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Abstract 

Effects of particle size, particle density, gas inlet diameter and static bed height on the 

stability of operation in conical spouted beds were investigated through analyses of 

information entropy of pressure fluctuations. In this respect, the maximum information 

entropy of pressure fluctuations was used as a stability criterion. The results showed that 

stability of the bed increases with an increase in the maximum entropy. The maximum 

information entropy of pressure fluctuations increases with increasing particle size and bed 

height while decreases with increasing gas inlet diameter and particle density. A stability map 

was also prepared to present the effect of operating parameters on the maximum entropy. 

Moreover, a correlation for prediction of maximum information entropy was developed to 

determine the stable operation conditions of conical spouted beds operating with low as well 

as high density particles.  
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1. Introduction 

Conventional spouted beds have been used in numerous industrial processes as 

drying, coating, combustion and gasification [1-10]. In spite of several advantages of 

conventional spouted beds, there are some applications in which their performance is limited 

(for example in fast reactions, such as ultra-pyrolysis) [11-14]. In these applications, the 

conical spouted beds are advantageous alternatives due to their short gas residence times with 

narrow distribution [15]. Operation of conical spouted beds is sensitive to various parameters 

such as bed geometry, operating conditions as well as gas and solid properties [16-25]. For a 

combination of these parameters, stable spouting occurs only over a limited range of 

operating conditions. Therefore, it is necessary to select the operating and design conditions 

carefully to ensure stable operation needed to improve performance of a conical spouted bed. 

Various researchers investigated the ranges of geometric parameters of the bed in various 

spouted bed systems including spout-fluid beds for stable spouting [26-30]. The effect of inlet 

tube diameter to particle diameter ratio (Do/dp) on the stability of conical spouted beds was 

investigated by Povrennović et al. [29]. Their analyses showed that the criterion Do/dp < 25 

for stable spouting, which was originally proposed for cylindrical beds with conical bottom 

by Chandnani and Epstein [27] is also valid for conical spouted beds. 

Olazar et al. [30] carried out an extensive study on the stability of conical spouted 

beds and reported the following criteria for the stable operation:  

(i) Inlet to cone bottom diameter ratio (Do/Di) should be between 1/2 and 5/6. At ratios less 

than 1/2, dead zones form at the bottom of the bed and ratios greater than 5/6 lead to unstable 

spout formation because of the rotational movements of the spout.  
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(ii) The bed is unavoidably unstable for cone angles smaller than 28º and solid circulation is 

very poor for angles greater than 60º. Therefore, cone angles smaller than 28º and greater 

than 60º are not recommended to achieve stable spouting. 

(iii) Inlet to particle diameter ratio (Do/dp) should be between 2 and 60. 

Moreover, Olazar et al. [31] reported that in order to maintain a stable spouted bed, 

there is also an upper limit for the diameter of the bed (Dc), which is another criterion that 

should be met. They proposed an equation, which includes parameters related to bed 

geometry, minimum spouting velocity and bed height, for evaluation of the largest possible 

bed diameter: 

  
  [         (  ⁄ )]

 (   )    
   (1) 

where 

          (
 

   
)
    

       [
         (  ⁄ )

  
]

     

[   (  ⁄ )]           (2) 

As can be seen from the literature review, studies on the stability of conical spouted 

beds have mostly focused on the geometric parameters of the contactor. However, parameters 

such as particle properties (e.g., density and size), bed height and gas velocity are also crucial 

parameters that affect the flow stability. Moreover, the empirical equations proposed in the 

literature have been developed based on visual observations through transparent walls. Since 

visual recognition of the flow structure is not possible in industrial scale equipment, 

developing non-visual techniques for this purpose is vital. In addition, previous studies on 

stability criteria focused completely on the beds with moderate density particles (ρp < 2500 

kg/m
3
) and no report can be found on the stability of beds operating with high density 

particles. Currently, conical spouted bed reactors are widely used for coating of heavy 

particles in the chemical vapor deposition (CVD) process. To design and scale up these 

reactors, it is of fundamental importance to have a detailed study on their stability. Since the 
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particle density significantly affects the stability behavior of the beds, further investigations 

are required to identify the stability of systems operating with relatively high density 

particles.  

Therefore, the main objective of this work is to determine the stability of flow in 

conical spouted beds with particles of different sizes and densities by analyzing pressure 

fluctuations based on the information entropy (IE) theory. Effects of the gas inlet diameter, 

bed height, inlet gas velocity, particle size and particle density on the stability of the system 

were also investigated. The main novelty of this work is to investigate the stability of conical 

spouted beds operating with different particles by introducing IE theory as a new method for 

detecting hydrodynamic stability. 

 

2. Experiments 

The experiments were carried out in a circular (γ = 45º) conical spouted bed made of 

polyoxymethylene with different gas inlet diameters (Do = 8, 10, 12 and 15 mm). A 

schematic of the set-up is shown in Fig. 1. A changeable fine wire mesh (300 μm) was placed 

on the inlet to prevent particles from falling into the inlet air tube. The air was supplied by a 

screw type compressor at 8 bar with maximum flow rate of 0.05 m
3
/s. A pressure regulator 

and two calming tanks of 30 L in volume were installed in series before the air entry to 

regulate and smooth the air flow. The air flow rate was measured by a rotameter calibrated 

with a standard orifice flowmeter. 

The bed pressure fluctuations were measured by a differential pressure transducer 

(Omega PX142-005DV5) connected to the bed internal wall at the base of the conical 

section. The other line of the transducer was open to atmosphere. The pressure signals were 

collected by a high speed data acquisition board (National Instruments, Model USB-6351). In 
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each experiment, the pressure fluctuations were recorded at superficial gas velocities ranging 

from 1 to 1.75Ums for 60 s with a sampling frequency of 500 Hz.  

To investigate the sensitivity of the bed stability to different parameters, the 

experiments were performed with various particles, gas inlet diameters and bed heights. 

Summary of the experimental conditions is given in Table 1. Visual observation of the bed 

flow regimes was also done in order to characterize the bed behavior. Each test was repeated 

three times and the reproducibility of the tests was checked. 

In order to investigate the effect of particle density and size on the stability of spouted 

beds, experiments were conducted using spherical particles with densities ranging from 2470 

kg/m
3
 to 6050 kg/m

3
. Glass beads (GB), alumina (AL) and yttria-stabilized zirconia (YSZ) 

particles (ZrO2, also known as zirconia) were used to simulate different particle properties. 

Properties of the particles are listed in Table 2.  

 

3. Theory 

 The approach followed in this work was based on a new applicable definition of the 

information entropy and it was employed to quantify the stability of the bed. The employed 

information entropy algorithm is extensively described by Nedeltchev et al. [32-37]. In this 

algorithm, minimum and maximum of each pressure fluctuations time series were 

determined. Then, the range of each time series was divided into different regions with 

progressively increasing heights proportional to the division step (e.g., 25, 50, 75, 100 Pa, 

and so on, Fig. 2). The probability of visit of the signal into each region was defined as 

follows: 

   
  
  

    
∑     
 
   

 (3) 
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where H0, Hi and Nr are the height of the smallest region, height of each region and number 

of visits in each region, respectively. The amount of information Ii in each region is expressed 

as: 

       (  ) (4) 

The total information entropy, IEtotal, is a function of both probability and the amount of 

information and is defined as: 

        ∑
  
  
    

 

   

 (5) 

The information entropy represents the total information that can be obtained from a signal. 

The maximum information entropy, IEmax, represents the largest value among all local 

information entropies and is expressed as: 

         (   )     (
  
  
    ) (6) 

The maximum information entropy gives the maximum information that can be obtained 

from a signal which is usually the most frequently visited one. 

 

4. Results and discussion 

4.1. Flow regimes 

The flow regimes encountered in spouted beds have been described in various studies 

[17, 30, 31]. At very low gas flow rates, the particles form a fixed bed through which the gas 

percolates. By increasing the gas velocity, the internal jet regime is reached in which a 

submerged cavity or jet is formed at the inlet orifice, while the rest of the particles remain at 

the fixed bed regime. After the formation of the internal jet, increasing the gas flow rate leads 

to appearance of the conventional spouted bed. In this regime, particles are transported 

individually by the upward flow of gas in the center of the bed. The gas velocity decreases in 

the fountain region, and then particles disengage from the gas and move downward in the 
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annulus. The downward moving particles re-enter the spout, mainly at the bottom, and this 

cycle of particles movement repeats again. The movement of particles is smooth and non-

pulsating when the spout is stable and the fountain is also stable and well defined. At high gas 

flow rates, the jet (or dilute-phase) spouting regime is reached for which the main 

characteristics are (i) high gas velocity, (ii) high bed voidage and (iii) cyclic movement of 

particles. The hydrodynamic behavior of the jet spouting regime is different from that of a 

conventional spouting regime. 

As pointed out earlier, stable operation in the spouting regime is quite sensitive to 

design and operating parameters. By changing the geometry and operating conditions, 

instabilities can be observed and these instabilities can be divided into two main groups: 

asymmetric and axisymmetric instabilities, similar to those described by Dogan et al. [38] 

and Freitas et al. [39]. The axisymmetric instability refers to the pulsatory behavior of the 

spout. In this type of instability, the fountain height fluctuates vigorously and this can be 

attributed to the air flow distribution in the spout. The intensity of axisymmetric instability 

can lead to slugging in which large slugs are formed at the top of the annulus. The 

asymmetric instability is the oscillatory behavior of the spout in which the fountain swings 

from side to side. In this type of instability, the spout cavity is diverted to the bed wall, 

creating totally different recirculation trajectories of particles. Both axisymmetric and 

asymmetric instabilities initiate at the bottom of the bed and the gradual growth of the 

instability causes spout termination.  

In this work, bed pressure fluctuations were monitored in the presence and absence of 

these instabilities in order to study the hydrodynamic stability of the bed. Fig. 3 illustrates a 

typical time series of pressure fluctuations in a conical spouted bed containing glass beads 

operated at various bed heights and gas inlet diameters and at inlet gas velocity of 1.3Ums. In 

this figure, irregular random-like oscillations are clearly seen in signals measured at smaller 
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inlet diameters. By enlarging the gas inlet diameter, amplitude of the fluctuations increases 

and, unlike the pressure fluctuations at smaller inlet diameters, a more periodic behavior in 

the signal is observed. This trend implies a rapid decrease in the complexity of the gas-solid 

dynamics (hence, an increase in instability) with increasing the gas inlet diameter. In other 

words, in beds with smaller gas inlet diameters, a stable spouting regime, which is free of 

intermittent spout formation/collapse and fountain height fluctuations, is established more 

readily. In the case of stable spouting, irregular and random pressure fluctuations originate 

mainly from inter-particle and gas-particle interactions. On the other hand, once the bed is in 

the unstable regime due to either axisymmetric or asymmetric instability, the associated 

pulsatile behavior or slugs lead to more periodic pressure fluctuations. A similar trend was 

also observed in pressure signals with a decrease in the bed height. However, the periodic 

motion in the signal was not as clear as the periodic behavior observed in the signals 

measured at higher gas inlet diameters. This behavior implies that the effect of bed height on 

the hydrodynamic stability is less noticeable than the effect of gas inlet diameter.  

Based on the above discussion, it can be concluded that overall patterns in the 

pressure time series can provide some useful insights about the dynamics of the bed. 

However, detection of the changes in finer patterns in the signals needs a quantitative 

analysis. Therefore, in this study, the signals are further quantified by utilizing the 

information entropy theory. For this purpose, the change of maximum information entropy 

(IEmax) with gas velocity obtained with different gas inlet diameters, bed heights and with 

various particles were explored and are presented in Figs. 4-7 and discussed below. 

 

4.2. Effect of gas inlet diameter 

As reported in the literature [30, 31], selection of the gas inlet diameter deserves a 

special attention in spouted beds, as it greatly affects the stability of the bed. Therefore, the 
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effect of gas inlet diameter on the bed stability was carefully monitored in this study by visual 

observations as well as analyses of the pressure fluctuations. The effect of gas inlet diameter 

on the maximum information entropy of pressure signals obtained in the spouted bed 

operating with 1 mm glass beads is illustrated in Fig. 4. For the case where the inlet diameter 

was 10 mm, the spouting regime was quite stable at all gas velocities where the spout was 

well defined without any rotation and the bed was uniform and free from bubbles and slugs. 

In this stable spouting regime, particle-particle and gas-particle interactions are the leading 

phenomena in the bed and the pressure signals originate from the movement of single or 

multiple particles simultaneously. All the pressure fluctuations measured in this stable 

operation exhibit a random-like oscillation with a narrow band of amplitude which leads to an 

increase in the information entropy. As can be seen in Fig. 4, the maximum information 

entropy increases with a decrease in the gas inlet diameter, reflecting the fact that gas-solid 

interaction in the bed becomes more complex when the inlet diameter is decreased. This trend 

shows that a spouted bed with a larger gas inlet diameter acts as more a deterministic system. 

Fig. 4 also demonstrates that the intensity of instability increases with increasing the inlet 

diameter. In fact, in the case of 15 mm inlet diameter, axisymmetric and asymmetric 

instabilities were always present. When the inlet diameter is increased, the gas enters a larger 

area, causing a lower jet velocity which hinders spouting. In this case, momentum of the 

entering gas is less and a lower mean gas velocity provides less stability. Moreover, more 

particles become entrained into the spout when the gas inlet diameter is larger. This larger 

amount of particles may chock the spout, leading to the bed instability. With a larger gas inlet 

diameter, the spout continuously changes its position instead of being well defined at the 

center of the bed. The behavior of bed pressure fluctuations changes consistently with 

occurrence of these instabilities such that their amplitude increases and the fluctuations 
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approach a periodic pattern. This implies a rapid reduction in the complexity of the bed 

dynamics which leads to a decrease in the information entropy. 

Another conclusion that can be withdrawn from Fig. 4 is that the information entropy 

at various gas inlet diameters increases with increasing the gas velocity. This trend suggests 

an increase in the complexity of gas-solid dynamics with increasing the spouting gas velocity. 

As the spouting gas velocity is increased, the mean gas velocity through the spout increases 

and the bed becomes more stable. The increase in the information entropy is a result of gas 

turbulence near the bed inlet and intensive interactions between gas and particles. 

 

4.3. Effect of particle size 

 Information entropy of pressure fluctuations is also influenced by the particle size. 

Fig. 5 shows the effect of particle size on the maximum information entropies of pressure 

fluctuations. It can be seen in this figure that the maximum information entropy is greater in 

the bed of larger particles. In other words, stable spouting can be achieved more easily in 

beds of larger particles. This conclusion is consistent with the results reported by Mollick et 

al. [40] and Olazar et al. [30] that if Di/dp is decreased, amplitude of pressure fluctuations 

would also decrease, indicating a stable spouting operation. Results of γ-ray tomography 

showed that decreasing the particle size leads to an increase in the solids holdup in the spout 

region at the same U/Ums. This means that the number of particles in the spout increase as the 

particle size decreases. This leads to a longer contact time of small particles with the gas 

phase [41]. On the other hand, with increasing the particle size, the number of particles 

contributing to the spout decreases which can improve the stability of the spout due to the 

fact that the gas momentum dissipation is less when the spout is free of solids.  

 

4.4. Effect of static bed height 
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 The effect of static bed height on the operation stability was also investigated in this 

study. The maximum information entropy versus dimensionless velocity, U/Ums, is plotted in 

Fig. 6 in beds operating with 1 and 2 mm glass beads. It can be observed in this figure that 

the maximum information entropy increases with increasing the static bed height in all cases. 

This implies that the bed stability increases by increasing the bed height. Increase in the bed 

height causes the flow in the spout to become more developed, with a higher centerline 

velocity, providing a more concentrated gas flow in the spout which leads to more stability of 

the bed. Moreover, Spreutels et al. [42] investigated the distribution of the mean height of 

penetration of the solid particles from the annulus to the spout and found that when the bed 

height is high, there is no solid particle penetration from the annulus to the spout in the upper 

part of the spout. This means that for a conical spouted bed with a high static bed height, 

most of particles enter the spout region at the bottom of the bed where the gas velocity is high 

enough to handle the particles which results in a higher stability of the bed. The increased 

stability can cause pressure fluctuations to become more significant with a greater 

information entropy. Olazar et al. [31] concluded that there is no maximum spoutable bed 

height for conical spouted beds, at least not in the same way observed in cylindrical spouted 

beds. 

The mean gas velocity through the spout also changes with height in conical spouted 

beds. As a consequence, there is a minimum spoutable bed height, below which the velocity 

in the upper surface of the bed is higher than the minimum fluidization velocity, which is one 

of the causes of instability observed in the experiments [31]. Olazar et al. [31] proposed a 

correlation to estimate the minimum spoutable height for beds of glass beads. The bed height 

in the experiments of this work was higher than those predicted by the correlation of Olazar 

et al. [31]. The maximum predicted value for minimum spoutable bed height by the 

correlation was 25 mm, which is quite lower than the bed heights in this study.  For a spouted 
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bed with a lower bed height, a large fraction of the ascending gas passes in the annulus region 

where it percolates through the downward-moving particles, leading to slugging in the bed. 

By propagation of the surface instability created at the base of the bed, the shape of the spout 

changes continuously and it becomes unstable, which leads to a decrease in the information 

entropy of pressure fluctuations. 

 

4.5. Effect of particle density 

 Effect of particle density on the bed stability was also investigated in this work. 

Maximum information entropy of pressure fluctuations measured in beds of various particles 

as a function of gas velocity for dp = 1 mm, Hb = 100 mm and Di = 12 mm is plotted in Fig. 7. 

This figure shows that the maximum information entropy decreases by increasing the particle 

density, indicating that beds containing lower density particles are more stable compared to 

higher density particles. For high-density particles, there are some instabilities which hinder 

the stable spouting of the bed. The momentum of spouting gas becomes easily dissipated by 

high density particles and the spout tends to oscillate when the gas loses its momentum. The 

continuous change of the spout position leads to large fluctuations in the pressure which 

results in a decrease in the information entropy. 

 

4.6. Stability map 

Although the particle properties (size and density), bed geometry (inlet diameter and bed 

height) and gas spouting velocity are important parameters that dictate the stability of 

operation of conical spouted beds, there is a lack of a stability map or a stability criteria that 

involves all these parameters in the literature. Figs. 8 and 9 summarize the dependency of 

conical spouted bed stability on all the parameters (particle diameter and density, inlet bed 

diameter, static bed height and spouting gas velocity) studied in this work by plotting the 
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maximum information entropies obtained in all experiments. Another view of stability 

dependency on the studied parameters is shown in Fig. 9. This figure presents completely 

stable and unstable spouted beds by black and white boxes, respectively. For cases between 

stable and unstable operation, a gray box is used. This figure was constructed based on the 

visual observations during the experiments. As can be seen from this figure, stable spouting 

operation was observed in all cases with inlet gas diameter of 10 mm for 1 mm particles. The 

instability was less noticeable for a bed with 12 mm inlet gas diameter than for 15 mm. Some 

instabilities were noticed for the 12 mm inlet diameter while in the case of 15 mm inlet, the 

bed was always unstable. 

 As discussed earlier, larger particles were found to present more stable spouting. This 

fact is reflected in Figs. 8 and 9 as the maximum information entropy increases with the 

increase in particle size and the stable spouting is observed for 2 mm particles. Stable 

spouting was never observed for smaller particles at high inlet diameters. For 0.5 mm 

zirconia particles, stability was observed only for 8 mm inlet gas diameter and at high gas 

velocities. Moreover, the effect of bed height and particle density on the bed stability is 

clearly seen in Figs. 8 and 9. The stability of the bed increases with the increase in the bed 

height. Moreover, the number of the black boxes decreases with the increase in the particle 

density which indicates the instability intensification. 

 In light of the discussions presented above, it can be deduced that Figs. 8 and 9 can be 

used qualitatively to assess the stability of conical spouted beds. However, precise 

characterization of the bed stability requires also quantitative analysis. For this purpose, the 

maximum information entropy of pressure fluctuations was utilized and it was found that the 

conical spouted bed is completely stable as long as IEmax >1.51. For IEmax values between 

1.43 and 1.51, the bed operates in between completely stable and unstable situations. 

Unstable spouting occurs if IEmax < 1.43 due to the growth of instabilities in the bed. Thus, it 
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can be concluded that in order to secure a stable operation in conical spouted beds, the 

maximum information entropy should be greater than 1.51. 

 As mentioned in the introduction section, the dimensionless parameters Do/Di and 

Do/dp were used to characterize the spouted bed stability by Olazar et al. [30]. However, it 

was shown in the present investigation that three other parameters, i.e., Hb, U/Ums and ρp, also 

affect the stability of conical spouted beds. Moreover, it was shown that for stable spouting in 

a conical spouted bed, maximum information entropy parameter can be used as a stability 

criterion. Thus, the following correlation for evaluation of the maximum information entropy 

based on the influential parameters such as inlet diameter, static bed height, particle diameter, 

particle density and spouting gas velocity can be proposed: 

       (
  
  
 
  
  
 
 

   
 
     

  
)    (

  
  
)

  

(
  
  
)
  

(
 

   
)
  

(
     

  
)

  

 (7) 

A power law form was used for this correlation and its constants were determined by fitting 

this equation to randomly selected 216 experimental data points: 

       (
  
  
)

      

(
  
  
)
     

(
 

   
)
     

(
     

  
)

      

 (8) 

The remaining 54 experimental data points, which were not used in the calculation of the 

constants of this correlation, were used for the validation of this correlation. The predictive 

accuracy of this correlation is presented in the parity plot given in Fig. 10. In this figure, the 

data points used for calculating the constants of correlation are shown in blue and the one 

used only for validation are shown with red marker. It can be seen in this figure that the 

proposed correlation agrees well with the experimental data.  

In summary, the IEmax value can be calculated by using the proposed correlation 

knowing the static bed height, inlet gas diameter, particle density, particle diameter and 

spouting gas velocity, then the stability situation of the bed can be predicted based on the 

calculated IEmax value and following ranges: 
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{

                                                                         
                                                                           

                                                                        
 (9) 

  

5. Conclusions 

Experiments were carried out with three different types of particles (glass beads, 

alumina and yttria-stabilized zirconia particles) in a conical spouted bed and the effects of 

inlet gas diameter, particle size, static bed height, particle density and spouting gas velocity 

on the stability of the bed was investigated through maximum information entropies of 

pressure fluctuations. Bed height of greater depth, larger particles and higher gas velocities 

provide more stable spouting. On the other hand, unstable spouting tends to occur at large gas 

inlet diameters and particles with high densities. 

The results show that the maximum information entropy of pressure fluctuations is 

significantly different for stable and unstable beds reflecting the characteristics of gas-solid 

flow in spouted beds. The spouted bed at an unstable operation is a deterministic periodic 

system since the maximum information entropies are low. On the other hand, the pressure 

fluctuations in a stable bed are quite random and their maximum information entropies are 

high. The results indicate that the maximum information entropy helps to grasp the complex 

dynamics of conical spouted bed, therefore can be used as a stability criterion. The 

assessment of the information entropies shows that to achieve a stable spouting it is necessary 

to ensure that IEmax >1.51. For information entropies lower than 1.43, the bed is completely 

unstable. 

 A correlation for maximum information entropy as function of operating and design 

parameters (i.e., inlet diameter, particle diameter, bed height, particle density and spouting 

gas velocity) was developed in this study. The predictive accuracy of the correlation was 
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found to be satisfactory. Therefore, it can be used in prediction of the stability of the conical 

spouted beds operating with low and also high density particles.  

 

Nomenclature 

Dc column diameter, m 

Di cone bottom diameter, m 

Do gas inlet diameter, m 

dp particle diameter, m 

H0 height of the smallest region 

Hb static bed height, m 

Hc height of conical section, m 

Hi height of each region 

Ii information amount in each region 

IEmax maximum information entropy 

IEtotal total information entropy 

Nr number of visits in each region 

Pi probability of signals ‘s visit 

U inlet gas velocity, m/s 

Ums minimums spouting velocity, m/s 

 

Greek letters 

 

γ cone angle, rad 

ρg gas density, kg/m
3
 

ρs particle density, kg/m
3
 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

17 

 

Acknowledgment 

The Scientific and Technological Research Council of Turkey (TÜBİTAK) through program 

No. 2216 and Iran’s National Elites Foundation (INEF) through Allameh Tabatabaei Grant 

are acknowledged for their support. 

 

References 

[1] N.N. Alves, S. de Oliveira Sancho, A.R.A. da Silva, S. Desobry, J.M.C. da Costa, S. 

Rodrigues, Spouted bed as an efficient processing for probiotic orange juice drying, 

Food Res. Int. 101 (2017) 54-60. 

[2] D.P. Chielle, D.A. Bertuol, L. Meili, E.H. Tanabe, G.L. Dotto, Spouted bed drying of 

papaya seeds for oil production, LWT – Food Sci. Technol. 65 (2016) 852-860. 

[3] M. Serowik, A. Figiel, M. Nejman, A. Pudlo, D. Chorazyk, W. Kopec, Drying 

characteristics and some properties of spouted bed dried semi-refined carrageenan, J. 

Food Eng. 194 (2017) 46-57. 

[4] S. Banerjee, R. Agarwal, Transient reacting flow simulation of spouted fluidized bed for 

coal-direct chemical looping combustion with different Fe-based oxygen carriers, Appl. 

Energy. 160 (2015) 552-560. 

[5] E. Eichner, V. Salikov, P. Bassen, S. Heinrich, G. Schneider, Using dilute spouting for 

fabrication of highly filled metal-polymer composite materials, Powder Technol. 316 

(2017) 426-433. 

[6] M. Liu, B. Liu, Y. Shao, J. Wang, Optimization design of the coating furnace by 3-d 

simulation of spouted bed dynamics in the coater, Nucl. Eng. Des. 271 (2014) 68-72. 

[7] H. Mansoubi, S. Fatemi, Z. Mansourpour, An efficient photo-catalytic VOC removal 

process by one-pot synthesized NF/TiO2 nanoparticles in fluidized-spouted bed reactor, 

Part. Sci. Technol. 36 (2018) 162-171. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

18 

 

[8] D.W. Marshall, Spouted bed design considerations for coated nuclear fuel particles, 

Powder Technol. 316 (2017) 421-425. 

[9] V. Salikov, S. Heinrich, S. Antonyuk, V.S. Sutkar, N.G. Deen, J. Kuipers, Investigations 

on the spouting stability in a prismatic spouted bed and apparatus optimization, Adv. 

Powder Technol. 26 (2015) 718-733. 

[10] C. Savari, R. Sotudeh‐ Gharebagh, R. Zarghami, N. Mostoufi, Non‐ intrusive 

characterization of particle size changes in fluidized beds using recurrence plots, AIChE 

J. 62 (2016) 3547-3561. 

[11] R.K. Stocker, J.H. Eng, W.Y. Svrcek, L.A. Behie, Ultrapyrolysis of propane in a 

spouted‐ bed reactor with a draft tube, AIChE J. 35 (1989) 1617-1624. 

[12] J.F. Saldarriaga, R. Aguado, A. Atxutegi, J. Bilbao, M. Olazar, Kinetic modelling of 

pine sawdust combustion in a conical spouted bed reactor, Fuel 227 (2018) 256-266. 

[13] T.P. Xavier, B.P. Libardi, T.S. Lira, M.A. Barrozo, Fluid dynamic analysis for pyrolysis 

of macadamia shell in a conical spouted bed, Powder Technol. 299 (2016) 210-216. 

[14] L. Santamaria, G. Lopez, A. Arregi, M. Amutio, M. Artetxe, J. Bilbao, M. Olazar, 

Influence of the support on Ni catalysts performance in the in-line steam reforming of 

biomass fast pyrolysis derived volatiles, Appl. Catal. B. 229 (2018) 105-113. 

[15] N. Epstein, J.R. Grace, Spouted and spout-fluid beds: fundamentals and applications, 

Cambridge University Press,  (2011). 

[16] N. Mostoufi, G. Kulah, M. Koksal, Flow structure characterization in conical spouted 

beds using pressure fluctuation signals, Powder Technol. 269 (2015) 392-400. 

[17] S. Sari, G. Kulah, M. Koksal, Characterization of gas–solid flow in conical spouted beds 

operating with heavy particles, Exp. Therm. Fluid Sci. 40 (2012) 132-139. 

[18] S. Şentürk Lüle, U. Colak, M. Koksal, G. Kulah, CFD simulations of hydrodynamics of 

conical spouted bed nuclear fuel coaters, Chem. Vap. Depos. 21 (2015) 122-132. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

19 

 

[19] G. Kulah, S. Sari, M. Koksal, Particle velocity, solids hold-up, and solids flux 

distributions in conical spouted beds operating with heavy particles, Ind. Eng. Chem. 

Res. 55 (2016) 3131-3138. 

[20] C. Savari, G. Kulah, R. Sotudeh-Gharebagh, N. Mostoufi, M. Koksal, Early detection of 

agglomeration in conical spouted beds using recurrence plots, Ind. Eng. Chem. Res. 55 

(2016) 7179-7190. 

[21] C. Savari, G. Kulah, M. Koksal, R. Sotudeh-Gharebagh, R. Zarghami, N. Mostoufi, 

Monitoring of liquid sprayed conical spouted beds by recurrence plots, Powder Technol. 

316 (2017) 148-156. 

[22] M. Foroughi-Dahr, R. Sotudeh-Gharebagh, N. Mostoufi, Characterization of flow 

properties of pharmaceutical pellets in draft tube conical spout-fluid beds, J. Ind. Eng. 

Chem. (2018). In Press, https://doi.org/10.1016/j.jiec.2018.07.054. 

[23] H. Altzibar, G. Lopez, J. Bilbao, M. Olazar, Minimum spouting velocity of conical 

spouted beds equipped with draft tubes of different configuration, Ind. Eng. Chem. Res. 

52 (2013) 2995-3006. 

[24] M.T. Perazzini, F.B. Freire, M.C. Ferreira, J.T. Freire, Stability and performance of a 

spouted bed in drying skimmed milk: Influence of the cone angle and air inlet device, 

Dry. Technol. 36 (2018) 341-354. 

[25] H. Altzibar, G. Lopez, R. Aguado, S. Alvarez, M. San Jose, M. Olazar, Hydrodynamics 

of conical spouted beds using different types of internal devices, Chem. Eng. Technol. 

32 (2009) 463-469. 

[26] K.B. Mathur, N. Epstein, Dynamics of spouted beds, Adv. Chem. Eng. 9 (1974) 111-

191. 

[27] P.P. Chandnani, N. Epstein, in Spoutability and spout destabilization of fine particles 

with a gas, Proceedings of fluidization (1986). 

ACCEPTED MANUSCRIPT

https://doi.org/10.1016/j.jiec.2018.07.054


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

20 

 

[28] J. Zhao, C. Lim, J. Grace, Flow regimes and combustion behaviour in coal-burning 

spouted and spout-fluid beds, Chem. Eng. Sci. 42 (1987) 2865-2875. 

[29] D. Povrenovié, D.E. Hadžismajlovié, Ž.B. Grbavčić, D. Vuković, H. Littman, Minimum 

fluid flowrate, pressure drop and stability of a conical spouted bed, Can. J. Chem. Eng. 

70 (1992) 216-222. 

[30] M M. Olazar, M.J. San Jose, A.T. Aguayo, J.M. Arandes, J. Bilbao, Stable operation 

conditions for gas-solid contact regimes in conical spouted beds, Ind. Eng. Chem. Res. 

31 (1992) 1784-1792. 

[31] M. Olazar, M.J. San Jose, A.T. Aguayo, J.M. Arandes, J. Bilbao, Design factors of 

conical spouted beds and jet spouted beds, Ind. Eng. Chem. Res. 32 (1993) 1245-1250. 

[32] S. Nedeltchev, New methods for flow regime identification in bubble columns and 

fluidized beds, Chem. Eng. Sci. 137 (2015) 436-446. 

[33] S. Nedeltchev, F. Ahmed, M. Al-Dahhan, A new method for flow regime identification 

in a fluidized bed based on gamma-ray densitometry and information entropy, J. Chem. 

Eng. Jpn. 45 (2012) 197-205. 

[34] S. Nedeltchev, U. Hampel, M. Schubert, Investigation of the radial effect on the 

transition velocities in a bubble column based on the modified Shannon entropy, Chem. 

Eng. Res. Des. 115 (2016) 303-309. 

[35] S. Nedeltchev, S. Rabha, U. Hampel, M. Schubert, A new statistical parameter for 

identifying the main transition velocities in bubble columns, Chem. Eng. Technol. 38 

(2015) 1940-1946. 

[36] S. Nedeltchev, A. Shaikh, A new method for identification of the main transition 

velocities in multiphase reactors based on information entropy theory, Chem. Eng. Sci. 

100 (2013) 2-14. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

21 

 

[37] S. Nedeltchev, A. Shaikh, M. Al‐Dahhan, Low regime identification in a bubble column 

via nuclear gauge densitometry and chaos analysis, Chem. Eng. Technol. 34 (2011) 225-

233. 

[38] O. Dogan, L. Freitas, C. Lim, J. Grace, B. Luo, Hydrodynamics and stability slot 

recangilar spouted bed, Part I: Thin bed, Chem. Eng. Commun. 181 (2000) 225-242. 

[39] L. Freitas, O. Dogan, C. Lim, J. Grace, B. Luo, Hydrodynamics and stability of slot-

rectangular spouted beds, Part II: Increasing bed thickness, Chem. Eng. Commun. 181 

(2000) 243-258. 

[40] P.K. Mollick, D. Sathiyamoorthy, Assessment of stability of spouted bed using pressure 

fluctuation analysis, Ind. Eng. Chem. Res. 51 (2012) 12117-12125. 

[41] T T. Al-Juwaya, N. Ali, M. Al-Dahhan, Investigation of cross-sectional gas-solid 

distributions in spouted beds using advanced non-invasive gamma-ray computed 

tomography (CT), Exp. Therm. Fluid Sci. 86 (2017) 37-53. 

[42] L. Spreutels, B. Haut, R. Legros, F. Bertrand, J. Chaouki, Experimental investigation of 

solid particles flow in a conical spouted bed using radioactive particle tracking, AIChE J. 

62 (2016) 26-37. 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

22 

 

Table 1. Conditions of the experiments  

Particle type dp (mm) Do (mm) Hb (mm) U/Ums 

Glass Bead 

1 

10 

12 

15 

80, 100, 120 1, 1.1, 1.3, 1.45, 1.6, 1.75 

2 

10 

12 

15 

Alumina 

1 

10 

12 

15 

2 

10 

12 

15 

Zirconia 

0.5 

8 

10 

12 

15 

1 

10 

12 

15 

 

 

Table 2. Properties of the particles  

Material dp (mm) ρs (kg/m
3
) Geldart Classification 

Glass bead 

1 2470 D 

2 2470 D 

Alumina 

1 3690 D 

2 3690 D 

Zirconia 

0.5 6050 B 

1 6050 D 
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 Fig. 1. Geometric sketch of conical spouted bed system 
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Fig. 2. Example of the pressure fluctuation time series data in the bed for a step size equal to 

25 Pa (alumina particles, dp = 1 mm, Do = 15 mm, Hb = 120 mm) 
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Fig. 3. Effects of static bed height (Hb) and inlet gas diameter (Do) on the time series of pressure fluctuations in a spouted bed operating at 

1.3Ums with 1 mm glass beads (P11: Do = 10 mm and Hb = 80 mm; P12: Do = 10 mm and Hb = 100 mm; P13: Do = 10 mm and Hb = 120 mm; P21: 

Do = 12 mm and Hb = 80 mm; P22: Do = 12 mm and Hb = 100 mm; P23: Do =12 mm and Hb = 120 mm; P31: Do = 15 mm and Hb = 80 mm; P32: Do = 

15 mm and Hb = 100 mm; P33: Do = 15 mm and Hb = 120 mm) 
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Fig. 4. Effect of gas inlet diameter on the change of IEmax with U/Ums (Glass bead, dp = 1 mm, 

Hb = 100 mm) 
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Fig. 5. Effects of gas inlet and particle diameter on the change of IEmax with U/Ums (Glass 

bead, Hb = 100 mm) 
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Fig. 6. Effects of bed height and particle diameter on the change of IEmax with U/Ums (Glass 

bead, Do = 12 mm) 
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Fig. 7. Effect of particle density on the change of IEmax with U/Ums (dp = 1 mm, Hb = 100 

mm, Do = 12 mm) 
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Fig. 8. Maximum information entropy values obtained at all experiments conducted in this study  
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Fig. 9. Stability map of conical spouted bed
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Fig. 10. Comparison of maximum information entropy experimental data with 

calculated data from the proposed correlation 
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 The maximum information entropy of pressure fluctuations was used as a stability 

criterion. 

 The stability of the bed increases with increase in the maximum information entropy. 

 The bed stability increases with increase in the particle size and static bed height. 

 The stability of the bed decreases with increasing in gas inlet diameter and particle 

density. 

 A correlation for prediction of maximum information entropy of the bed was proposed. 
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