate EDAs are

compact Genetic Algorithm (cGA [25]), Univariate Marginal Distribution

Algorithm (UMDA [42]) and Population-Based Incremental Learning (PBIL

[3]). In contrast, multivariate EDAs apply higher-order statistics to model

the correlations between decision variables of the addressed problems.

The cGA is the simplest EDA, which operates on a population of two

individuals and updates the probabilistic model additively via a parameter

K, which is often referred to as the hypothetical population size of a genetic

algorithm that the cGA is supposed to model. The two individuals are

compared in terms of fitness to find the winner, and an increase of ±1/K

takes place at bit positions where individuals have different values. The

algorithm also restricts the marginals to be within an interval [1/n, 1− 1/n],

where the values 1/n and 1− 1/n are called the lower and upper borders (or
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margins), respectively, in order to prevent the marginals from fixing at trivial

borders, which may cause the algorithm to converge prematurely. Such an

algorithm is referred to as a cGA with margins. In contrast, the UMDA is

another univariate EDA that has a larger population of λ individuals. In

each so-called iteration, the marginal is renewed/updated to the frequency of

1-bit among the µ fittest individuals at each bit position (also called empirical

frequency). Unlike the cGA, whose marginals can only get increased by

an amount of 1/K, those of the UMDA might jump between the upper

and lower borders. A generalisation of the UMDA is the PBIL, where

each marginal is updated following a convex combination of the current

marginal and the empirical frequency via a so-called smoothing parameter.

The marginals cannot change by a large amount, and it is then less likely

that genetic drift [47] happens soon after the algorithm starts.

The theory of evolutionary computation literature provides rigorous

analyses giving insights into the runtime (synonymously, optimisation time),

that is the number of function evaluations of the studied algorithm until an

optimal solution is sampled for the first time. In other words, theoretical

work usually addresses the unlimited case when we consider the run of

the algorithm as an infinite process. These analyses provide performance

guarantees of the algorithm for a wide range of problem instance size.

Although EDAs were introduced several decades ago and have since

shown strong potential as a global optimiser via many practical applications

[27], the theoretical understanding of EDAs is very limited. There had been

only a handful of runtime analyses of EDAs by 2015. Recently, they have

drawn more attention from the community [11, 22, 32, 12, 47, 53, 51, 23, 36, 8,

37, 52, 40, 15, 26]. While rigorous runtime analyses provide deep insights into

the performance of randomised search heuristics, it is highly challenging even

for simple algorithms on toy functions. Most current runtime results merely

concern univariate EDAs on functions like OneMax [32, 51, 36, 53, 40],

LeadingOnes [15, 22, 37, 53, 38], BinVal [52, 37] and Jump [26, 11, 12],

hoping that this provides valuable insights into the development of new

techniques for analysing multivariate variants of EDAs and the behaviour of

such algorithms on easy parts of more complex problem spaces [13]. There

are two main reasons accounted for this. Firstly, the working principle of

these algorithms, which are not originally designed to support the theoretical
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analyses, is complicated, involving lots of randomnesses, and the interplay of

decision variables usually has a huge impact on the overall runtime [13, 46].

Secondly, we are lacking in the state-of-the-art tools in algorithmics [13].

There are seemingly two currently popular techniques used to analyse EDAs.

The first tool is drift theorems [28, 16, 31], while the other tool is the level-

based theorem, first proposed in [35] and constantly improved upon [6, 14],

in the context of non-elitist population-based EAs.

The fact that the UMDA never attempts to learn variable interactions

leads some to conjecture that the algorithm will not perform well in environ-

ments with epistasis and deception. More specifically, epistasis corresponds

to the maximum number of other variables each of the n decision variables

depends on [9, 24]. We can take as an example the LeadingOnes function,

which has a maximum epistasis level of n and is often used to study the ability

of EAs to cope with variable dependency. Previous studies [7, 37, 38] show

an O
(
n2
)

expected runtime for the UMDA and the PBIL on this function,

which seems to contradict the above-mentioned claim. However, Lehre and

Nguyen [38] recently showed that univariate EDAs based on probability

vectors have certain limitations to epistasis: if the selective pressure is larger

than roughly 1/e (as previously required in [7, 37]) and the parent population

is sufficiently large, the UMDA fails to optimise the LeadingOnes function

in polynomial expected runtime.

Regarding deception, an example was already mentioned in [27], where

the UMDA gets stuck in the concatenated trap of order 5 (called Trap-5

[1], where the original trap function is applied to each of bn/5c blocks of five

consecutive bits) since marginals are deceived to hit the lower border. This

excellent example demonstrates the limitations of the univariate model as

statistics of low order is misleading [27]. However, this function might be as

difficult for the UMDA as it is for the EAs [24]. We believe not only will

the UMDA fail on this function, but it will also fail on some other problem

with a milder degree of deception. To this end, a function where the UMDA

takes an exponential expected runtime, while simple EAs has a polynomial

expected runtime is still missing1. On the other hand, a function where the

UMDA outperforms simple EAs does exist. Chen et al. [5] proposed the

Substring function to point out the advantage of the probability vector-

1We define the terms “polynomial” and “exponential” as nO(1) and 2nΩ(1)

, respectively.
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based model. More specifically, the (1 + 1) EA needs a runtime of 2Ω(n)

with probability 1− 2−Ω(n), whereas the UMDA with λ = Ω(n2+ε), for any

constant ε > 0, and µ = λ/2 optimises the function in polynomial runtime

with probability 1− 2−Ω(n). We note that this result is very limited in many

senses that the population size is large, the selective pressure is fixed to 1/2

and the considered UMDA does not have borders.

Motivated by this, we introduce a new benchmark problem which has a

maximum epistasis level of n and is mildly deceptive. The fitness depends on

the number of leading 11s, and reaching a unique global optimum requires

overcoming many mild traps. Generally speaking, this function is harder

than the LeadingOnes function, but still much easier compared to the

Trap-5 function. The problem, which we call Deceptive Leading Blocks

(DLB), can be formally defined over a finite binary search space X := {0, 1}n

as follows.

DLB(x) :=


n if φ(x) = n/2,

2 · φ(x) + 1 if x2φ(x)+1 + x2φ(x)+2 = 0,

2 · φ(x) if x2φ(x)+1 + x2φ(x)+2 = 1,

where

φ(x) :=

n/2∑
i=1

2i∏
j=1

xj (1)

denotes the number of leading 11s, which is identical to LOB2(x) in [29,

Definition 13]. The global optimum is the all-ones bitstring. The bitstring is

partitioned into independent blocks of w ≥ 2 consecutive bits. The difficulty

of the problem is determined by the width w of each block, that can be altered

to increase the level of deception. Here, we consider the smallest width w = 2,

as this suffices to prove an exponential gap between the runtimes of the

UMDA and the (µ,λ) EA. DLB is similar to the LeadingOnes function

except it attempts to deceive the algorithm by assigning tricky weights to

different settings of the leftmost non-11 block, which we call the active block.

Each leading 11 contributes a value of two, while a value of one is awarded if

the active block is a 00, and no reward is given for any other blocks. The

all-ones bitstring has a fitness of (n/2) · 2 = n since there are n/2 blocks,

assuming that n is a multiple of w = 2.
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Table 1: Expected runtime of some simple EAs and the UMDA (with

borders) on the DLB function.

Algorithm Sel. Pressure Pop. Size Expected Runtime

(1 + λ) EA – – O(nλ+ n3)

(µ+ 1) EA – – O(µn log n+ n3)

(µ, λ) EA µ/λ = O(1) λ = Ω(log n) O(nλ log λ+ n3)

UMDA µ/λ = O(1/µ) µ = Ω(log n) O(nλ log λ+ n3)

µ/λ > 14
1000 µ = Ω(log n) eΩ(µ)

By studying this problem, we first show that simple EAs, including

elitist and non-elitist variants like (1 + λ) EA, (µ+ 1) EA and (µ, λ) EA,

and some Genetic Algorithms, can optimise the DLB function within an

O
(
n3
)

expected runtime. We then show that the UMDA fails to optimise

this function in polynomial expected runtime, assuming that the selective

pressure is µ/λ ≥ 14
1000 , and the parent population size µ is sufficiently large.

More specifically, the expected runtime is nΩ(1) when µ = Θ(log n), while

a lower bound of 2Ω(nε) is achieved for µ ≥ cnε for some constants c, ε > 0.

In the latter case, we say the UMDA is fooled by deceptive fitness. On the

other hand, if the selective pressure is in the order of 1/µ (i.e., extremely

high), we obtain an upper bound of O
(
n3 + nλ log λ

)
on the expected

runtime of the UMDA on the DLB function. Intuitively speaking, under

this extreme selective pressure the UMDA selects few fittest individuals to

update the probabilistic model, and we believe (with some empirical evidence

in Section 5) that the UMDA degenerates into the (1, λ) EA, where only

the fittest offspring is selected to the next generation. Table 1 summarises

the main results in this paper.

Last but not least, many algorithms similar to the UMDA with fitness

proportional selection have a wide range of applications in bioinformatics

[2]. The algorithms relate to the notion of linkage equilibrium [45] – a

popular model assumption in population genetics. Studying the UMDA

might solidify our understanding of population dynamics. Based on results

from this paper, we believe that the UMDA and other univariate model-

based algorithms must be tuned carefully when optimising objective functions
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with epistasis and might not perform well in deceptive environments.

The paper is structured as follows. Section 2 introduces the algorithms,

including the UMDA, EAs and the MIMIC algorithm. Section 3 provides

analyses of the expected runtime of simple EAs and GAs on the DLB

function, followed by a detailed runtime analysis for the UMDA on the DLB

function. Next, we illustrate the efficiency of the MIMIC algorithm on the

DLB function in Section 5 via a small empirical study. Finally, Section 6

gives some concluding remarks and suggests future work.

2 Preliminaries

This section briefly describes the algorithms studied in this paper. Recall

that X = {0, 1}n. Each individual (or bitstring) is represented as x =

(x1, x2, . . . , xn) ∈ X . The population of λ individuals in an iteration t ∈ N is

denoted as Pt := (x
(1)
t , . . . , x

(λ)
t ). We consider in this paper the maximisation

of an objective function f : X → R. Denote [n] := N ∩ [1, n].

2.1 Evolutionary algorithms

The (µ+ λ) EA is a mutation-only EA, which operates on a population of

µ individuals. In each iteration, the algorithm generates λ new offspring by

flipping bits in each of λ individuals, chosen uniformly at random from the

population, independently with mutation rate 1/n. Afterwards, the µ fittest

individuals out of a pool of λ+ µ individuals are selected to form the new

population. The algorithm is elitist since the best fitness discovered thus far is

guaranteed to never decrease. Popular variants of the algorithm are (1+1) EA

[17, Algorithm 1], (1+λ) EA [30, Algorithm 1] and (µ+1) EA [50, Definition

1]. For comparison, we also consider the non-elitist (µ, λ) EA, defined in

Algorithm 1 [39], with mutation rate χ/n for any constant χ ∈ (0, n/2). In

this algorithm, the next population consists of the µ fittest individuals chosen

from a set of λ > µ offspring produced by mutation.

2.2 Univariate marginal distribution algorithm

The UMDA, defined in Algorithm 2, maintains a univariate model in each

iteration t ∈ N that is represented as an n-vector pt := (pt,1, . . . , pt,n), where
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Algorithm 1: (µ, λ) EA with mutation rate χ/n

1 t← 0

2 Pt ← (x(1), x(2), . . . , x(µ)) uniformly at random from X λ

3 repeat

4 for i = 1, 2, . . . , λ do

5 select j ∈ [µ] uniformly at random

6 create y(i) by flipping each bit in x(j) independently with

probability χ/n

7 sort (y(1), . . . , y(λ)) such that f(y(1)) ≥ . . . ≥ f(y(λ)), where ties

are broken uniformly at random

8 Pt+1 ← (y(1), y(2), . . . , y(µ))

9 t← t+ 1

10 until termination condition is fulfilled

each marginal (or frequency) pt,i for each i ∈ [n] is the probability of sampling

a 1 at the i-th bit position of the offspring. The probability of sampling

x = (x1, x2, . . . , xn) from the model pt is

Pr (x | pt) =
n∏
i=1

(pt,i)
xi (1− pt,i)1−xi .

The starting model is the uniform distribution p0 := (1/2, . . . , 1/2). In each

so-called iteration, the algorithm samples a population Pt of λ individuals

and sorts them in descending order according to fitness. Let Xt,i denote the

number of 1s in bit position i ∈ [n] among the µ fittest individuals. The

marginals are updated using the component-wise formula: pt+1,i := Xt,i/µ

for all i ∈ [n]. Recall that γ∗ = µ/λ ∈ (0, 1] is the selective pressure of

the algorithm. The algorithm also restricts the marginals to be within

[1/n, 1− 1/n] to avoid premature convergence.

2.3 Mutual-information-maximising input cluster algorithm

The MIMIC [10] is a well-known bivariate EDA, which takes advantage

of second-order statistics in an attempt to model the correlations between

decision variables. More specifically, let p∗(X) denote the true distribution

underlying the µ selected individuals, where X = (X1, X2, . . . , Xn). It is
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Algorithm 2: UMDA with margins

1 t← 0

2 initialise pt ← (1/2, 1/2, . . . , 1/2)

3 repeat

4 for j = 1, 2, . . . , λ do

5 sample x
(j)
t,i ∼ Bernoulli(pt,i) for each i ∈ [n]

6 sort (x
(1)
t , . . . , x

(λ)
t ) such that f(x(1)) ≥ . . . ≥ f(x(λ)), where ties

are broken uniformly at random

7 for i = 1, 2, . . . , n do

8 Xt,i =
∑µ

j=1 x
(j)
t,i

9 pt+1,i ← max{1/n,min{1− 1/n,Xt,i/µ}}

10 t← t+ 1

11 until termination condition is fulfilled

often intractable to learn the true distribution p∗(X), so an approximation

to the distribution is often preferred. Following this approach, the MIMIC

approximates p∗(X) by a chain-structured model p̂(X), which is easy to

learn and sample. Given a permutation π = (π1, π2, . . . , πn) of a set [n], the

chain-structured model is defined as follows:

p̂π(X) = p(Xπ1)p(Xπ2 | Xπ1) · · · p(Xπn | Xπn−1),

where the Xπ1 is called the root of the chain. The parameters of the model

are then derived by minimising the Kullback-Leibler divergence between

models p̂π(X) and p∗(X), which is equivalent to minimising an alternative

cost function

Jπ(X) = h(Xπ1) + h(Xπ2 | Xπ1) + · · ·+ h(Xπn | Xπn−1),

where h(Xπi) = −E[log p(Xπi)] and h(Xπi | Xπj ) = −E[log p(Xπi | Xπj )] are

the entropy and conditional entropy, respectively [10].

The model is constructed in each iteration as follows. The variable with

the smallest entropy is selected to become the root of the chain. The variable

among the remaining variables that has the smallest conditional entropy

on the root is then added to the root. This procedure is repeated until

all variables are added to the chain (see steps 5–7). Sampling from the
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Algorithm 3: MIMIC with margins, where ties occurring in sorting

and selection are broken uniformly at random.

1 t← 0

2 Pt ← (x(1), x(2), . . . , x(λ)) uniformly at random from X λ

3 repeat

4 sort Pt such that f(x(1)) ≥ f(x(2)) ≥ . . . ≥ f(x(λ))

5 π
(t+1)
1 ← argminj∈[n] h(Xj)

6 for k = 2, 3, . . . , n do

7 π
(t+1)
k ← argminj h(Xj | Xπ

(t+1)
k−1

) where

j ∈ [n] \ {π(t+1)
1 , . . . , π

(t+1)
k−1 }

8 for j = 1, 2, . . . , λ do

9 x
(j)

π
(t+1)
1

←

1 w.p. R(p(X
π
(t+1)
1

)),

0 w.p. 1− R(p(X
π
(t+1)
1

))

10 for k = 2, 3, . . . , n do

11 x
(j)

π
(t+1)
k

←


1 w.p. R(p(X

π
(t+1)
k

| X
π
(t+1)
k−1

)),

0 w.p. 1− R(p(X
π
(t+1)
k

| X
π
(t+1)
k−1

))

12 Pt+1 ← (x(1), x(2), . . . , x(λ))

13 t← t+ 1

14 until termination condition is fulfilled

chain-structured model is even simpler. The root is sampled first using its

marginal probability. The next variable in the chain is then sampled using

the conditional probability on the preceding variable. This is repeated until

the end of the chain is reached (see steps 8–11). The procedure is known

as ancestral sampling [4]. Denote the permutation in an iteration t ∈ N as

π(t) := {π(t)
1 , π

(t)
2 , . . . , π

(t)
n }, where π

(t)
1 denotes the root.

We note that the description of the MIMIC algorithm in [10] is very

ambiguous. In particular, when constructing the model, we need to calculate

many conditional entropies, which in turn require the calculation of many

conditional probabilities. We can take as an example the conditional proba-

bility p(Xπi = α | Xπj = β) for α, β ∈ {0, 1}, which by the definition can be
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Algorithm 4: Non-elitist population-based algorithm

1 t← 0; create initial population Pt

2 repeat

3 for i = 1, . . . , λ do

4 sample Pt+1,i ∼ D(Pt)

5 t← t+ 1

6 until termination condition is fulfilled

written as

p(Xπi = α | Xπj = β) = p(Xπi = α,Xπj = β)/p(Xπj = β).

Note that all probabilities on the right-hand side will be directly measured

from the sampled population (via counting). And, this is where the problem

comes from since very often that the event {Xπj = β} may not happen,

leading to the probability estimate p(Xπj = β) ≈ 0 which renders the

conditional probability above undefined. To avoid this problem, we make use

of a function R(p) := max{p, 1/n} to ensure that the probability p(Xπj = β)

is always positive, and never less than 1/n. Note that this bound is in line

with the way marginal probabilities are bounded in other EDAs, such as

the UMDA. We think that this small change is essential to ensure that the

pseudo-code of MIMIC is well-defined. Algorithm 3 gives a full description

of the MIMIC (with margins) [44, Chapter 13].

2.4 Level-based analysis

First proposed in [35], the level-based theorem is a general tool that provides

upper bounds on the expected runtime of many non-elitist population-based

algorithms on a wide range of optimisation problems [6, 14, 7, 8, 36, 37, 38].

The theorem assumes that the studied algorithm can be described in the

form of Algorithm 4, which never assumes specific fitness functions, selection

mechanisms, or generic operators like mutation and crossover. The search

space X is partitioned into m disjoint subsets A1, . . . , Am, which we call

levels, and the last level Am consists of global optima of the objective function.

Denote A≥j := ∪mk=jAk.
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Theorem 1 ([6]). Given a partition (Ai)i∈[m] of X , define T := min{tλ |
|Pt∩Am| > 0}, where for all t ∈ N, Pt ∈ X λ is the population of Algorithm 4

in iteration t. Denote y ∼ D(Pt). If there exist z1, . . . , zm−1, δ ∈ (0, 1], and

γ0 ∈ (0, 1) such that for any population Pt ∈ X λ,

(G1) for each level j ∈ [m− 1], if |Pt ∩A≥j | ≥ γ0λ then

Pr (y ∈ A≥j+1) ≥ zj ,

(G2) for each level j ∈ [m− 2] and all γ ∈ (0, γ0], if |Pt ∩ A≥j | ≥ γ0λ and

|Pt ∩A≥j+1| ≥ γλ then

Pr (y ∈ A≥j+1) ≥ (1 + δ) γ,

(G3) and the population size λ ∈ N satisfies

λ ≥
(

4

γ0δ2

)
ln

(
128m

z∗δ2

)
,

where z∗ := minj∈[m−1]{zj}, then

E [T ] ≤
(

8

δ2

)m−1∑
j=1

[
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

]
.

2.5 Useful Tools from Probability Theory

We will use the following well-known tail bounds [41, 18].

Lemma 1 (Chernoff Bound). Let b > 0. Let Y1, . . . , Yn be independent

random variables (not necessarily i.i.d.), that take values in [0, b]. Let Y :=∑n
i=1 Yi, and µ := E[Y ]. Then for any 0 ≤ δ ≤ 1,

Pr(Y ≤ (1− δ)µ) ≤ e−δ2µ/(2b),

and

Pr(Y ≥ (1 + δ)µ) ≤ e−δ2µ/(3b).

Lemma 2 (Chernoff-Hoeffding Bound). Let Y1, . . . , Yn be independent ran-

dom variables (not necessarily i.i.d.), where Yi takes values in [0, bi]. Let

Y :=
∑n

i=1 Yi, and let b :=
∑n

i=1 b
2
i . Then Pr(|Y − E[Y ]| ≥ t) ≤ 2e−2t2/b.

Lemma 3 ([49]). E[X2 | X ∼ Bin (n, p)] = np(p(n− 1) + 1).
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3 EAs optimise DLB efficiently

We start by showing that simple EAs optimise the DLB function in polyno-

mial expected runtime. We consider both elitist and non-elitist EAs, namely

(1 + λ) EA, (µ+ 1) EA and (µ, λ) EA, in addition to Genetic Algorithms.

Although these EAs are simple, we analyse them here to emphasise their

efficiency in dealing with epistasis and mild deception. Speaking of proving

techniques, we will use the fitness-level method [48] and the level-based theo-

rem (see Theorem 1). In doing so, the search space X is first partitioned into

non-empty disjoint subsets A0, A1, . . . , Am (called levels, where m := n/2)

such that

Ai = {x ∈ X : φ(x) = i}, (2)

where φ(x) is defined in (1), and Am contains the all-ones bitstring. We

now give runtime bounds on the DLB function for the EAs; the proofs are

straightforward.

Theorem 2. The expected runtime of the (1 + λ) EA on the DLB function

is O
(
λn+ n3

)
.

Proof. Levels are defined as in (2). The probability of leaving the current

level i < m is lower bounded by (1− 1/n)n−2(1/n)2 ≥ 1/en2, and thus not

leaving it happens with probability at most 1− 1/en2. In each iteration, the

(1 + λ) EA samples λ individuals by mutating the current bitstring. At least

one among λ individuals leaves the current level with probability at least

1− (1− 1/en2)λ ≥ 1− e−λ/en2
. Note that if λ ≥ en2, then this probability is

at least 1− 1/e; otherwise, it is at least λ/2en2. Putting everything together,

the expected runtime guaranteed by the fitness-level method is

λ ·
n/2−1∑
i=0

(
O (1) +

2en2

λ

)
= O

(
nλ+ n3

)
.

Theorem 3. The expected runtime of the (µ+ 1) EA on the DLB function

is O
(
µn log n+ n3

)
.

Proof. Levels are defined as in (2). It suffices to correct block i + 1 to

leave the current level. Following [50], we define a fraction χ(i) := n/ log n.

Given j copies of the best individual, another one is created with probability
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(j/µ)(1− 1/n)n ≥ j/2eµ. Thus, the expected time for a fraction χ(i) of the

population to be in level i is given by

T0 ≤ 2eµ

n/ logn∑
j=1

(1/j) ≤ 2eµ log n.

Now given χ(i) individuals in level i, the event of leaving this level occurs

with probability si ≥ (χ(i)/µ)(1 − 1/n)2i(1/n)2 ≥ (χ(i)/µ) · 1/en2. This

probability is at least

si =

1/en2, if µ ≤ χ(i)

1/(eµ log n), if µ > χ(i).

The expected runtime of the algorithm on DLB is

n/2−1∑
i=0

(
T0 +

1

si

)
= O

(
µn log n+ n3

)
.

Theorem 4. The expected runtime of the (µ, λ) EA with λ ≥ c log n for

some sufficiently large constant c > 0 and µ ≤ λe−2χ/(1+δ) for any constant

δ > 0 and a mutation rate constant χ ∈ (0, n/2) on the DLB function is

O
(
nλ log λ+ n3

)
.

Proof. Since (µ, λ) EA is non-elitist, Theorem 1 guarantees an upper bound

on the expected runtime as long as the three conditions (G1), (G2) and (G3)

are fully verified. Choose γ0 := µ/λ. The levels are defined as in (2), and Aj

is assumed to be the current level.

Condition (G1) requires a lower bound on the probability of sampling an

offspring in A≥j+1, where A≥j+1 := ∪mk=j+1Ak, given |Pt ∩A≥j | ≥ γ0λ = µ.

During the selection step, if we choose an individual in A≥j , then the step is

successful if the mutation operator correctly flips two of the bits in the active

block while keeping others unchanged. Thus, the probability of a successful

sampling is at least

(1− χ/n)n−2(χ/n)2 ≥ e−χχ2/n2.

Next, condition (G2) assumes that at least γλ < µ individuals have at

least j + 1 leading 11s. It suffices to pick one of the γλ fittest individuals

and flip none of the bits; the probability is at least

(γλ/µ)(1− χ/n)n ≥ (γ/γ0)e−2χ ≥ (1 + δ)γ
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if γ0 ≤ e−2χ/(1 + δ) for any constant δ > 0.

Putting everything into condition (G3) yields λ ≥ c log(n) for a sufficiently

large constant c > 0. Having fully verified three conditions, the expected

runtime of the (µ, λ) EA on DLB is

O

n/2−1∑
i=0

(
λ log λ+ n2

) = O
(
nλ log λ+ n3

)
.

So far we have considered only mutation-based EAs, the following theo-

rem shows that Genetic Algorithms, defined in [6, Algorithm 2], with crossover

rate pc using any crossover operator also take a polynomial expected runtime

to optimise the DLB function.

Theorem 5. Genetic Algorithms with crossover rate pc = 1−Ω(1) using any

crossover operator, the bitwise mutation operator with mutation rate χ/n for

any fixed constant χ > 0 and one of the following selection mechanisms: k-

tournament selection, (µ, λ)-selection, linear or exponential ranking selection,

with their parameters k, λ/µ and η being set to no less than (1+δ)eχ/(1−pc)
where δ ∈ (0, 1] being any constant, take an O

(
n3 + nλ log λ

)
expected

runtime on the DLB function, where λ ≥ c log n for some sufficiently large

constant c > 0.

Proof. The results for k-tournament, (µ, λ)-selection and linear ranking follow

by applying [35, Lemmas 5–7], while the result for exponential ranking can

be seen in [6, Lemma 3].

4 Why is UMDA inefficient on DLB?

Before we get to analysing the UMDA on the DLB function, we introduce

some notation. Recall that there are m := n/2 blocks. We then let Ct,i for

each i ∈ [m] denote the number of individuals having at least i leading 11s

in iteration t ∈ N, and Dt,i denote the number of individuals having i − 1

leading 11s, followed by a 00 at the i-th block. For the special case of i = 1,

Dt,1 consists of those with the first block being a 00. We also let Et,i denote

the number of individuals having i− 1 leading 11s, followed by a 10 at the

i-th block, and again Et,1 consists of those having the first block being a 10.
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Once the population has been sampled, the algorithm invokes truncation

selection to select the µ fittest individuals to update the probability vector.

We take this µ-cutoff into account by defining a random variable

Zt := max{i ∈ N ∩ [0,m] : Ct,i ≥ µ}, (3)

which tells us how many consecutive marginals, counting from position one,

are set to the upper border 1− 1/n in iteration t. We also define another

random variable

Z∗t := max{i ∈ N ∩ [0,m] : Ct,i > 0} (4)

to be the number of leading 11s of the fittest individual(s). For readability, we

often leave out the indices of random variables like when we write Ct instead

of Ct,i, if values of the indices are clear from the context. Furthermore, let

(Ft)t∈N be a filtration induced from the population (Pt)t∈N, and we often

write Et[X] := E[X | Ft] and Vart[X] := Var[X | Ft].

4.1 On the distributions of Ct,i, Dt,i and Et,i

We apply the principle of deferred decisions [41] and imagine that the

algorithm first samples the values of the first block for λ individuals. Once

this is finished, it moves on to the second block and so on until the whole

population is obtained.

We note that selection prefers individuals with the first block being a 11 to

those with a 00, which in turn is more preferred to those with a 10 or 01 (due

to deceptive fitness). The number of 11s in the first block follows a binomial

distribution with parameters λ and pt,1pt,2, that is, Ct,1 ∼ Bin (λ, pt,1pt,2).

Having sampled Ct,1 11s, there are λ − Ct,1 other blocks in block 1 in the

current population. Dt,1 is also binomially distributed with parameters

λ−Ct,1 and (1− pt,1)(1− pt,2)/(1− pt,1pt,2) by the definition of conditional

probability since the event of sampling a 11 is excluded. Similarly having

sampled 11s and 00s, Et,1 is binomially distributed with λ−Ct,1−Dt,1 trials

and success probability (pt,1(1− pt,2))/(1− pt,1pt,2− (1− pt,1)(1− pt,2)) since

again the event of sampling either a 11 or a 00 is excluded. Finally, the

number of 01s is λ− Ct,1 −Dt,1 − Et,1.

Having sampled the first block for λ individuals, and note that the bias

due to selection in the second block comes into play only if the first block is
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a 11. Among the Ct,1 fittest individuals, those with a 11 in the second block

will be ranked first, followed by those with a 00, and finally with a 10 or 01.

Conditioned on the first block being a 11, the number of 11s in the second

block is binomially distributed with parameters Ct,1 and pt,3pt,4, i.e., Ct,2 ∼
Bin (Ct,1, pt,3pt,4), and the number of 00s also follows a binomial distribution

with Ct,1−Ct,2 trials and success probability (1− pt,3)(1− pt,4)/(1− pt,3pt,4).

Similarly, Et,2 is binomially distributed with parameters Ct,1 − Ct,2 −Dt,2

and pt,3(1− pt,4)/(1− pt,3pt,4 − (1− pt,3)(1− pt,4)), and finally the number

of 01s equals Ct,1 − Ct,2 −Dt,2 − Et,2. Unlike the first block, we also have

λ−Ct,1 remaining individuals, and since there is no bias in the second block

among these individuals, the numbers of 1s sampled at the two bit positions

are binomially distributed with λ− Ct,1 trials and success probabilities pt,3

and pt,4, respectively.

We now consider an arbitrary block i ∈ [m]. By induction, we observe

that the number of individuals having at least i leading 11s follows a binomial

distribution with parameters Ct,i−1 and pt,2i−1pt,2i, that is,

Ct,i ∼ Bin (Ct,i−1, pt,2i−1pt,2i) . (5)

Similarly,

Dt,i ∼ Bin

(
Ct,i−1 − Ct,i,

(1− pt,2i−1)(1− pt,2i)
1− pt,2i−1pt,2i

)
, (6)

and

Ei,t ∼ Bin

(
Ct,i−1 − Ct,i −Dt,i,

pt,2i−1(1− pt,2i)
pt,2i−1 + pt,2i − 2pt,2i−1pt,2i

)
. (7)

Finally, the number of individuals with i − 1 leading 11s followed by a 01

in the block i is Ct,i−1 − Ct,i − Dt,i − Et,i. For the λ − Ct,i−1 remaining

individuals, the numbers of 1s sampled in the bit positions 2i − 1 and 2i

follow a Bin (λ− Ct,i−1, pt,2i−1) and a Bin (λ− Ct,i−1, pt,2i), respectively. We

note in particular that by the end of this alternative view on the sampling

process, we obtain the population of λ individuals sorted in descending

order according to fitness, where ties are broken uniformly at random. The

following lemma provides the expectations of these random variables.
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Lemma 4. For all t ∈ N, if i = 1 then

Et−1[Ct,i] = λ · pt,2i−1pt,2i,

Et−1[Dt,i] = λ · (1− pt,2i−1)(1− pt,2i),

Et−1[Et,i] = λ · pt,2i−1(1− pt,2i).

Otherwise, if i ∈ [m] \ {1}, then

Et−1[Ct,i] = Et−1[Ct,i−1] · pt,2i−1pt,2i, (8)

Et−1[Dt,i] = Et−1[Ct,i−1] · (1− pt,2i−1)(1− pt,2i), (9)

Et−1[Et,i] = Et−1[Ct,i−1] · pt,2i−1(1− pt,2i). (10)

Proof. For the special case of i = 1, the expectations are trivial since random

variables Ct,i, Dt,i and Et,i are all binomially distributed with λ trials. In the

remainder of the proof, we will consider the case of i 6= 1. By (5), the tower

rule E[X] = E[E[X | Y ]] [21] and noting that pt is Ft−1-measurable, we get

Et−1[Ct,i] = Et−1[Et−1[Ct,i | Ct,i−1]]

= Et−1[Et−1[Bin (Ct,i−1, pt,2i−1pt,2i) | Ct,i−1]]

= Et−1[Ct,i−1 · pt,2i−1pt,2i]

= Et−1[Ct,i−1] · pt,2i−1pt,2i.

By (6) and (8), we also get

Et−1[Dt,i] = Et−1[Et−1[Dt,i | Ct,i−1, Ct,i]]

= Et−1

[
(Ct,i−1 − Ct,i)

(1− pt,2i−1)(1− pt,2i)
1− pt,2i−1pt,2i

]
= Et−1[Ct,i−1](1− pt,2i−1pt,2i)

(1− pt,2i−1)(1− pt,2i)
1− pt,2i−1pt,2i

= Et−1[Ct,i−1] · (1− pt,2i−1)(1− pt,2i),

and similarly by (7), (8) and (9), we finally obtain

Et−1[Et,i] = Et−1[Ct,i−1] · pt,2i−1(1− pt,2i).

4.2 In the initial population

An initial observation is that the all-ones bitstring cannot be sampled in the

initial population P0 with high probability since the probability of sampling
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it from the uniform distribution is 2−n, then by the union bound [41] it

appears in the initial population of λ individuals with probability at most

λ · 2−n = 2−Ω(n) since we only consider the offspring population of size at

most polynomial in the problem instance size n. The following lemma states

the expectations of the random variables Z∗t and Zt (defined in (3) and (4),

respectively) in the iteration t = 0.

Lemma 5. E[Z∗0 ] = O (log λ), and E[Z0] = O (log(λ− µ)).

Proof. Recall that Z∗0 = max{i : C0,i > 0} and the definition of the function

φ(x) in (1). The probability of sampling an individual with k leading 11s

(where k < m) is Pr(φ(x) = k) = (1/4)k(1 − 1/4) = 3 · 4−(k+1), then

Pr(φ(x) ≤ k) = 1 − 4−(k+1). The event {Z∗0 ≤ k} implies that the λ

individuals all have at most k leading 11s, i.e.,

Pr(Z∗0 ≤ k) =

λ∏
i=1

Pr(φ(x
(i)
0 ) ≤ k) = (1− 4−(k+1))λ,

and Pr(Z∗0 > k) = 1 − (1 − 4−(k+1))λ. Since the random variable Z∗0 is

integer-valued and by
∑k

i=1(1/i) < 1 + ln k, we get

E [Z∗0 ] <

∞∑
k=0

Pr(Z∗0 > k)

=

∞∑
k=0

(1− (1− 4−(k+1))λ)

< 1 +

∫ ∞
0

(1− (1− e−x ln 4)λ)dx

=
1

ln 4

∫ 1

0

1− uλ

1− u
du (by following [20])

=
1

ln 4

∫ 1

0

λ−1∑
i=0

uidu =
1

ln 4

λ∑
i=1

1

i
<

1 + lnλ

ln 4
= O (log λ) ,

which proves the first claim.

For the second claim, we take an alternative view that the random

variable Z0 denotes the number of leading 11s of the fittest individual(s) in

a smaller population of the λ− µ+ 1 remaining individuals (i.e., all but the

µ− 1 fittest individuals in the initial population), sampled from a uniform

distribution. The same line of arguments above immediately yields

E [Z0] <
1 + ln(λ− µ+ 1)

ln 4
= O (log(λ− µ)) .
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4.3 In an arbitrary iteration t

By the definition of the random variable Zt, the first 2Zt marginals are set

to the upper border 1 − 1/n in iteration t ∈ N. Recall that the random

variable Xt,i denotes the number of 1s in bit position i ∈ [n] among the µ

fittest individuals, which is used to update the probabilistic model of the

UMDA. We also define another random variable Yt,j to be the number of

11s sampled in block position j ∈ [m], also among the µ fittest individuals in

an iteration t ∈ N.

Lemma 6. For any t ∈ N that

(a) Yt,j ∼ Bin (µ, pt,2j−1pt,2j) for all j ≥ Zt + 2, and

(b) Xt,i ∼ Bin (µ, pt,i) for all i ≥ 2Zt + 3.

Proof. By the definition of the random variable Zt, we know that Ct,Zt ≥ µ
and Ct,Zt+1 < µ. Consider the block j := Zt + 2. We then obtain from

(5) that Ct,j ∼ Bin (Ct,j−1, pt,2j−1pt,2j). For the µ − Ct,j−1 > 0 remaining

individuals (among the µ fittest individuals), these individuals have the block

j − 1 set to {00, 10, 01}. This means that the overall fitness (or the fitness

ranking) of these individuals have been already decided by the first j − 1

blocks, and what is sampled in the block j will not have any impact on the

ranking of these individuals. Therefore, there is no bias in block j among

these individuals, which literally means that the number of 11s sampled here

follows a binomial distribution with µ− Ct,j−1 trials and success probability

pt,2j−1pt,2j , i.e., Bin (µ− Ct,j−1, pt,2j−1pt,2j). Putting things together, the

total number of 11s sampled in the block j among the µ fittest individuals

equals

Yt,j ∼ Ct,j + Bin (µ− Ct,j−1, pt,2j−1pt,2j)

∼ Bin (Ct,j−1, pt,2j−1pt,2j) + Bin (µ− Ct,j−1, pt,2j−1pt,2j)

∼ Bin (µ, pt,2j−1pt,2j) .

We note that should this result hold for any block j ≥ Zt + 2, which proves

the first statement.

For the second statement, we consider a bit position i = 2j − 1 in block

j = Zt + 2. We note that the number of 1s sampled in bit position i can be

written as the sum of three components:
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(1) the number of individuals with at least j leading 11s (i.e., Ct,j),

(2) the number of individuals with j−1 leading 11s, followed by a 10 block

in block j (i.e., Et,j), and

(3) the number of 1s sampled in bit position i among all the µ fittest

individuals except the top Ct,j−1 individuals. There is no bias among

these individuals, so the number of 1s here is binomially distributed

with parameters µ− Ct,j−1 and pt,i.

We note further that the sum of Ct,j +Et,j equals the number of 1s sampled

in bit position i among the Ct,j−1 fittest individuals. Thus, we get:

Xt,i ∼ Ct,j + Et,j + Bin (µ− Ct,j−1, pt,i)

∼ Bin (Ct,j−1, pt,i) + Bin (µ− Ct,j−1, pt,i)

∼ Bin (µ, pt,i) .

By the same line of argumentation, we can show that the number of 1s

sampled in bit position i + 1 is Xt,i+1 ∼ Bin (µ, pt,i+1), and similarly for

other bit positions from i+ 3 to n.

We now consider the block i = Zt + 1, where Ct,i < µ. The following

lemma shows that if the value of the random variable Ct,i is below a threshold,

then in iteration t+ 1 the number of individuals with at least i leading 11s

sampled decreases, while the number of individuals with exactly i− 1 leading

11s followed by a 00 increases in expectation. We consider two different

regimes of the selective pressure, i.e., γ∗ < 1/2e and γ∗ ≥ 1/2e.

Lemma 7. Consider the block i = Zt + 1 in an arbitrary iteration t ∈ N,

and assume further that Ct,i +Dt,i ≥ µ.

(A) Let γ∗ = µ/λ < 1/2e. If there exists a constant ε ∈ (0, 1) such that

Ct,i ≤ (µ2/λ)(1− ε), then

A.1) Et[Ct+1,i] < Ct,i(1− ε),

A.2) Et[Ct+1,i +Dt+1,i] > µ(1 + ε2),

A.3) Pr(Ct+1,i +Dt+1,i ≤ µ) ≤ e−Ω(µ), and

A.4) Pr(Ct+1,i ≥ (µ2/λ)(1− ε)) ≤ e−Ω(µ2/λ).
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(B) Let γ∗ = µ/λ ≥ 1/2e. If there exists a constant ε ∈ (0, 1) such that

Ct,i ≤ (µ/2e)(1−
√
α), where α := 2e(1 + ε)(µ/λ)− 1 ≥ ε, then

B.1) Et[Ct+1,i] < Ct,i(1−
√
ε),

B.2) Et[Ct+1,i +Dt+1,i] > µ(1 + ε),

B.3) Pr(Ct+1,i +Dt+1,i ≤ µ) ≤ e−Ω(µ), and

B.4) Pr(Ct+1,i ≥ µ(1−
√
α)/2e) ≤ e−Ω(λ).

Proof. The assumption implies that the two marginals in the block i will

be set to Ct,i/µ when updating the model in iteration t. Statement (A.1) is

trivial since

Et[Ct+1,i] = Et[Ct+1,i−1] · pt+1,2i−1pt+1,2i

= λ(1− 1/n)2(i−1)(Ct,i/µ)(Ct,i/µ)

< λ(Ct,i/µ)(µ/λ)(1− ε)

= Ct,i(1− ε).

Noting also that Ct,i/µ ≤ (µ/λ)(1 − ε) < (1 − ε)/2e < (1 − ε)/2. The

statement (A.2) can be shown as follows.

Et[Ct+1,i +Dt+1,i] = λ(1− 1/n)2(i−1)((Ct,i/µ)2 + (1− Ct,i/µ)2)

≥ (λ/e)(1− 2(Ct,i/µ)(1− Ct,i/µ))

≥ λ(1− (1− ε)(1− (1− ε)/2))

= (λ/2e)(1 + ε2)

> µ(1 + ε2).

For the statement (A.3), we now associate each of the λ individuals in

the population with an indicator random variable , which is set to 1 if the

individual has i − 1 leading 11s, followed by either a 11 or a 00. There

are λ such indicators, and we are interested in their sum, which is identical

to the sum of Dt+1,i + Ct+1,i. By statement (A.2), the expectation of the

sum is at least µ(1 + ε2) = µ/(1 − δ) for some constants ε ∈ (0, 1) and

δ := 1 − 1/(1 + ε2). Then, by a Chernoff bound (see Lemma 1 in the

Appendix) the probability that the sum is at most (1− δ) · µ/(1− δ) = µ is

at most e−(δ2/2)·µ/(1−δ) = e−Ω(µ).
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For the statement (A.4), we note that Ct+1,i is stochastically dominated

by another random variable C̃, which is binomially distributed with λ trials

and success probability (µ/λ)2(1− ε)2. Note that E[C̃] = (µ2/λ)(1− ε)2 =

Ω(µ2/λ); thus, we can rewrite (µ2/λ)(1− ε) = E[C̃]/(1− ε) = (1 + ε′)E[C̃]

for some other constant ε′ := 1/(1− ε)− 1 > 0. By a Chernoff bound, we

then obtain

Pr(Ct+1,i ≥ (µ2/λ)(1− ε)) ≤ Pr(C̃ ≥ (µ2/λ)(1− ε))

= Pr(C̃ ≥ (1 + ε′)E[C̃])

≤ e−(ε′)2·E[C̃]/3

= e−Ω(µ2/λ),

which completes proof of statement (A.4).

To prove statement (B.1), by (1) and (2), we get

Ct,i/µ ≤ (1/2e)(1−
√

2e(1 + ε)(µ/λ)− 1)

≤ (1/2e)(1−
√

2e(1 + ε)(1/2e)− 1)

= (1−
√
ε)/(2e)

< (1−
√
ε)/2.

Therefore, statement (B.1) can be shown as follows.

Et[Ct+1,i] < λ(Ct,i/µ)2

= (λ/µ)(Ct,i/µ)Ct,i

≤ (2e)((1−
√
ε)/2e)Ct,i

= Ct,i(1−
√
ε).

For statement (B.2), we note that Ct,i/µ ≤ (1−
√
α)/2e < (1−

√
α)/2 and

then obtain

Et[Ct+1,i +Dt+1,i] ≥ (λ/e)(1− 2(Ct,i/µ)(1− Ct,i/µ))

> (λ/e)(1− (1−
√
α)(1− (1−

√
α)/2)))

= (λ/e)(1− (1−
√
α) + (1/2)(1−

√
α)2)

= (λ/e)(
√
α+ (1/2)(1− 2

√
α+ α))

= (λ/2e)(1 + α)

= (λ/2e)2e(1 + ε)(µ/λ)

= µ(1 + ε).
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The statement (B.3) follows similarly to the proof of statement (A.3). For

the statement (B.4), we employ a similar approach used in (A.4), where we

choose C̃ ∼ Bin
(
λ, ((1−

√
α)/2e)2

)
and E[C̃] = λ((1 −

√
α)/2e)2 = Ω(λ).

We also note that

µ(1−
√
α)/2e = E[C̃]/((λ/µ)((1−

√
α)/2e))

≥ E[C̃]/(1−
√
α)

≥ E[C̃]/(1− ε)

= (1 + ε′)E[C̃]

for some other constant ε′ = 1/(1 − ε) − 1 > 0 and α ≥ ε. Since C̃

stochastically dominates Ct+1,i, we get by a Chernoff bound that

Pr(Ct+1,i ≥ µ(1−
√
α)/2e) ≤ Pr(C̃ ≥ µ(1−

√
α)/2e)

≤ Pr(C̃ ≥ (1 + ε′)E[C̃])

≤ e−(ε′)2·E[C̃]/3

≤ e−Ω(λ),

which completes the proof.

We note that combining the two conditions of the statement (A) in

Lemma 7 yields Ct,i < µ(1− ε)/2e for some small constant ε ∈ (0, 1), and

the same calculation for the statement (B) yields Ct,i < µ(1−
√
ε)/2e. We

observe that the two upper bounds are asymptotically identical, and since

the statement (A) considers the case of high selective pressure, we will in

the remainder of the paper form our arguments based on this result only.

Previous studies [7, 38] show that the UMDA only works under a sufficiently

high selective pressure (on the LeadingOnes function). In other words, if

we can show that the UMDA cannot optimise the DLB function efficiently

for some selective pressure γ∗ < 1/2e, this result will highly likely hold for

any selective pressure γ∗ ≥ 1/2e.

Furthermore, Lemma 7 also tells us that in an iteration t ∈ N if the block

i = Zt + 1 consists of 00s and 11s only among the µ fittest individuals, and

the number of 11s is below a threshold Ct,i ≤ (µ2/λ)(1− ε) for some small

constant ε ∈ (0, 1), then in expectation the number of 11s sampled in the

next iteration will shrink, while that of 00s will expand, and the block i still
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consists of 00s and 11s only among the µ fittest individuals. Mathematically

speaking, we obtain

Et[Ct,i − Ct+1,i] > εCt,i.

This means that there is a (multiplicative) drift towards the value of zero

on the stochastic process (Ct,i)t∈N. By the multiplicative drift theorem [16],

the random variable Ct,i will hit the value of zero in an O (logµ) expected

time. Once this has happened, we will show that the UMDA requires at

least eΩ(µ) iterations in expectation to sample at least

θ := (µ2/λ)(1− ε) = γ∗µ(1− ε) (11)

11s to gain enough momentum to escape the ‘trap’ in the block Zt + 1

(another way of saying this is to repair the specified block).

Furthermore, we note so far that Lemma 7 assumes that there are only

11s and 00s among the µ fittest individuals in block i = Zt + 1, which

make the two corresponding marginals simultaneously set to Ct,i/µ. This is,

however, not strictly necessary because the UMDA updates each marginal

using the total number of 1-bits sampled in the bit position, so as long as

the number of 1s in each bit position is still below the threshold θ, then all

results in Lemma 7 still hold.

Recall that we aim at showing an eΩ(µ) lower bound on the runtime of

the UMDA on the DLB function. This lower bound will be obtained if we

can show that there exists a block i = Zt + 1 < m between Z0 and m = n/2,

where the two marginals are deceived to reach the lower bound 1/n, and

then the UMDA has to wait a long time (in terms of iterations) while the

block is being repaired.

Lemma 8. Let c log n ≤ µ = o(n) for some sufficiently large constant c > 0.

If there exists a constant k < m such that Zt ≤ k − 2 for any time t ∈ N,

then for any j ∈ [2k − 1, n] that

(a) E [pt,j ] = 1/2,

(b) E [Xt,j ] = µ/2, and

(c) Var[Xt,j ] ≥ (µ2/4)(1− o(1))(1− (1− 1/µ)t).
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Proof. For readability, we omit the index j through out the proof. Recall

that pt = max{1/n,min{1−1/n,Xt−1/µ}}. By the definition of expectation,

we get

E[pt] = (1/n) · Pr (Xt−1 = 0) + (1− 1/n) · Pr (Xt−1µ)

+

µ−1∑
k=1

(k/µ) · Pr (Xt−1 = k) .
(12)

We note further that

E[Xt−1] =

µ∑
k=0

kPr(Xt−1 = k) = µPr(Xt−1 = µ) +

µ−1∑
k=1

kPr(Xt−1 = k),

from which we then obtain

µ−1∑
k=1

k · Pr(Xt−1 = k) = E[Xt−1]− µ · Pr(Xt−1 = µ). (13)

Substituting (13) into (12) yields

E[pt] = (1/µ)E [Xt−1] + (1/n) (Pr (Xt−1 = 0)− Pr (Xt−1 = µ)) . (14)

We note by Lemma 6 that Xt follows a binomial distribution with µ trials

and success probability pt,j , which means that there is no bias towards any

border in the stochastic process (Xt)t∈N. Due to this symmetry, we get

Pr (Xt−1 = µ) = Pr (Xt−1 = 0) . (15)

Furthermore, by the tower rule we also have

E[Xt−1] = E[E[Xt−1 | pt−1]] = E [E [Bin (µ, pt−1) | pt−1]] = µ · E[pt−1] (16)

Substituting (15) and (16) into (14) yields E[pt] = E[pt−1]. Then by induction

on time, we obtain

E[pt] = E[pt−1] = E[pt−2] = . . . = E[p0] = 1/2,

which completes the proof of statement (a).

Statement (b) follows from (16) that

E[Xt] = µ · E[pt] = µ/2.
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For statement (c), we note by the tower rule and Lemma 3 that

E[X2
t ] = E[E[X2

t | pt]] = E[µpt(pt(µ− 1) + 1)]

= µ(µ− 1)E[p2
t ] + µE[pt] = µ(µ− 1)E[p2

t ] + µ/2.
(17)

By the definition of expectation, we also have

E[p2
t ] = (1/n)2 · Pr(Xt−1 = 0) + (1− 1/n)2 · Pr(Xt−1 = µ)

+

µ−1∑
k=1

(k/µ)2 · Pr(Xt−1 = k),

which by noting that

E[X2
t−1] = µ2 · Pr(Xt−1 = µ) +

µ−1∑
k=1

k2 · Pr(Xt−1 = k)

satisfies

E[p2
t ] = (1/n)2 · Pr(Xt−1 = 0) + (1− 1/n)2 · Pr(Xt−1 = µ)

+ (1/µ2)(E[X2
t−1]− µ2 Pr(Xt−1 = µ))

= (1/µ2)E[X2
t−1] + (1/n)2 · Pr(Xt−1 = 0)

+ ((1− 1/n)2 − 1) · Pr(Xt−1 = µ)

= (1/µ2) · E[X2
t−1]− (2/n)(1− 1/n) · Pr(Xt−1 = µ)

By (15), we can simplify the expression above further as follows.

E[p2
t ] = (1/µ2)E[X2

t−1]− (2/n)(1− 1/n) · Pr(Xt−1 = µ)

≥ (1/µ2)E[X2
t−1]− (2/n)(1− 1/n)

(18)

since Pr(Xt−1 = µ) ≤ 1. Substituting (18) into (17) yields

E[X2
t ] ≥ (1− 1/µ)E[X2

t−1]− 2(µ/n)(µ− 1)(1− 1/n) + µ/2

= (1− 1/µ)E[X2
t−1] + (µ/2)(1− o(1))

since µ = o(n). We now obtain a recurrence relation for the expectation of

X2
t w.r.t. time t and by

∑n
i=1 c

i = (cn+1 − 1)/(c− 1) for any c 6= 1, we then

get

E[X2
t ] ≥ (1− 1/µ)tE[X2

0 ] + (µ/2)(1− o(1))
t−1∑
i=0

(1− 1/µ)i

= (1− 1/µ)tE[X2
0 ] + (µ/2)(1− o(1)) · (1− 1/µ)t − 1

(1− 1/µ)− 1

= (1− 1/µ)tE[X2
0 ] + (µ2/2)(1− o(1))(1− (1− 1/µ)t)
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which by E[X2
0 ] = µ(1/2)((1/2)(µ− 1) + 1) = µ(µ+ 1)/4 (see Lemma 3 for

X0 ∼ Bin (µ, 1/2)) satisfies

≥ (1− 1/µ)tµ(µ+ 1)/4 + (µ2/2)(1− o(1))(1− (1− 1/µ)t)

= (µ2/2)(1− o(1))− (1− 1/µ)t((µ2/2)(1− o(1))− µ(µ+ 1)/4)

= (µ2/2)(1− o(1))− (1− 1/µ)t(µ2/4)(1− o(1))

Thus, we obtain

Var[Xt] = E[X2
t ]− E[Xt]

2

≥ (µ2/2)(1− o(1))− (1− 1/µ)t(µ2/4)(1− o(1))− (µ/2)2

≥ (µ2/4)(1− o(1))− (1− 1/µ)t(µ2/4)(1− o(1))

≥ (µ2/4)(1− o(1))(1− (1− 1/µ)t),

which completes the proof of statement (c).

One should not confuse the result implied by the statement (a) in Lemma 8

with the actual value of the marginals in an arbitrary iteration t ∈ N. For

the UMDA without borders, Friedrich et al. [22] showed that even when

the expectation stays at 1/2, the actual value of the marginal in iteration t

can be close to the trivial lower or upper border due to its large variance.

Recently, Zheng et al. [54] showed that this actually happens within an Θ(µ)

expected number of iterations.

Furthermore, in case of no borders, the variance of Xt,j for any bit

j ∈ [2k−1, n], where k is defined in Lemma 8, can be expressed as a function

of time as Var∗[Xt,j ] = (1 − (1 − 1/µ)t)(µ2/4), which can be derived by

applying the law of total variance on the martingale Xt,j ∼ Bin (µ,Xt−1,j/µ)

(see [22, Lemma 7, Corrolary 9] for a similar derivation for the cGA without

borders). Surprisingly, the statement (c) in Lemma 8 tells us that the

variance of Xt,j for the UMDA with borders grows asymptotically in the

same order as the variance for the UMDA without borders. The following

lemma shows that after a sufficiently long time the probability that one will

find the value of the random variable Xt,j smaller than the threshold θ or

greater than µ− θ, where θ is defined in (11), with a constant probability.

Lemma 9. For any c ∈ R and even number µ ∈ N, let X ∈ {0, . . . , µ} be a

random variable with Var[X] ≥ cµ2 and

Pr (X = µ/2− i) = Pr (X = µ/2 + i)
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for all i ∈ [µ/2]. Then,

Pr (X ≤ θ) ≥ 2(c− (1/2− γ∗)2)

1− 4(1/2− γ∗)2
.

Proof. Due to symmetry, we have E [X] = µ/2 and

p := Pr (X ≤ θ) = Pr (X ≥ µ− θ) .

The lower bound on the variance of X implies

cµ2 ≤ Var[X] =

µ∑
i=0

Pr (X = i) (i− E [X])2

≤ Pr (X ≤ θ) µ
2

4
+ Pr (θ < X < µ− θ) (µ/2− θ)2

+ Pr (X ≥ µ− θ) µ
2

4

=
pµ2

4
+ (1− 2p)(µ/2− θ)2 +

pµ2

4

= (µ/2− θ)2 + (µ2/2− 2(µ/2− θ)2)p

Solving the inequality above for p gives

p ≥ 2(cµ2 − (µ/2− θ)2)

µ2 − 4(µ/2− θ2
=

2(c− (1/2− γ∗)2)

1− 4(1/2− γ∗)2
.

4.4 Exponential runtime in case of low selective pressure

In this section, we will show that the UMDA requires an eΩ(µ) expected

runtime to optimise the DLB function. To proceed, we will consider two

phases:

1) until the algorithm gets stuck at a block Zt + 1, and

2) while the algorithm is getting stuck and afterwards.

Recall that the algorithm gets stuck at some value Zt < m when the number

of 1s in each bit position in the block Zt + 1 among the µ fittest individuals

is at most θ = (µ2/λ)(1 − ε) for some small constant ε ∈ (0, 1). We will

shows that phase 1 will last for Ω(µ) iterations. The following lemma shows

that the all-ones bitstring cannot be sampled during the first Ω(µ) iterations

with high probability.
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Lemma 10. With probability 1 − 2−Ω(n), the all-ones bitstring cannot be

sampled during the first 2.92µ iterations of the UMDA optimising the DLB

function.

Proof. The proof is inspired by [32, Lemma 9]. We will upper bound the

probability of an arbitrary bit position j ∈ N∩ [2Z0 + 3, n] exceeding 99/100

during the first Ω(µ) iterations. For readability, we omit the index j and

consider the potential φt := X2
t . By Lemma 6, we can pessimistically assume

we are not at the borders, which implies that Xt+1 ∼ Bin (µ,Xt/µ), and by

Lemma 3 the expected single-step change is

Et[φt+1 − φt] = µ
Xt

µ

(
Xt

µ
(µ− 1) + 1

)
−X2

t = Xt

(
1− Xt

µ

)
<
µ

4
.

Let T := min{t ∈ N | Xt ≥ 99µ/100}, i.e., the first hitting time of the value

of 99µ/100 in the stochastic process (Xt)t∈N. We have a Markov chain φT

with process φt = X2
t starting at (µ/2)2 and then progressing by φt+1 − φt

for T iterations. We then get

E[φT ] =
(µ

2

)2
+
T−1∑
t=0

E[Et[φt+1 − φt]] <
(µ

2

)2
+ T · µ

4
.

Using Markov’s inequality for k > 1 yields

Pr

(
φT ≥ k

(
µ2

4
+ T · µ

4

))
≤ Pr (φT ≥ k · E [φT ]) ≤ 1

k
.

We want that (99µ/100)2 ≥ k
(
µ2/4 + T · µ/4

)
since then

Pr

(
φT ≥

(
99µ

100

)2
)
≤ Pr

(
φT ≥ k

(
µ2

4
+ T · µ

4

))
≤ 1

k
.

We get T ≤ µ((4/k)(99/100)2 − 1), which is positive as long as k ∈ (1, 4 ·
(99/100)2). Thus, we can choose a value of k = 1.00001 and then obtain

T ≤ 2.92µ. During the first Ω(µ) iterations, the probability of an arbitrary

marginal j ∈ N∩ [2Z0 + 3, n] to exceed 99/100 is at most a constant 1/k < 1.

By Lemma 5, in expectation there are at most (1/k)·(n−E[Z0]) = (1/k)·(n−
O (log(λ− µ))) < n/k marginals exceeding 99/100, and by Chernoff bound,

with probability 1− 2−Ω(n) there are at most (1 + δ)(n/k) such marginals for

a constant δ > 0 and at least (1−(1+δ)/k)n = Ω(n) marginals are still below

99/100 during the first 2.92µ iterations. Thus, the probability of sampling

the all-ones bitstring is upper bounded by (99/100)Ω(n) = 2−Ω(n).
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We now show that the all-ones bitstring cannot be sampled with proba-

bility 1− 2−Ω(n) while the UMDA is getting stuck at a block. To do this, we

need the following two lemmas, where the first one implies the independent

sampling at the 2(m− (Zt + 1)) remaining bit positions, and the other states

that the expected values of the marginals of these remaining bits will highly

likely stay around the value of 1/2.

Lemma 11. Consider the situation of Lemma 8. Then, the events of sam-

pling of 11s in any block from k to m are pairwise independent. Furthermore,

the all-ones bitstring cannot be sampled with probability at least 1− 2−Ω(n).

Proof. Recall the definition of the constant k in Lemma 8. We have observed

in Lemma 6 that the number of 11s sampled among the µ fittest individuals

in an arbitrary block j ≥ k in iteration t ∈ N is binomially distributed with

µ trials and success probability pt,2j−1pt,2j . This result also implies that

sampling a 11 at a block j1 is independent of sampling a 11 at a block j2,

for any j1, j2 ∈ [k,m] and j1 6= j2, which proves the first claim.

For the second claim, we prove by considering the number of 11s sampled

in an offspring between blocks k and m. By Lemma 8, the probability of

sampling a 11 in a block is 1/4, so the expected number of 11s sampled

between blocks k and m (i.e., there are m− k + 1 = Θ(n) blocks in total) is

given by

E [Yt] = (m− k + 1) · (1/2)2 = Θ(n).

Then, by the Chernoff-Hoeffding bound, the probability of sampling these

blocks all as 11s is at most e−Ω(n).

We are now ready to prove an exponential runtime of the UMDA on

function DLB when the selective pressure is γ∗ = Ω(1).

Theorem 6. The expected runtime of the UMDA with the parent population

size c log n ≤ µ = o(n) for some sufficiently large constant c > 0, and parent

and offspring population sizes satisfying µ
λ > 14

1000 is eΩ(µ) on the DLB

function.

Proof. The all-ones bitstring cannot be sampled during the first Ω(µ) itera-

tions with probability 1− 2−Ω(n) (by Lemma 10). After roughly 2.92µ itera-

tions, we obtain from Lemma 8 that Var[Xt] ≥ (1− o(1))(µ2/4)(1− 1/e2.92).
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If we choose the selective pressure γ∗ > 14
1000 , then by Lemma 9 for c =

(1/4)(1− 1/e2.92)(1− o(1)), we obtain a constant lower bound on the proba-

bility that Xt drops below the threshhold value θ, defined in (11). This also

means that we can find with probability Ω(1) that in any bit position in the

block Zt + 2 there are fewer than θ 1s sampled, where θ is defined in (11).

Assume in iteration t′ = t+ 1 that Zt′ = Zt + 1, then with probability Ω(1)

the UMDA will get stuck at block Zt′ + 1 = Zt + 2 in iteration t′. Assume

now that we are in iteration t′, there is a multiplicative drift towards the

value of zero in the stochastic process (Ct′+∆t,i)∆t∈N in block i := Zt′ + 1.

By multiplicative drift theorem, the number of 11s sampled there will reduce

to zero within an O (logµ) expected number of iterations. In particular, we

note by the statements (A.3) and (A.4) of Lemma 7 that after the number

of 11s has dropped below the threshold θ, the event of sampling at least θ

11s in the next iteration in block i or sampling at least one 01 or 10 among

the µ fittest individuals is at most

e−Ω(µ) + e−Ω(µ2/λ) ≤ e−Ω(γ∗µ) = e−Ω(µ)

since we consider only γ∗ > 14
1000 . Thus, the UMDA requires at least

1/e−Ω(µ) = eΩ(µ) iterations in expectation until this block has been repaired.

But then, the algorithm will likely get stuck in some of the following blocks.

By Lemma 5, the expected number of times the algorithm gets trapped is

Ω(1) · (n/2− E[Z0]) ≥ Ω(1) · (n−O (log(λ− µ))) = Ω(n).

Therefore, the expected number of iterations of the UMDA on the DLB

function is at least Ω(n) · eΩ(µ). We also note that so far in the proof we

have always assumed the co-occurrence of the following two events:

(A) The all-ones bitstring will not be sampled during the first Ω(µ) itera-

tions with probability 1− 2−Ω(n) (by Lemma 10).

(B) The all-ones bitstring cannot be sampled while the UMDA is getting

stuck at a block with probability 1− 2−Ω(n) (by Lemma 11).

By union bound, the success probability is still 1−2−Ω(n). By the law of total

expectation [41] and noting further that the UMDA performs λ function

evaluations in every iteration, the overall expected runtime is lower-bounded

by

(1− 2−Ω(n)) · λ · (Ω(µ) + Ω(n) · eΩ(µ)) = eΩ(µ).
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We observe that if the parent population size is µ = Θ(log n), Theorem 6

yields a lower bound of nΩ(1) for any selective pressure γ∗ > 14
1000 . The

intuition is that when the population size µ is small. the threshold θ is not

too large, meaning that the UMDA only needs to sample a few 1-bits in

order to escape the ‘current trap’ in an arbitrary iteration. Larger population

sizes, such as µ = Ω(nε) for some constant ε > 0, will result in an exponential

lower bound of 2Ω(nε) on the expected runtime of the UMDA on the DLB

function.

4.5 Extremely high selective pressure may help

We now apply Theorem 1 to derive an O
(
n3
)

expected runtime for the

UMDA on the DLB function under extremely high selective pressures of

γ∗ = O (1/µ) (or λ = Ω(µ2)).

Theorem 7. The UMDA with the parent population size µ ≥ c log n for a

sufficiently large constant c > 0, and the offspring population size λ ≥ (1 +

δ)eµ2 for any constant δ > 0, has expected optimisation time O(nλ log λ+n3)

on the DLB function.

Proof. Recall that levels are defined as in (2). There are m := (n/2) + 1

levels from A0 to Am.

For condition (G2), for any level j ∈ {0}∪ [m− 2] satisfying |Pt ∩A≥j | ≥
γ0λ = µ and |Pt ∩A≥j+1| ≥ λγ for some γ ∈ (0, γ0], we seek a lower bound

(1 + δ)γ for Pr (y ∈ A≥j+1) where y is sampled from the model pt+1. The

given conditions on j imply that the µ fittest individuals of Pt have at least

j leading 11s and among them at least dγλe have at least j + 1 leading

11s. Hence, pt+1,i = 1 − 1/n for i ∈ [2j], and for i ∈ {2j + 1, 2j + 2} that

pt+1,i ≥ max(min(1− 1/n, γλ/µ), 1/n) ≥ min(1− 1/n, γ/γ0), so

Pr (y ∈ A≥j+1) ≥
j+1∏
i=1

pt+1,i ≥
(

1− 1

n

)2j ( γ

γ0

)2

≥ 1

e

(
γ

γ0

)2

=
λγ

eµ2
≥ (1 + δ)γ

due to γ0 ≥ γ ≥ 1/λ, and λ ≥ (1 + δ)eµ2 for any constant δ > 0. Therefore,

condition (G2) is now satisfied.

33



For condition (G1), for any level j ∈ N∩ [0,m− 1] satisfying |Pt∩A≥j | ≥
γ0λ = µ we seek a lower bound zj on Pr (y ∈ A≥j+1). Again the condition

on level j implies that pt+1,i = 1 − 1/n for i ∈ [2j]. Due to the imposed

lower margin, we can assume pessimistically that pt+1,2j+1 = pt+1,2j+2 ≥ 1/n.

Hence,

Pr (y ∈ A≥j+1) ≥
(

1− 1

n

)2j ( 1

n

)2

≥ 1

en2
=: zj .

So, (G1) is satisfied for zj := 1/(en2).

Considering (G3), because δ is a constant, and both 1/z∗ and m are O(n),

there must exist a constant c > 0 such that µ ≥ c log n ≥ (4/δ2) ln(128m/(z∗δ
2)).

Note that λ = µ/γ0, so (G3) is satisfied.

All conditions of Theorem 1 are satisfied, so the expected optimisation

time of the UMDA on the DLB function is

O

n/2∑
j=1

(
λ lnλ+ n2

) = O
(
nλ log λ+ n3

)
.

One might say that the failure of the UMDA to optimise the DLB

problem is not necessarily coming from the pairwise deception, but from the

low selective pressure in the same way that it struggles on the LeadingOnes

function [38]. However, as a final remark, we think that this claim is

inaccurate. In fact, for the range of selective pressures considered, it has been

shown that the UMDA optimises other non-deceptive problems easily in

polynomial expected runtime, including LeadingOnes [7, 38] and OneMax

[7].

Non-elitist algorithms using (µ, λ)-selection are typically efficient when

µ/λ < 1/e, i.e., below the error threshold (see [34]). In contrast, to show

that the UMDA optimises DLB efficiently, we need to decrease this ratio

significantly so that we get µ/λ = O (1/µ), i.e., extremely high selective

pressure. We do not normally see such high selective pressures in practical

applications of the UMDA. Furthermore, under an O (1/µ) selective pressure

the UMDA selects few fittest individuals to update the model. In this

extreme situation, we believe that the UMDA degenerates into the (1, λ) EA

(see Figure 1 for some empirical result of the UMDA with extreme selective

pressure and simple EAs), where only the fittest individual(s) are selected

to the next generation.
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We have already shown that simple EAs can optimise the DLB function

easily under normal selective pressure. For this reason, we think that com-

paring the UMDA and simple EAs in this (extreme) regime of the selective

pressure is not very interesting.

5 Experiments

In the previous sections, we showed that the UMDA fails to optimise DLB

since it does not remember what it has learned so far during the optimisation

process. This is due to the lack of ability to capture interactions between

bits.

To complement the theoretical investigation, we studied empirically the

behaviour of the UMDA in the case of normal selective pressure, and in the

case of extremely high selective pressure. As a base-line, we also considered

the standard (µ, λ) EA. Figure 1 shows the results of 100 repetitions of

the UMDA and the (µ, λ) EA on the DLB problem of size n = 200. The

boxplots show the interquartile range of the number of correct blocks obtained

by the fittest individual in the population, as a function of the number of

fitness evaluations t. The maximal number of correct blocks is n/2 = 100.

Each run was terminated after 106 function evaluations. The UMDA in the

extreme selective pressure setting uses the parameters µ = 10 and λ = 1000.

The boxplots show that the algorithm in this setting converges to a non-

optimal equilibirum position (around 20-30 correct blocks), as predicted

by the theoretical analysis. The UMDA in the normal selective pressure

setting uses the parameters µ = 200 and λ = 1000. The boxplots show that

the algorithm in this setting improves steadily, again as predicted by the

theoretical analysis. The (µ, λ) EA uses the parameters µ = 200, λ = 1000,

and bitwise mutation rate 1/n. The boxplots show that the algorithm has a

steady progress, as predicted by the theoretical analysis.

We now look at another class of EDAs, which attempt to learn variable

dependencies. Here, we consider the MIMIC algorithm (see Algorithm 3).

The reason behind the inclusion of the MIMIC is that this algorithm builds

a chain-structured model in each generation using entropy and conditional

entropy between decision variables. In order to optimise DLB, algorithms

need to correct all blocks from left to right and maintain these blocks over
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Figure 1: Number of correct blocks in the fittest individuals of the (µ, λ) EA

and UMDA on the DLB problem with problem size n = 200 as a function of

number of function evaluations t. UMDA with extreme selective pressure

uses parent population size µ = 10, while the other experiments use µ = 200,

λ = 1000, and mutation rate 1/n for the (µ, λ) EA.

generations. Our conjecture is that the MIMIC can deal with small traps in

DLB easily. This is because, if the µ-th individual in the sorted population

has i leading 11s, then bits at positions 1, 2, . . . , 2i will have the minimum

entropy and conditional entropy, which might form the prefix of the chain-

structured model. The algorithm might then be able to choose the ‘right’

bits (i.e., bits 2i+ 1 and 2i+ 2) to add to the prefix and easily increase the

value of i in the next generation.

We consider three different settings for the population: λ =
√
n (i.e.

small), λ =
√
n log n (medium) and λ = n (large) for n ∈ {10, 15, 20, . . . , 100}.

As mentioned before, the MIMIC includes a vast number of probability

calculations (to obtain entropy and conditional entropy), but this does not

matter as we are only interested in the number of fitness evaluations the

algorithm performs. For each value of n, the algorithms are run 100 times

and the average runtime is computed. The results are shown in Figure 2.

In general, the results show that the MIMIC can find the optimum of

the DLB problem under all choices of population size. When n is small

(especially around 10), there is a very large variance in the number of

fitness evaluations. This is because the parent population is so small, the

model is easily influenced by the few top individuals, which may result in
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(c) λ = n

Figure 2: Average runtime of the MIMIC on the DLB function. The y-

values are the base-2 logarithm of the number of fitness evaluations. There

are 100 runtime measures for each value of the problem instance size n.

a random walk. When the population size becomes larger, the diversity

in the population can be maintained for a longer period of time, and the

empirical marginals cannot deviate too far from the true marginals; thus,

the algorithm looks more stable. Furthermore, the size of the population

seems to have a real impact on the runtime of the algorithm. For small and

medium size (i.e. only differ by a logarithmic factor), the runtime looks

similar; however, for large λ = n the MIMIC on average requires a smaller

number of fitness evaluations but exhibits a larger variance. Although we

cannot provide a rigorous analysis of the MIMIC on the DLB problem, the

shapes in all figures suggest that the number of fitness evaluations might be

polynomial in problem size n.

6 Conclusions

In this paper, we have introduced the Deceptive Leading Blocks, in which bits

are highly correlated (similar to LeadingOnes) and contains many small

traps (like a trap function). Since this function is new, we first show that

simple EAs can optimise the function in polynomial time. More specifically,

we consider three typical EAs, that are (1 + λ) EA, (µ + 1) EA and the

non-elitist (µ, λ) EA, and the upper bounds derived verified our claims. Next,

we aim at showing that due to correlation and deception, the DLB problem

may be hard for the UMDA, which assumes independence between variables.
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We are able to show a lower bound of eΩ(µ) on the expected runtime of the

UMDA on DLB for any selective pressures µ
λ >

14
1000 and parent population

size µ = Ω(log n) and µ = o(n). On the other hand, if the selective pressure

is extremely high (i.e., O (1/µ)), the UMDA optimises the DLB function in

an O
(
nλ log λ+ n3

)
expected runtime.

We believe that the difficulty that the UMDA faces when optimising

DLB stems from the first-order statistics underlying the algorithm, that

causes the algorithm to forget everything it has learned so far. Motivated

by this observation, we look at the class of bivariate EDAs, and a typical

one is the MIMIC. Due to the complexity of how the entropy and pair-

wise conditional entropy measured to build a chain-structured model, we

were unable to analyse it using rigorous arguments. Thus, we present some

experimental results of the MIMIC on DLB to draw future attention from

the community. The experimental findings suggest that the MIMIC might

be able to optimise DLB in polynomial runtime and exhibit the ability to

fill in the gaps left by the UMDA.

We leave it as an open problem for future work to analyse the behaviour

of the algorithm in the case 14
1000 > µ

λ = ω(1/µ). Future work should

also consider theoretical aspects of the MIMIC on simple toy functions

like OneMax and LeadingOnes. Rigorous arguments should be formed to

describe how the chain-structured model is built and how the next population

is sampled using pairwise conditional probabilities following the order of bits

in the model.
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[33] P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms:

A New Tool for Evolutionary Computation. Genetic Algorithms and

Evolutionary Computation. Springer US, 2001.

[34] P. K. Lehre. Negative drift in populations. In Parallel Problem Solving

from Nature, PPSN XI, pages 244–253. Springer Berlin Heidelberg,

2010.

41



[35] P. K. Lehre. Fitness-levels for non-elitist populations. In Proceedings

of the Genetic and Evolutionary Computation Conference, GECCO ’11,

pages 2075–2082, 2011.

[36] P. K. Lehre and P. T. H. Nguyen. Improved runtime bounds for the

univariate marginal distribution algorithm via anti-concentration. In

Proceedings of the Genetic and Evolutionary Computation Conference,

GECCO ’17, pages 1383–1390, 2017.

[37] P. K. Lehre and P. T. H. Nguyen. Level-based analysis of the population-

based incremental learning algorithm. In Proceedings of the International

Conference on Parallel Problem Solving from Nature, PPSN XV, pages

105–116, 2018.

[38] P. K. Lehre and P. T. H. Nguyen. Runtime analysis of the univariate

marginal distribution algorithm under low selective pressure and prior

noise. In Proceedings of the Genetic and Evolutionary Computation

Conference, GECCO ’19, 2019. To appear.

[39] P. K. Lehre and P. S. Oliveto. Theoretical Analysis of Stochastic Search

Algorithms, pages 1–36. Springer International Publishing, 2018.

[40] J. Lengler, D. Sudholt, and C. Witt. Medium step sizes are harmful

for the compact genetic algorithm. In Proceedings of Genetic and

Evolutionary Computation Conference, GECCO ’18, pages 1499–1506,

2018.

[41] R. Motwani and P. Raghavan. Randomised algorithms. Cambridge

University Press, 1995.

[42] H. Mühlenbein and G. Paaß. From recombination of genes to the

estimation of distributions I. Binary parameters, pages 178–187. 1996.

[43] M. Pelikan, D. E. Goldberg, and F. G. Lobo. A survey of optimization

by building and using probabilistic models. Computational Optimization

and Applications, 21(1):5–20, 2002.

[44] D. Simon. Evolutionary Optimisation Algorithms. Wiley, 2013.

42



[45] M. Slatkin. Linkage disequilibrium — understanding the evolutionary

past and mapping the medical future. Nature Reviews Genetics, 9(6):

477–485, 2008.

[46] D. Sudholt. How crossover speeds up building block assembly in genetic

algorithms. Evolutionary Computation, 25(2):237–274, 2017.

[47] D. Sudholt and C. Witt. Update strength in edas and aco: How to

avoid genetic drift. In Proceedings of the Genetic and Evolutionary

Computation Conference 2016, GECCO ’16, pages 61–68, 2016.

[48] I. Wegener. Methods for the Analysis of Evolutionary Algorithms on

Pseudo-Boolean Functions, pages 349–369. 2002.

[49] E. W. Weisstein. Binomial distribution. URL

http://mathworld.wolfram.com/BinomialDistribution.html.

[50] C. Witt. Runtime analysis of the (µ+1) EA on simple pseudo-boolean

functions. Evolutionary Computation, 14(1):65–86, 2006.

[51] C. Witt. Upper bounds on the runtime of the univariate marginal

distribution algorithm on onemax. In Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO ’17, pages 1415–1422,

2017.

[52] C. Witt. Domino convergence: why one should hill-climb on linear

functions. In Proceedings of Genetic and Evolutionary Computation

Conference, GECCO ’18, pages 1539–1546, 2018.

[53] Z. Wu, M. Kolonko, and R. H. Möhring. Stochastic runtime analysis
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