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Abstract 

We fabricated magic number (C70)m-(Au)n clusters on the Au(111) substrate. These clusters 

are stable at room temperature, but display unpredictable rotational movement. The time 

duration between two successive rotations is in the order of ~hour. The cluster rotation is a 

thermally activated process due to energy fluctuation which is more significant for small 

clusters. We followed the rotational movement of (C70)10-(Au)35 clusters using scanning 

tunnelling microscopy. Our observation suggests that thermal fluctuation leads to rapid 

diffusion of Au atoms at the edges of the cluster and the cluster has many meta-stable 

configurations associated with structural polymorphism. 

 

Keywords 
Atomic cluster, diffusion, magic number cluster, edge diffusion, self-organization, 
nanostructures, gold, fullerene, C70, scanning tunnelling microscopy. 
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Introduction 

Atomic and molecular clusters are an important class of materials exhibiting size-dependent 

properties.1-4 Great amount of effort has been devoted to the fine tailoring of the clusters 

including size-selection,5,6 shape control7 and surface passivation.8 Metal clusters passivated 

with a molecular layer have demonstrated superior stability against sintering and degradation9 

and are thus potentially useful in aggressive environments such as electrolytes or biological 

systems.  

 

Recently, we have succeeded in making magic number fullerene-metal hybrid clusters, 

(C60)m-(Au)n.
10 These clusters are self-assembled on the Au(111) substrate with the smallest 

cluster being (C60)7-(Au)19.
10 The clusters are stable up to 400 K as a result of effective 

interaction between the molecules and the Au atoms in the cluster. Here we investigate 

thermally induced cluster transformation with a view to understanding how the hybrid 

clusters diffuse, coalesce and ripen on the Au(111) surface.  

 

Ostwald ripening and Smoluchowski ripening are the two dominant pathways for coarsening 

and growth.11 As the most common ripening pathway, Ostwald ripening is characterised by 

shrinking of small sized clusters and growth of the large ones driven by the tendency to 

minimise the total free energy.12-14 Smoluchowski ripening on the other hand, is featured by 

whole cluster displacement and merger of clusters as a result of cluster collision.15 Both the 

two ripening pathways aim at reducing the system’s total free energy with the help of mass 

transport.  

 

For two-dimensional (2D) clusters supported on a substrate, the clusters tend to have a 

regular shape.16 Adatoms on the surface of the substrate can act as the medium for mass 
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transport between different clusters.17,18 Research about coarsening and positional change of 

2D nanoclusters in homoepitaxial systems have been conducted on different metal surfaces 

such as Ag and Cu,19-22 in which the same type of adlayer islands ripen in different pathways. 

For the (C60)m-(Au)n  cluster, the metal core consisting of n Au atoms is protected by the 

molecular “shell”, and thus affecting both Ostwald and Smoluchowski ripening. In the work 

presented here, we have replaced C60 with C70 and created (C70)m-(Au)n  clusters. The overall 

property of the (C70)m-(Au)n  cluster is similar to that of (C60)m-(Au)n.  

 

Experimental Methods 

The experiments are performed using an Omicron variable temperature STM (VT-STM). The 

substrates are thin gold films grown on highly oriented pyrolytic graphite (HOPG) with 

physical vapour deposition. The Au films are about 200 nm thick and have a preferred 

orientation to expose the (111) planes. The Au films treated with cycles of Argon ion 

sputtering and thermal annealing to obtain clean and atomic smooth terraces. To grow (C70)m-

(Au)n magic number clusters, the Au/HOPG sample is firstly cooled down to 110 K, and 

~0.15 ML gold atoms are deposited. This forms irregular Au islands at the elbow sites on the 

reconstructed gold substrate. We subsequently deposit ~0.05 ML of C70 molecules. The 

molecules become attached to the pre-existing Au islands.  The sample is then slowly 

annealed to room temperature, leading to the formation of (C70)m-(Au)n magic number 

clusters.  

 

 
Results and discussion 

The (C70)m-(Au)n clusters are produced by sequential deposition of Au atoms and C70 

molecules onto Au(111) at 110 K. Slow thermal annealing to room temperature (RT) resulted 

in self-assembled magic number clusters. Figure 1a shows an STM image acquired at RT. 
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Different-sized magic number clusters as well as compact C70 patches can be seen in the 

image. Figures 1b-d shows the three smallest clusters with the corresponding structural 

models displayed in Figures 1e-g. In a previous publication,10 we reported the formation of 

(C60)m-(Au)n clusters on Au(111) and found preferential nucleation of clusters at the elbow 

sites. In the present study, C60 molecules are replaced with C70. We find that the general 

behaviour of (C70)m-(Au)n clusters is very similar that of (C60)m-(Au)n. All clusters are 

confined by the discommensuration lines.23,24  The nearest neighbour distance between C70 

molecules is 1 nm which is the same as that for C60 inside the (C60)m-(Au)n clusters. This 

suggests that the long axis of the C70 molecules is perpendicular to the Au(111) substrate. The 

structural models in Figs. 1e-h, following those developed for (C60)m-(Au)n clusters,10 are not 

derived from DFT calculations. They are constructed based on the experimentally measured 

molecule-molecule distances and by considering an appropriate distance between the C70 

molecule and the step edges of the Au island. The (C70)m-(Au)n clusters are stable at low 

temperatures. When scanned by the STM at 110 K, no changes to the clusters are observed. 

Thus, the STM tip alone is not able to induce movement of atoms/molecules in the cluster. 

We also use low tunnel currents of the order of 50 pA in order to minimise perturbation from 

the tip. At RT, the stability of the clusters shows some size dependence. Clusters containing 

more than six C70 molecules sitting on top of the gold islands are stable at RT showing no 

positional changes or rotation over many hours at least. The cluster shown in Fig. 1d has just 

three molecules sitting on the Au island. Smaller clusters are observed to rotate. The rotation 

has a stick-sudden-rotation pattern. A cluster can stay in one azimuthal orientation for many 

minutes or even up to an hour, and then it rotates suddenly into a different orientation.
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can be viewed as a natural extension of the (C70)7-(Au)19 cluster by having three edge sharing 

hexagons in a row. In all our experiments, the number of C70 molecules in a cluster can be 

accurately counted from the STM images, but the number of Au atoms within each cluster 

cannot be directly determined. The magic number for Au is inferred from the physical area 

occupied by the “bright” C70 molecules.  

 
The (C70)13-(Au)51 cluster remains motionless over the many hours of observation. The 

(C70)10-(Au)35 cluster is found to “rotate” from time to time as evidenced by changes of the 

azimuthal orientation. Although it appears that the whole cluster has rotated, the apparent 

“rotation” is a consequence of the movement of individual atoms and molecules as will be 

discussed later.  Here we use the [112] direction as the reference and measure the angle, , 

between the long axis of the (C70)10 cluster and the [112] direction. Initially, the long axis of 

the (C70)10-(Au)35 cluster is parallel to the [112] direction. This is assigned to the 0° state. In 

Figure 2a, the long axis of the (C70)10 cluster is parallel to the [112] direction, and hence 

0 . The cluster remains in this state for 15 minutes until it rotates suddenly by 5 degrees, 

Fig. 2b. After 15 minutes, the cluster is observed to have rotated again. In addition to the 

clear rotation of the cluster, there is also evidence that the centre of mass of the cluster has 

shifted slightly upon rotation. Most clusters are found at the elbow site. There are two types 

of elbows: the pinched elbow and the bulged elbow.25 The cluster in Fig. 2 is located at a 

bulged elbow site while the cluster in Fig. 3 is at a pinched elbow site. A small fraction of 

clusters are found to have moved away from the elbow site, Fig. 4. The (C70)10-(Au)35 cluster 

in Fig. 4 is located at some distance away from the nearby elbow site. This cluster is observed 

to rotate as well.  
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of the same area. After the first image is obtained, we wait for a while without scanning 

before the second image is acquired. We find that during the window of no active scanning, 

the cluster also rotates and the number of rotated clusters increases with the waiting time. 

Moreover, during normal scanning, we seldom observe cluster movement when the tip raster 

directly over the cluster. When scanned at 110 K, no cluster movement is observed. As the 

sample temperature increases, cluster rotation first appears when the sample temperature 

reaches around 250 K. All the above observations suggest that what we have seen is a 

thermally activated cluster movement. Each cluster can be treated as a small thermal system 

in contact with a reservoir (the Au substrate) at constant temperature. The internal energy of 

the cluster fluctuates. The fluctuation is relatively more significant for small clusters. This is 

why large clusters, with more than six molecules sitting on top of a Au island, are stationary 

at RT.  

 

Due to thermal energy fluctuation, the Gibbs free energy of the cluster can reach a level such 

that the cluster becomes unstable. This leads to excessive movement of molecules and Au 

atoms resulting in re-organization. After each re-organization, the cluster moves into a 

different configuration and waits for the next move. What is interesting is that the cluster 

seems to have quite a large number of states. All these states may not have exactly the same 

free energy, but the energy difference between states is small.  In order to explain the many 

different azimuthal orientations of the cluster, we propose a structural polymorphism for the 

cluster. Here structural polymorphism means that the Au cluster with a fixed number of 

atoms can have different geometric structures with more or less the same energy. Figure 7 

gives a few structural models corresponding to different geometric structures of the Au 

island. Fig. 7a represents the perfect structure for a Au35 island that can make up the magic 

number (C70)10-(Au)35 cluster which fulfills the requirement that all edges of the Au island are 
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low step energy edges and all molecules maintain their preferred intermolecular distance for 

maximal van der walls interaction.  A change in size and/or shape of the Au island directly 

affects the inter-molecular distance of C70. Fig. 7b shows an Au island with 36 Au atoms. By 

putting two C70 molecules on top of this Au island and eight molecules around the edges, one 

can obtain a (C70)10-(Au)36 cluster with its long axis making a 10o angle to the [112] direction. 

Fig. 7c shows a gold island with 39 Au atoms which can be used to make a (C70)10-(Au)39 

cluster. It is highly possible that the edges of the island contain defects. Obviously, these Au 

islands with different shapes have different energies. The ten C70 molecules, however, always 

retain a close-packed structure, no matter what the azimuthal orientation. Therefore, the 

close-packing of C70 molecules seems to be the dominant force that stabilizes the various 

shaped Au islands. The stability of magic number (C60)m-(Au)n clusters has been well 

demonstrated by RT STM manipulation.26 For 0 the C70 molecules form a local 2√3

2√3 R30° structure, similar to what is found for the extended C70 and C60 monolayer on 

Au(111).27 For other angles such as 10o, 20o etc, there are multiple adsorption sites for C70 

molecules in the cluster and some adsorption sites may have a rather low symmetry. This 

does not present a significant problem because the C70 molecules do not form specific bonds 

with the gold substrate and the interaction is mainly of a charge transfer type.  
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circles, have clearly grown in size and there are more C70 molecules decorating the step 

edges. This type of ripening favours the growth of very small number of large structures.  

 
 

There are other factors that can alter the (C70)m-Aun clusters on Au(111). At RT, there are Au 

atoms diffusing on the surface. These atoms come from step edges. These free-diffusing 

atoms can be incorporated into a (C70)m-Aun cluster if they can pass through the C70 shell. 

Experimentally, it is difficult to investigate the effect of diffusing Au atoms because the STM 

cannot follow these atoms. However, the rotation shows clear size-dependent behavior with 

smaller clusters rotating more frequently. If changes of the clusters are due to capturing of 

surface Au atoms, one would expect the larger clusters to be affected more because of large 

collision cross-sections. An interesting experiment to clarify the role of surface Au atoms is 

to purposefully deposit Au atoms at RT and see if clusters change more frequently with 

higher concentration of surface Au atoms.  

 

Conclusions 

Fluctuation of thermal energy causes (C70)m-Aun clusters to occasionally quiver at room 

temperature. In most cases, the cluster does not disintegrate, but self-reorganizes by keeping 

its overall shape. The disturbed cluster usually changes its azimuthal orientation after thermal 

agitation. Many of the orientations are not aligned with major crystallographic directions on 

Au(111). It was proposed that the (C70)m-Aun cluster can exist in a large number of states with 

the Au core taking different structures, a phenomenon known as structural polymorphism. 

The polymorphism is favored for the C70-Au system because of the lack of specific bonding 

between the C70 molecule and the Au substrate and that the bonding between Au and C70 

from charge transfer is relatively weak. 
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