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1. Introduction
The purpose of the verification of probability of

success p in the lifetime tests, especially in the
assurance tests of binomial distributed components
or products, is to determine the sample numbers to
satisfy the consumer’s requirements of the quality
of products before assembly and manufacture.
Many of sampling test methods, such as fixed-
sample tests (Desu and Raghavarao, 1990; Hines
and Montgomery, 2003) and sequential probability
ratio tests (SPRT) (Ghosh, 1970; Kapur and
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Testing the lifetimes of components or products by means of the verification of probability of
success ratio p on which to base a statistical probability of the binomial distribution is often a costly
and difficult undertaking. Sometimes tests cannot reach at a desirable target, particularly, in the
reliability assurance tests. A Bayesian sequential binomial test model (BSBTM) is proposed for
obtaining the composite hypothesis of p, which posterior criteria are taken into consideration. In
order to get robust decision criteria and closed continuation-sampling regions, a modified
Bayesian sequential binomial test model (MBSBTM) is also developed. By using BSBTM 
and MBSBTM, the upper and lower boundaries of a continuation-sampling region can be
determined and the decision criteria can be made. A simulation method of calculating the average
sample number (ASN) by using MBSBTM is also presented in this paper. Two case examples 
are used to demonstrate the proposed BSBTM and MBSBTM methodologies. The results indicate
that by using MBSBTM sample numbers can be decided effectively and efficiently in 
the reliability tests.
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Lamberson, 1977; Wetherill and Glazebrook, 1986)
are comparatively mature methods and usually
depend on a hypothesis testing of p. However, in
many circumstances, the application of these
methods may not give satisfactory results in
determining average sample number (ASN) due to
the unknown parameters in the prior information
before actual tests. Therefore, it is essential to
develop new methods to predict the numbers of
samples and to verify the probability of success p in
an acceptable way under various environments
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where such mature methods cannot be effectively
or efficiently applied. Bayesian method has been
proved to be an effective and efficient method in
reliability assurance tests (Hamada et al., 2008;
Koch, 2007). Incorporating Bayesian method into
SPRT method (Guo et al., 2008) proposed a method
of sequential posterior odd test (SPOT) for
sequential tests, which acquires not only reliable
results, but also makes fully use of prior
information in order to reduce the required ASN. By
comparing fixed-sample test method (Desu and
Raghavarao, 1990; Hines and Montgomery, 2003)
with SPOT (Guo et al., 2008; Ghosh, 1970), the
ASN of SPOT in a sequential test is smaller than a
fixed-sample test for the given risks α and β of the
producer and consumer, respectively. α and β are
defined as (Lefebvre, 2006; Dekking, 2005)

α = P(Error of Type I)
= P(Reject H0 |H0 is true)

(1)

β = P(Error of Type II) 
= P(Accept H0 |H0 is false) 

(2)

where H0 is null hypothesis of parametric test. A
Type I error occurs when H0 is rejected due to an
incorrect decision made by the producer, while Type
II error occurs when H0 is not rejected due to an
incorrect decision made by the consumer.

However, because a Bayesian assurance test is a
sequential test, a decision usually needs to be made
at a time on whether to continue testing or stop
testing when a sampling has been completed.
Current methods only address the determination of
the posterior risks α and β, but these methods do not
provide clear decision criteria based on actual
testing conditions and situations. For example, Jiang
et al., (2009) introduced a Bayesian SPRT method
in the design and planning of tests. On the basis of
the posterior risks α and β it just simply states that
if P(H0  x) is far larger than P(H1  x), then accept
H0, and if P(H0  x) is far smaller than P(H1  x),
then accept H1. By using a lognormal distribution,
Guo et al., (2008) proposed a censored SPOT
method for the verification of the mean time to
repair (MTTR). In this method, for a simple
hypothesis (i.e. H0 : p = p0 vs H1: p = p1), it is easy
to calculate the posterior risks and design a
sequential sampling plan, as well as to determine the
acceptance region, rejection region and continuation
region. But for a composite hypothesis (i.e. H0: p ≥
p0 vs. H1 : p < p1, where p1 ≤ p0), this method may

not give a satisfactory sequential sampling plan.
Furthermore, for a sequential sampling test with
binomial distributions, the fixed-sample test method
introduced by Hamada et al., (2008) can only make
a test plan for given posterior risks α and β.
However, for composite hypothesis of failure rates
(i.e. H0 : θ ≤ θ0 , where θ is failure rate and θ0 is a
critical value for the failure rate that the producer
claims to meet to satisfy the consumer’s requirements
of quality of products), Barnett (Barnett, 1972; Hoff,
2009) proposed a Bayesian sequential life test
model that considers posterior probability, but the
engineering requirement of the verification of
success ratio does not take into consideration.
Therefore, the existing methods have at least the
following problems.

• The existing models only take the posterior
risks of Types I and II errors (Ghosh, 1970;
Kapur and Lamberson, 1977; Koch, 2007)
into account, but do not consider the
posterior probability of H0 or H1. Therefore,
the results of hypothesis test may not satisfy
the ‘small probability event principle’ 
(Li and Li, 2008).

• For a composite hypothesis of success ratio,
p, the existing models cannot be applied to
make an effective test plan before testing 
(Li and Li, 2008).

This paper presents a Bayesian sequential
binomial test model (BSBTM) and a modified
Bayesian sequential binomial test model
(MBSBTM), which the posterior probability with
composite hypothesis of p is taken into consideration.
By using BSBTM and MBSBTM, the upper and
lower boundaries of continuation-sampling region
can be determined so that the sequential sampling
plan and decision criteria can be made effectively and
efficiently. Two case examples are used to
demonstrate the applications of BSBTM and
MBSBTM.

2. The assumptions of a sequential test

2.1. The assumptions of parametric tests
In the reliability assurance tests of binomial

distributed components or products, the consumer
is interested in whether or not the success ratio p
satisfies a given requirement p0, which is
equivalent to test the following statistical
hypothesis

H0: p ≥ p0 and : H1 : p < p0 (3)
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Supposing the prior distribution of p is π (p). If it
is a conjugate distribution (prior distributions that
take the same functional form as the posterior
distribution are called conjugate prior distributions
(Hamada et al., 2008), the prior distribution will be a
Beta distribution B(a, b), where a and b are hyper-
parameters, i.e. a is the pseudo-success-number and
b is the pseudo-failure-number in the prior reliability
test. The probability density function (PDF) of B 
(a, b) is defined as

(4)

Let n denote the actual sample number and s
denote the successful sample number in a sequential
test, where n = 0, 1, 2, ... and s = 0, 1, 2, ...,n. The
posterior distribution of p will be π (p (n, s)), which
can be obtained by Bayesian formula (5) (Desu and
Raghavarao, 1990)

(5)

where L (p (n, s)) = ps (1– p)n–s is likelihood
function.

Particularly, when the prior distribution is a Beta
distribution, B (a, b), the posterior distribution will be
B(a + s, b + n − s) (Ghosh et al., 2006; Hoff, 2009).
For example, assume the prior distribution is 
B(500, 50) and actual and successful sample numbers
are (160, 150). The posterior distribution will be 
B(650, 60). If actual and successful sample numbers
are (160, 160), then posterior distribution will be 
B(660, 60). The prior and posterior distributions 
are shown in Figure 1.

2.2. The process of a sequential sampling test
As described earlier in this paper, because the

sample number and total operating time in the
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1 sequential sampling test cannot be pre-assigned, a
decision of carrying on next testing or not should be
made just after each sampling completed rather than
at the end of all samples being tested in order to
obtain reliable results and reducing testing time and
resources (Kin et al., 1997).

Let n and s denote current actual and successful
sample numbers, and sU and sL denote upper and
lower boundary of continuation-sampling regions,
respectively. The steps of a sequential sampling test
for the hypothesis test of p are as follows:

Step 1: Divide the sample space into three mutually
exclusive regions: rejection region, acceptance region
and continuation region according to the given prior
distribution.

Step 2: Calculate sU and sL of continuation region
based on the given actual sample number n as shown
in Figure 2.

Step 3: Verify the value of n, sU and sL.
• If sU ≤ s ≤ n, then stop testing and accept H0 .
• If 0 ≤ s ≤ sL, then stop testing and reject H0 .
• If the testing result is ‘success’, then let 

s = s + 1 and , if sL < s < sU, then let n = n+1,
select another sample to test (continue
sampling), repeat Step 3.

For example, assume n = 50, sL = 34 and sU = 45.
If s = 40, according to the above decision criteria, 
34 < s < 45, more tests need to be conducted.

3. Proposed Bayesian sequential binomial
test model (BSBTM)

3.1. Fundamentals of BSBTM
On the basis of the assumptions described in

section 2.1, when (n,s) have been gained, the
posterior distribution π (p (n,s)) can be obtained
by using Bayesian formula (5) (Koch, 2007).
According to reliability test hypothesis (3), the
posterior probability of H0 and H1 can be
calculated by
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(6)

(7)

Considering the ‘small event probability
principle’ (Hoff, 2009) in a hypothesis test, the
decisions can be made as follows:

(1) If P(H0 (n, s)) is sufficiently small, for
example P(H0 (n, s)) < 0.005, then H0 has
to be rejected. If H0 is rejected, according
to the definition of α (1), Type I error may
occur. Therefore, the risk α of the producer
can be defined as a sufficiently small
number. In this case, the decision criterion
will be: if P(H0 (n, s)) < α or P(H1 (n, s))
≥ 1−α , then reject H0, and the probability
of Type I error is smaller than α as shown
in Figure 3(a).

(2) If P (H1(n, s)) is sufficiently small, for
example P (H1 (n, s)) < 0.05, then H1 has to
be rejected, in other words, H0 can be
accepted. According to the definition of β (2),
if H0 is accepted, Type II error may occur.
Therefore, the risk β of the consumer can be
defined as a sufficiently small number. In this
case, the decision criterion will be: if 
P (H1(n, s)) < β or P (H0(n, s)) ≥ 1 − β, then
accept H0, and the probability of Type II error
is smaller than β as shown in Figure 3(b).

In any cases, because P (H1(n, s)) is a
strictly monotone decreasing function of s
while P (H0(n, s)) = 1–P (H1(n, s)) is a

P H n s P p p n s
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strictly monotone increasing function of s
(see Appendix), if α + β < 1, then the given
(n, s) does not meet the above criteria 1) and
2). But, s in anyway satisfies either

(8)

or

(9)

Therefore, for any given (n, s) that does
not meet the above criteria 1) and 2), the
following criterion needs to be applied.

(3) If posterior probability of H1 satisfies
Inequality (8) or posterior probability of H0

satisfies Inequality (9), then continue
sampling.

3.2. Solution of BSBTM
Supposing the prior distribution of p is the Beta

distribution B (a, b) and actual tests are (n, s), then
the posterior distribution of p is B (a + s, b + n − s).
In this case, if H0 is rejected, then the posterior
probability of H1 satisfies

(10)

for a given n, G(s) can be defined as

(11)

Obviously, for given a, b and, n, G(s) is a strictly
monotone decreasing function of s (see Appendix).
In this case, the values of G(s) will be more and more
small with increasing s, the results will be either 

(1) Let sL denotes the maximum successful
sample number s that satisfies Inequality
(10), then sL is the lower boundary of
continuation region for a given n as shown
in Figure 2.

(2) For a given n, any s (s = 0, 1, 2, ..., n) does
not satisfy Inequality (10), let sL = –1 by
means of more tests needed for the
verification of p. In this circumstance, 

(12)

However, if H0 is accepted, then the posterior
probability of H1 must satisfy

s s G s s nL = − ( ) ≥ −{ } ={ }max ,max | , , , ,1 1 1 2α L
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Fig. 3.  Posterior probability of H0 and H1.
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(13)

Similarly, for a given s (s = 0, 1, 2, ..., n), the
values of G(s) will be more and more small with
increasing s, the results will be either

(1) Let sU denotes the minimum successful
sample number s that satisfies Inequality
(13). Therefore, sU is the upper boundary of
continuation region for a given n as shown
in Figure 2.

(2) For a given n, any s (s = 0, 1, 2 ..., n) does
not satisfy Inequality (13), let sU = n + 1 by
means of more tests needed for the
verification of p. In this circumstance,

sU = min {n + 1, min{sG(s) < β}, s = 1, 2, ..., n}
(14)

Considering inequalities (10) and (13), for a
given n, the following decision criteria can be
obtained

• If sU ≤ s ≤ n, then stop testing and accept H0.
• If 0 ≤ s ≤ sL, then stop testing and reject H0.
• If sL < s < sU, then select another sample and

continue testing.
According to Formulas (12) and (14), obviously,

when α + β < 1, for any possible sample number n,
sL ≠ sU, the continuation region always exists as
shown in Figure 2.

3.3. Censored BSBTM
As discussed in section 3.2, when α + β < 1, for

a given n, if sL < s < sU, then more sampling tests
need to be conducted continuously. However, in
many cases, there are only N censored samples in
hand. Therefore, when n = N, the sequential test,
however, must be terminated and a decision has to
be made. In this case, the following decision criteria
can be applied:

(1) Control β to protect the consumer’s benefit.
If n ≤ Ν − 1, the decision criteria are as same
as described in section 3.2. If n = Ν, the
decision criteria are
• If sU ≤ s ≤ N, stop testing and accept H0.
• If s < sU, stop testing and reject H0.

(2) Control α to protect the producer's benefit.
If n ≤ Ν − 1, the decision criteria are as same
as described in section 3.2. If n = Ν, the
decision criteria are
• If 0 ≤ s ≤ sL, stop testing and reject H0.
• If s > sL, the stop testing and accept H0.

P H n s

f p a s b n s dp
p

( | ( , ))

( | , )

1

0

0= + + − <∫ β

(3) Compromise α and β. The decision criteria
are: if n ≤ Ν − 1, the decision criteria are
same as described in section 3.2; if n = Ν, let
sM = (sL + sU)/2, the decision criteria are
• If s ≥ sM, stop testing and accept H0.
• If s < sM, stop testing and reject H0.

3.4. Numerical example 1
Considering the verification test of an engine

starter, the prior distribution of p derived from
previous test is B (500, 50) and α = β = 0.05.
Reliability requirement is p0 = 0.9. Assume 1000
engine starters, i.e. Ν = 1000 available for reliability
tests. For a given n (n = 1, 2, ..., Ν = 1000), sL and
sU can be calculated by Formulas (12) and (14), i.e. 
sL = 54 and sU = 79 , respectively. When n = 80, for
a given s (s = 1, 2, ..., 80), G(s) can be derived by
Formula (11), i.e.

= 0.9501

Similarly,

G(55) = 0.9357, …, G(79) = 0.0463,
G(80) = 0.0340

The results of G(s) are shown in Figure 4. Figure 5
shows the sample space. When n ≤ 84, the values of
sL and sU are given in Table 1.

According to the decision criteria described in
section 3.2, when n = 80,  and sL = 54 sU = 79, the
decisions can be made as

• If s ≤ 54, then stop testing and reject H0.
• If s ≥ 79, then stop testing and accept H0.
• If 54 < s < 79, then continue testing until to

a given sample number N or s ≥ sU or 
s ≤ sL, and make decisions as described in
section 3.3.

As discussed in section 3.2, when α + β < 1, for
a given n, there will not be a theoretical censored
sample number N. This is true as discussed in the
above case example as shown in Figure 5.
However, when n reaches at the proposed censored
sample number N, i.e. n = Ν, the sequential test
must be terminated and a decision has to be made
as described in section 3.3. In other words, even if

= + + −∫ B dp( , )
.

500 54 50 80 54
0

0 9

G s f p a s b n s dp
p( ) = + + −( )∫ | ,

0

0
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(Li and Li, 2008), the following assumptions are
applied.

(1) If H0 is accepted, then for a given (n, s), the
posterior probability of P(p ≥ p0(n, s)) may
be near 1, i.e. P(p ≥ p0(n, s)) � 1. In other
words, P(p ≥ p0(n, s)) = 1 − P(p ≥ p0  (n,
s)) � 0. If P(p < p0(n, s)) is a sufficiently
small value, the producer must be sure that
the consumer fully accepts the null
hypothesis H0. As described in section 3.1,
when P(p < p0(n, s)) < β, then stop testing
and accept H0. In this case, the probability of
Type II error is smaller than β.

Assume ε > 0 is a small value (it should be
noted that the aim of introduction of ε is to

Table 1.
Values of SL and SU of BSBTM

n SL SU n SL SU n SL SU n SL SU n SL SU

0 –1 1 17 –1 18 34 13 35 51 28 52 68 43 68
1 –1 2 18 –1 19 35 13 36 52 29 53 69 44 69
2 –1 3 19 –1 20 36 14 37 53 29 54 70 45 70
3 –1 4 20 0 21 37 15 38 54 30 55 71 45 71
4 –1 5 21 1 22 38 16 39 55 31 56 72 46 72
5 –1 6 22 2 23 39 17 40 56 32 57 73 47 73
6 –1 7 23 3 24 40 18 41 57 33 58 74 48 74
7 –1 8 24 4 25 41 19 42 58 34 59 75 49 75
8 –1 9 25 5 26 42 20 43 59 35 60 76 50 76
9 –1 10 26 5 27 43 21 44 60 36 61 77 51 77
10 –1 11 27 6 28 44 21 45 61 37 62 78 52 77
11 –1 12 28 7 29 45 22 46 62 37 63 79 53 78
12 –1 13 29 8 30 46 23 47 63 38 64 80 54 79
13 –1 14 30 9 31 47 24 48 64 39 65 81 54 80
14 –1 15 31 10 32 48 25 49 65 40 66 82 55 81
15 –1 16 32 11 33 49 26 50 66 41 66 83 56 82
16 –1 17 33 12 34 50 27 51 67 42 67 84 57 83
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Fig. 5.  Sequential tests of binomial distributed products of
BSBTM.
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the sequential test is carried out continuously, no
final result can be received unless a certain
censored sample number Ν is set up to stop
testing. Therefore, in order to get a theoretical
censored sample number Ν, a modified BSBTM is
needed.

4. Modified Bayesian sequential binomial
test model (MBSBTM)

4.1. Fundamentals of MBSBTM
As discussed in section 3.4, a modified BSBTM

is needed to solve the problem of no final result in
the sequential test to be obtained when α + β < 1.
Considering the ‘small probability event principle’
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protect the consumer’s benefit). From the
viewpoint of consumers, it would be
interested in p having a maximum value of
probability. Consider P(p ≥ p0 + ε(n, s)) has
a sufficiently large value, e.g. P(p ≥ p0 + ε(n,
s)) � 1. Because P(p ≥ p0  (n, s)) > P(p ≥ p0

+ ε(n, s)), if P (p ≥ p0 + ε(n, s)) � 1, then 
P(p ≥ p0(n, s)) � 1. In this case, the 
consumer may be happy to fully accept H0.
For example, when α = 0.05, p0 = 0.9, the
prior distribution is B(500, 50) and the result
of actual and successful sample numbers are 
(80, 54), the posterior probability of H0 is 
P(p ≥ 0.9(80, 79)) = 0.9537 . On the basis of
decision criteria of BSBTM as described in
section 3.1, H0 cannot be rejected. But by
adding a small value of ε = 0.025 into p0, the
posterior probability will be P(p ≥ 0.9 +
0.025(80, 79)) = 0.3018. As can be seen that
the posterior probability decreases
significantly. Therefore, the following
decision criterion is introduced.

(2) If P(p ≥ p0 + ε(n, s)) is a sufficiently small
value, for example, P(p ≥ p0 + ε(n, s)) <
0.05, then the consumer can reject null
hypothesis H0. As described in section 3.1,
in this case, if P(p ≥ p0 + ε(n, s)) < α, then
stop testing and reject H0. The probability of
Type I error is bigger than α because 
P(p ≥ p0(n, s)) > P(p ≥ p0 + ε(n, s)). ε can
be assigned to an agreed value by both
consumer and producer, e.g. ε < 1− p0 based
on the particular cases.

On the basis of the above two
assumptions, the decision in the sequential
test can be naturally as

(3) If P(p < p0 (n, s)) ≥ β and P(p ≥ p0 + ε(n, s))
≥ α, then continue testing. In this case, the
continuation region will be the region in which
for any (n, s), the posterior probability of p
satisfies P(p0 < p< p0 + ε(n, s)) ≤ 1 − α − β.

For a given prior distribution B(a, b) and
actual sample number (n, s), the variance of
p is defined

(15)

With n increasing, the variances will be
gradually reduced and the PDF of π (p(n, s)) will

Var p a s b n s

a s b n s

a b n a b n

( | , )

( )( )

( ) (

+ + −

=
+ + −

+ + + +2 ++1)

be more and more close. Therefore, a maximum
sample number N must exist. When n = Ν, s = s0,
P( p< p0(N, s0)) ≤ β and P (p ≥ p0 + ε(N, s0)) ≥ α .
Let sL = sU = s0, then sample testing must be
stopped and the decision of accepting or rejecting
H0 must be made.

4.2. Solution of MBSBTM
When the prior distribution of p is B (a, b), 

P(p < p0(n, s)) < β will be

(16)

It should be noted that Inequality (16) is same as
Inequality (13). Similarly, for any given n, sU can be
calculated by Formula (14).

When P(p ≥ p0 + ε(n, s)) < α, it becomes

(17)

or

(18)

As can be seen that Inequality (18) is similar to
Inequality (10). The only difference is that the upper
limit of integral is changed from p0 to p0 + ε. The
calculation of sL is similar to BSBTM. But the lower
boundary of sL of MBSBTM may be greater than
that of BSBTM (when ε > 0) or equal to that of
BSBTM (when ε = 0). Obviously, when ε > 0, the
curve of lower boundary sL will intersect wherever
upper boundary sU at point A as shown in Figure 7.
Therefore, the continuation-sampling region will be
closed and a sequential test procedure will lead
fairly rapid to a terminal decision.
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Fig. 6. Results of G(s) and Gε(s), when n = 838.
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In MBSBTM, Gε (s) is defined as

(19)

which is similar to Formula (12), sL can be
calculated by

SL = max {–1, max{sGε (s) ≥ 1 – α}, s = 1, 2, ... , n}
(20)

For n = 0, 1, 2, ..., sL and sU can be calculated by
Formulas (20) and (14). The censored sample
number N can be obtained

N = min {nsL = sU, n = 0, 1, 2, ... n} (21)

Once sL, sU and N are obtained, the decision
criteria of sequential tests can be determined.

• If sU ≤ s ≤ n, then stop testing and accept H0.
• If 0 ≤ s ≤ sL, then stop testing and reject H0.

G s f p a s b n s dp
p

ε
ε( ) = + + −( )+

∫ | ,
0

0

• If sL ≤ s ≤ sU, then continue testing until to a
maximum sample number N or s ≥ sU or 
s ≤ sL.

4.3. Numerical example 2
Using the data associated with Example 1 as

described in Section 3.4, supposing ε = 0.025 and 
n = 1, 2, ..., sU and sL can be calculated by Formulas
(14) and (20). By using Formula (21) a maximum
censored sample number N can be determined.
Figure 6 shows the results of G(s) and Gε(s) when n
= 838 and s = 700 to 838. As can be seen from
Figure 6, when s = 767, both curves of G(s) and
Gε (s) satisfy Formulas (14) and (20). Therefore,
the censored sample number N = 838 when 
sL = sU = 767.

Figure 7 shows the sample space. When n ≤ 84,
the values of sL and sU are listed in Table 2.
Comparing Tables 2 with 1, it can be seen that sL of
some same n in Table 2 are greater than those in
Table 1. For example, when n = 51, sL = 44 of
MBSBTM in Table 2 is greater than sL = 28 of
BSBTM in Table 1.

Therefore, the decision criteria are
(1) When n < 838

• If sU ≤ s ≤ n, stop testing and accept 
H0.

• If 0 ≤ s ≤ sL, stop testing and reject H0.
• If sL < s < sU, continue testing.

(2) When n = 838
• If s > 767, stop testing and accept H0.
• If s ≤ 767, stop testing and reject H0.

Table 2.
Numerical values of SL and SU of MBSBTM

n SL SU n SL SU n SL SU n SL SU n SL SU

0 –1 1 17 13 18 34 29 35 51 44 52 68 60 68
1 –1 2 18 14 19 35 30 36 52 45 53 69 61 69
2 –1 3 19 15 20 36 30 37 53 46 54 70 62 70
3 0 4 20 16 21 37 31 38 54 47 55 71 62 71
4 1 5 21 17 22 38 32 39 55 48 56 72 63 72
5 2 6 22 18 23 39 33 40 56 49 57 73 64 73
6 3 7 23 19 24 40 34 41 57 50 58 74 65 74
7 4 8 24 19 25 41 35 42 58 51 59 75 66 75
8 5 9 25 20 26 42 36 43 59 51 60 76 67 76
9 6 10 26 21 27 43 37 44 60 52 61 77 68 77
10 7 11 27 22 28 44 38 45 61 53 62 78 69 77
11 8 12 28 23 29 45 39 46 62 54 63 79 70 78
12 8 13 29 24 30 46 40 47 63 55 64 80 71 79
13 9 14 30 25 31 47 40 48 64 56 65 81 72 80
14 10 15 31 26 32 48 41 49 65 57 66 82 73 81
15 11 16 32 27 33 49 42 50 66 58 66 83 73 82
16 12 17 33 28 34 50 43 51 67 59 67 84 74 83
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Fig. 7.  Sequential test of binomial distributed products of
MBSBTM.
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It should be noted that the prior distribution of p
should be feasible and accurate. The more accurate
the prior distribution is, the more correction the
deduction of p will be. Therefore, the prior
information may need to be collected as much as
possible. These include historical data analysis,
failure analysis, concept mapping, and domain
human expert experience and engineering
knowledge analysis. However, if the rejection or
acceptance conclusions are obtained by adopting the
prior distribution, the decision needs to be made
whether the actual sequential test is needed or not.
For example, if p0 = 0.90, α = β = 0.05 and prior
distribution is B (645,55), then

On the basis of the Assumption 1) of BSBTM as
described in section 3.1, the decision of accepting
H0 can be made, and no actual test is needed.
However, if the prior distribution is B(615, 55), then

In this case, the decision of rejecting H0 can be
made based on the Assumption 2) of BSBMT as
described in section 3.1, and no actual test is needed.

4.4. Simulation of average sample number (ASN)
The MBSBTM introduces a small positive value

ε to be assigned, the maximum censored sample
number N can be obtained by Formula (21). In fact,
N will be the maximum sample numbers for the
binomial sequential test. 

As discussed earlier in this paper, in practice, a
Bayesian sequential test could be stopped at a time
where s satisfies the decision criteria. Therefore, the
actual sample number n is often smaller than or
equal to the maximum sample number N in hand,
i.e. n ≤ Ν. In order to make an effective and efficient
testing plan, it would be useful if the expected
sample number of a sequential test, i.e. the average
sample number (ASN), can be predicted in advance.

The ASN can be obtained by adopting a simulation
method which involves the following steps:

Step 1: For given B(a, b), ε and N, calculate sL

and  sU (n = 0, 1, 2, ..., N). The sample space can be
obtained as shown in Figure 7.

Step 2: Establish simulation criterion by
assigning the absolute precision εΑ, for example,
εΑ = 0.0001.

f p dp
p

| , . .615 85 0 9644 1 0 05
0

0 ( ) = > −∫

f p dp
p

| , . .645 55 0 0231 0 05
0

0 ( ) = <∫

Step 3: Let i: = 1, where i denotes the ith binomial
sequential test.

Step 4: Let sum: = 0, where sum denotes the total
sample number of the previous ith test.

Step 5: Let ASN0: = 0.
Step 6: The ith simulation process
• Step 6.1: Let ni : = 0 and si : = 0, where ni is

the actual successful sample number in the
ith test and ni ≤ Ν.

• Step 6.2: If si ≥ sU and si ≤ sL, then stop
simulation and go to Step 7, otherwise, let 
ni : = ni + 1.

• Step 6.3: Calculate the random number 
pni based on the prior distribution B(a,b).

• Step 6.4: Let pni
be the probability of success

ratio of the ni
th test.

• Step 6.5: Calculate the random number t based
on the binomial distribution b(1, pni) and let 
si: = si + t, where t denotes the result of the ni

th

test (t = 0 - test failure and t = 1 - test success).
• Sept 6.6: Go to Step 6.2.
Step 7: Let sum: = sum + ni .
Step 8: Calculate the ASNi.
Step 9: If ASNi – ASNi–1< εΑ, then stop

simulation process, let ASN: = ASNi and go to Step 11.
Step 10: If ASNi – ASNi–1≥ εΑ, then let i: = i +

1 and go to Step 6.
Step 11: End
A Matlab programme for the simulation has been

developed following the steps as described above.
Using the data associated with case Examples 1 and
2 as described in Sections 3.4 and 4.3, the ASN are
calculated. In this case, εΑ = 0.0001. When i =
11886, the simulation is terminated and ASN =
126.0612. Figure 8 shows the simulation process.

5. Conclusion
Testing the lifetimes of components or products

by means of the verification of probability of success
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Fig. 8. Simulation process of ASN calculation.
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ratio on which to base a statistical probability of the
binomial distribution is often a costly and difficult
undertaking. The current methods such as SPRT and
SPOT are comparatively mature methods and
usually depend on a hypothesis testing of p resulting
in poor performance with increasing costs and time
delay in the sequential reliability tests, even cannot
reach at a desirable target. Therefore, it is essential to
develop new methods to predict the sample numbers
and to verify of success ratio p in an acceptable way
under various environments where such mature
methods cannot be effectively or efficiently applied.
This paper presents the BSBTM and MBSBTM
methodologies for verification of probability of
success ratio and prediction of ASN for binomial
distributed components or products in the sequential
tests. This paper also presents two case examples to
demonstrate the proposed methods. Comparing with
those traditional methods, the advantages of the
proposed methods can be summarized (1) for a given
prior distribution, B(a, b), the proposed methods take
the posterior probability (or α and β) into
consideration, which enables a good testing plan can
be made before the implementation of tests. By using
such a testing plan, the testing process can be
monitored and sequential test decision can be made
effectively and efficiently, (2) by using MBSBTM,
the average simple number (ASN) can be predicted
in advance before the test implementation, (3) the
proposed BSBTM and MBSBMT are more
convenient to incorporate into a computer
programmes such as Matlab, and (4) the introduction
of ε based on the ‘small probability event principle’
enables decision being made to perform a sequential
test of the underlying actual testing environment so
that more reliable result can be obtained.
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SPRT Sequential probability ratio test
SPOT Sequential posterior odd test
PDF Probability density function

NOTATION
B(a, b) Beta distribution (a and b are known)
α Risk of producer (probability of Type I

error)
β Risk of consumer (probability of Type II

error)
n Sample size, i.e. current actual test

number or field test number
s Current successful sample number
sL Lower boundary of continuation sampling

region

Appendix

(22)

For given a, b and n, G(s) is a strictly monotone decreasing function of s, where s = 0, 1, 2, ..., n.
Proof
Let g(s) = ps+1 (1–p)n–s–1, according to Bayesian Formula (5)
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sU Upper boundary of continuation sampling
region

N Maximum actual sample number
p Success ratio
p0 Given system reliability requirement
H0 Null hypothesis in hypothesis test, i.e.

hypothesis of p ≥ p0

H1 Alternative hypothesis in hypothesis test,
i.e. hypothesis of p < p0

ε A small positive value
f(p | a, b) PDF of p, and a, b are known parameters
P(H0 | x) Posterior probability of H0, i.e. P(p ≥

p0 | x), where x is the actual test result
P(H1 | x) Posterior probability of H1, i.e. 

P(p < p0 | x)



Therefore

For any s(s = 0, 1, 2, ..., n), G(s) > G(s + 1), G(s) is therefore a strictly monotone decreasing function of s.
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