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Hyung Jin Chang
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Abstract

We present a new predictor combination algorithm that

improves a given task predictor based on potentially relevant

reference predictors. Existing approaches are limited in

that, to discover the underlying task dependence, they either

require known parametric forms of all predictors or access

to a single fixed dataset on which all predictors are jointly

evaluated. To overcome these limitations, we design a new

non-parametric task dependence estimation procedure that

automatically aligns evaluations of heterogeneous predictors

across disjoint feature sets. Our algorithm is instantiated

as a robust manifold diffusion process that jointly refines

the estimated predictor alignments and the corresponding

task dependence. We apply this algorithm to the relative

attributes ranking problem and demonstrate that it not only

broadens the application range of predictor combination

approaches but also outperforms existing methods even when

applied to classical predictor combination settings.

1. Introduction

When the performance of an estimated predictor is not

adequate for the task at hand, e.g. due to limited training

examples, we might benefit from the knowledge gained from

related tasks. Multi-task learning (MTL) [1, 12, 16, 19]

explores this possibility by solving multiple problems

simultaneously, and so capturing and benefiting from the

potential task dependence. The success of MTL in many

visual learning problems has demonstrated such task depen-

dence [1, 12, 23, 19, 10]. In most existing MTL algorithms,

task dependence is modeled through the latent structures on

the parameter spaces of the corresponding task predictors.

For instance, Evgeniou and Pontil’s algorithm [6] penalizes

pair-wise parameter deviations of task predictors. Since

it is unlikely that all tasks exhibit known task dependence

structure, MTL algorithms attempt to automatically discover

the underlying dependence and identify outliers, by e.g.

enforcing sparsity and/or introducing low-rank constraints

on the aggregated task parameter matrices [1, 8] or by

explicitly performing clustering of tasks [25, 18].

A major limitation of these traditional MTL approaches

is that they require all task predictors to share the same

predictive model or even the same parameter space, making

them difficult to apply to heterogeneous predictors, e.g. com-

bining deep neural networks and support vector machines.

However, the best predictor forms often depend on the in-

dividual tasks of interest. Further, existing MTL approaches

are designed to train multiple predictors simultaneously,

and so they cannot be directly applied to train a new task

predictor given previously-trained reference predictors, e.g.

combining pre-trained or pre-compiled predictor libraries

without access to the corresponding task training data.

Recently, Kim et al. [10] proposed a non-parametric pre-

dictor combination approach where the predictor evaluations

made at sampled data points are improved by combining

them with reference predictions at test time without

requiring simultaneous training. This enables us to combine

predictors with different or even unknown parametric forms.

However, the application scope of this approach is limited

in its own way, as it requires a large set of data points on

which all predictors are jointly evaluated. In practical

applications, different predictions can be constructed based

on the respective feature representations tailored for specific

tasks of interest, and often these features are available by

themselves as separate databases without having explicit

references to the corresponding source data (e.g. images).

In this paper, we propose a new algorithm to avoid the

limitations of previous predictor combination approaches,

thereby broadening the application spectrum of the non-

parametric predictor combination approach [10]. Building

on their test-time combination approach, our algorithm

improves a task predictor based on a set of reference

predictors. However, unlike their approach, we do not

require that all predictors are available for evaluation on

a single fixed set. Our algorithm takes as input decoupled

predictor evaluations and automatically aligns these

predictions to discover the underlying task dependence. As

the initial estimates of the alignments and the corresponding

task dependence might be noisy, we denoise them jointly via

a manifold diffusion process. The new algorithm combines

the benefits of classical parametric MTL approaches and

recent test-time combination algorithms, and facilitates

combination applications where multiple heterogeneous

predictors are constructed from disjoint feature sets. We

apply our algorithm to the relative attributes ranking prob-

lem, and extend the application over previous approaches.

Furthermore, evaluated on seven challenging datasets,

our approach demonstrates that even when applied in the
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restricted settings of traditional approaches, it significantly

improves both accuracy and time efficiency.

Relative attributes ranking: Relative attributes rank-

ing [17, 11] refers to the problem of inferring a linear

ordering of database images based on the strengths of

attribute present in each entry. This problem differs from

binary attribute classification where the goal is to predict

the presence or absence of an attribute. Instead, relative

attributes ranking focuses on attributes where such clear

binary classifications cannot be obtained, e.g. a shoe A
can be ‘more formal’ than B but it could still appear ‘less

formal’ than C. This problem is also different from classical

data-retrieval type ranking applications where the goal is

to identify database entries that match a given query.

This goal can be achieved by learning a rank function

f based on user-provided rank labels: Given a set of data

points X={x1,...,xn}⊂X , rank learning aims to construct

a function f :X →R that agrees with the observed pair-wise

rank labels R={(i(1),j(1)),...,(i(l),j(l))}⊂X×X where

(i, j) ∈ R implies that the rank of xi is higher than xj :

f(xi)>f(xj). For instance, Parikh and Grauman’s original

Relative Attributes algorithm learns a rank support vector

machine (RankSVM) [17] while Yang et al. extended it into

Deep Relative Attributes [24] using neural networks.

2. Joint manifold diffusion for test-time predic-
tor combination

Our algorithm improves a given task predictor based

on a set of reference predictors. As it is unknown a priori

which reference predictors are relevant, our algorithm

automatically identifies and exploits the relevant references.

Existing approaches are limited in that they either require

known and shared parametric forms for all task predictors

(e.g. in parametric MTLs) or evaluating multiple predictors

on a single fixed dataset (in test-time predictor combination

approach [10]). We bypass these limitations and allow the

combination of multiple heterogeneous predictors by 1) a

new non-parametric measure of task dependence (Sec. 2.1)

and 2) a robust joint diffusion process that constructs bridge

variables coupling the predictors of disjoint data instances

(Sec. 2.2).

Problem definition: Suppose that we are given a rank

predictor function f constructed as an estimate of the

unknown ground-truth ranker (or task). Our goal is to

refine f based on a set of m reference predictors {gk}mk=1.

As there is no guarantee that the reference predictors are

relevant to the ground-truth task or its estimate f , our

algorithm automatically identifies any relevant references.

Adopting Kim et al.’s predictor combination frame-

work [10], we regard f as a noisy observation of the ground-

truth. Our algorithm denoises f by embedding {f,gk}mk=1
into a predictor manifold M and performing manifold

denoising induced by the diffusion process therein. The do-

mains of the predictor f and references {gk}mk=1 do not have

to be identical. Instead, we assume that they are connected

via an underlying data space X̃ equipped with a probability

distribution P . An example of X̃ is the space of images while

the corresponding data representation per task can be defined

via the respective feature extractors ek : X̃ →X k on which

the predictors are defined: f ∈C∞(X ) and gk∈C∞(X k).1

Therefore, we regard a predictor gk being defined on

its own feature domain X k or by combining it with the

corresponding feature extractor, as a function on the shared

data domain X̃ : g̃k :=g ·ek∈C∞(X̃ ). As discussed shortly,

this decomposition of feature representations and predictors

facilitates applications where the main predictor f is

combined with multiple heterogeneous reference predictors.

2.1. Denoising over predictor manifold

Assuming that the input space X̃ is provided with a

probability distribution P , our predictor manifold M is

given as an equivalence class of square-integrable functions

L2(X̃ ,P ): Each function g̃∈L2(X̃ ,P ) is projected onto M
by centering and scale-normalization:

ProjM [g̃] :=
g̃−

∫
g̃dP

‖g̃−
∫
g̃dP‖

L2(X̃ ,P )

. (1)

This manifold construction facilitates scale and shift-

invariant comparisons of ranking functions: In ranking

applications, e.g. scaling of a ranker g(·) by a constant c,
cg(·) should not alter the nature of rankings it induces. Simi-

larly, a constant offset g(·)+c of a ranker g(·) should lead to

the same ranking results. For problems where the absolute

scales are important, e.g. regression, inverse normalization

can be performed after denoising. For brevity of notation,

we omit the projection symbol ProjM and use g̃ to denote

an element of M . The Riemannian2 metric on this Hilbert

sphere M can be induced from the ambient L2 metric:

〈g̃k,g̃l〉
L2(X̃ ,P )=

∫
g̃kg̃ldP, (2)

which uniquely identifies a Laplace-Beltrami operator

inducing a diffusion process on M .

It might be possible to evaluate the metric directly (Eq. 2)

if the parametric forms of the predictors {f̃ , g̃k}mk=1 are

known. When their parametric forms are unknown or for

general non-parametric predictors, we instead approximate

the metric 〈g̃k,g̃l〉
L2(X̃ ,P ) based on their evaluations on a

sample X̃={x̃1,...,x̃n}⊂X̃ :

〈f ,gk〉= 1

n
(f)⊤gk, f := f̃ |

X̃
, gk := g̃k|

X̃
. (3)

Manifold denoising: Using sample-based metric

evaluations (Eq. 3), the manifold denoising pro-

cess can be described as to iteratively solve a

1Here, C∞ is the space of smooth (infinitely differentiable) functions.
2For L2(X̃ ,P ), we adopt the natural identification of functions that

deviates on a set of measure zero.
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diffusion equation on a graph formed by matrix

G=[f⊤,(g1)⊤,...,(gm)⊤]⊤⊂R
(m+1)×n [22, 9, 10]:

∂G

∂t
=−δ∆G (4)

with a diffusion coefficient δ > 0 and the graph Laplacian

∆ constructed from G:

∆=I−D−
1

2WD−
1

2 ,

[W ]kl=exp

(
−〈gk,gl〉2

σ2

)
, (5)

where σ2 is a scale hyperparameter, and the diagonal matrix

D contains the row sums of W ([D]kk =
∑

lWkl). When

each graph node gk corresponds to an i.i.d. Gaussian-noise

contaminated observation of an underlying clean manifold

point, this process tends to contract G towards M [9] and

therefore, as the diffusion proceeds, G(t) tends to recover

a smooth noise-free version of M .

To simulate the diffusion process, we discretize Eq. 4 in

time and obtain an implicit Euler update rule:

G(t+1)−G(t)=−δ∆(t)G(t+1). (6)

Note the time-dependence of ∆ as it is constructed from the

variable G being evolved (Eq. 5).

2.2. Joint manifold diffusion

2.2.1 f -diffusion: Refining the predictor f

As our goal is to refine the main predictor f given references,

we hold the reference variables {gk}mk=1 in G fixed and only

update f during the diffusion (Eq. 6). In this case, the up-

dated solution f(t+1) at time t+1 (the first row of G(t+1))
can be obtained as the maximizer p∗ of a score functional:3

O(p)=〈p,f(t)〉2M+δ

m∑

k=1

W1k〈p,gk〉2M , (7)

where we explicitly incorporate the normalization conditions

(scaling and centering) such that the solution stays on the

predictor manifold M :

〈a,b〉M =
(Ca)⊤Cb

‖Ca‖‖Cb‖ (8)

with C = I − 1
n
11⊤ and 1 = [1, ... ,1]⊤. The score O is

a smooth function of p, and it can be maximized using

any smooth optimization method. However, by defining a

symmetric matrix Q=SS⊤ with

S=

[
Cf(t)

‖f(t)‖ ,
√
δW11Cg1

‖Cg1‖ ,...,

√
δW1mCgm

‖Cgm‖

]
, (9)

3The implicit Euler step in Eq. 6 corresponds to a linear system whose
solution can be obtained by minimizing the corresponding quadratic energy
function; See [9] for details.

it can also be rewritten as a generalized Rayleigh quotient

O(p)=
p⊤Qp

p⊤Cp
. (10)

This reveals that the optimal solution p∗ can be obtained as

the eigenvector corresponding to the maximum eigenvalue

of the generalized eigenvalue equation Qp = λCp. For

general symmetric matrices Q and C, the computation for

finding this eigenvector is cubic complexity: O(n3) for n
data points, which quickly becomes infeasible as n grows. A

more efficient approach can be taken by noting that for prac-

tical applications, the number of reference predictors m will

be much smaller than n and the matrix Q is constructed as a

weighted combination of outer products of centered vectors

(Eq. 9). Therefore, all eigenvectors {ek} corresponding to

non-zero eigenvalues of Q are also centered, i.e., ek=Cek

implying that they also constitute the eigenvectors of the

centering matrix C. This renders the generalized eigenvalue

problem at hand into a regular eigenvalue problem Qp=λp.

Finally, the maximum eigenvector of Q is obtained as the

maximum left-singular vector of S and hence the complexity

of this step reduces to O(m2n). As we maximize the

squared metric in Eq. 7, the optimizer p∗ of O can be

inversely correlated to the original rank predictions f(0).
Therefore, the final updated solution f(t+1) is obtained by

multiplying the solution p∗ with sgn[−1〈p∗,f(0)〉].

Discussion: Our f -diffusion step is motivated by

adaptively-weighted correction of f via robust local aver-

aging of the references {gk}. A key application challenge

is that we do not know which references, if any, are relevant.

Thus, our algorithm must automatically identify them. This

can be naturally addressed based on adaptive control of

the combination weights {W1k} exercised via the diffusion

process. Our algorithm controls the metric similarity

between the main predictor and the references weighted by

{[W ]1k}, which are increasing functions of the similarities

themselves (Eqs. 7-8). These weights provide the means

to disregard irrelevant references. The uniformity of the

weights is controlled by the hyperparameter σ2 (Eq. 5):

For large σ2, all references contribute equally, which might

include outliers. For small σ2
w, the single most relevant

reference influences the solution, which might neglect other

less relevant but still beneficial references.

2.2.2 B-diffusion: Combining predictions from

decoupled observations

A major limitation of our initial predictor combination al-

gorithm is that it relies on a large number of predictor eval-

uations sampled from the joint distribution P (f,g1,...,gm),
i.e. the sample predictions {f ,gk}mk=1 are obtained by jointly

evaluating the corresponding predictors {f̃ , g̃k}mk=1 on a

shared sample set X̃⊂X̃ . However, in practical applications,

each predictor can be coupled with a feature representation
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tailored for an individual task of interest. Furthermore, often

these features are available by themselves, without explicit

references to the corresponding source images in X̃ . There-

fore, even though the data generation processes of multiple

feature domains {X ,X k}mk=1 are governed by a single proba-

bility distribution P (X̃ ) on X̃ , it is unrealistic to assume that

the available sample instances {X,Xk}mk=1 are all coupled,

i.e. for all i={1,...,n} and k={1,...,m}, there exists x̃i∈X̃
such that xk

i =ek(x̃i)∈Xk. Also, the number of available

sample instances may vary across tasks leading to predictor

vectors that differ in sizes {f ,gk}mk=1. In this case, direct

evaluations of the metric 〈·,·〉M in Eq. 7 is not possible.

Motivated by recent work on centered kernel align-

ment [20, 4], we construct bridge variables {Bk}mk=1 that

align each reference variable gk to the main predictor

variable f . To motivate the construction, first we note that the

metric evaluation 〈f ,g〉M of prediction vectors f and g cor-

responds to a measure of the alignment of the corresponding

centered gram matrices Gf =ff⊤ and Gg=gg⊤:

〈f ,g〉M =
tr[GfCGgC]√

tr[GfCGfC]
√
tr[GgCGgC]

. (11)

For typical kernel alignment applications e.g. in kernel

learning [4] and clustering [15], a gram (kernel) matrix G
contains pair-wise evaluations of a positive definite kernel

k(·,·). In Eq. 11, our kernel evaluates the product of two

scalar inputs (k(a,b)=ab).
When the two gram matrices Gf and Gg are constructed

from disjoint sample sets, and therefore, element-wise data

coupling is not provided, a bridge matrix Bgf of positive

entries can be constructed to align Gg with respect to Gf :

〈f ,g〉Bgf
=

tr[GfCBgfGgB
⊤

gfC]
√
tr[GfCGfC]

√
tr[BgfGgB⊤

gfCBgfGgB⊤

gfC]
. (12)

The elements of each row in Bgf total to one and therefore,

each entry in the aligned gram matrix BgfGgB
⊤

gf is obtained

as a probabilistic (convex) combination of a Gg-column.

If both gram matrices Gf and Gg are full rank as in

existing kernel alignment applications, such a bridge matrix

can be straightforwardly constructed by maximizing the

alignment score 〈f ,g〉Bgf
(possibly, with additional regular-

izers, e.g. non-negativity and sparsity [20]). Unfortunately,

this approach is not applicable in our case as the number

of variables in Bgf is much higher than the effective degrees

of freedom of the observed gram matrices (of rank 1): Our

preliminary experiments indicated that naïvely applying this

strategy trivially leads to the maximum alignment (value

of 1), even for a random gram matrix Gg.

Instead, we cast the bridge matrix learning as a con-

tinuous relaxation of bipartite graph matching: Suppose

that f ∈ R
n(f) and gk ∈ R

n(k) are obtained as evalu-

ations of f and gk on the respective feature instances

X = {x1,...,xn(f)}, and Xk = {xk
1 ,...,x

k
n(k)} and for each

set, the first n′ data instances are paired, i.e. there exists

x̃i ∈ X̃ such that ([f ]i,[g
k]i) = (f(ẽ(x̃i)),g

k(ẽk(x̃i))) for

i=1,...,n′. Using these coupling labels, Bkf is initialized as

[Bkf (0)]ij=

{
1 if i=j and i≤n′

0 otherwise.
(13)

which then evolves by diffusion propagating the labels to

the entire bipartite graph G = (X,Xk). To facilitate this

process, we construct a pair of graph Laplacians ∆f and ∆k

based on the similarities of the respective feature domains

and the predictor evaluations: For the main predictor f , the

Laplacian ∆f is defined as

∆f =I−D−
1

2WxfD−
1

2 , Wxf =Wx
ij◦W f

ij , (14)

Wx
ij=exp

(
−‖xi−xj‖2

σ2
x

)
,W f

ij=exp

(
([f ]i−[f ]j)

2

σ2
f

)
,

with A◦B being the Hadamard product of A and B. The

graph Laplacian ∆k is similarly constructed. Note that

∆f and ∆k are anisotropic as they use the corresponding

predictor evaluations f and gk in calculating the respective

diffusivities (Wxf and Wxkgk

; Eq. 14). Given the initial

solution Bkf (0), the diffusion process on the bipartite graph

G is specified via these two Laplacians: The solution of

the corresponding implicit Euler method is obtained as the

minimizer of an energy

E(V )=‖V −Bkf (0)‖2F
+δBtr[V

⊤∆fV ]+δBtr[V∆kV ⊤] (15)

whose optimum V ∗ can be obtained as the solution of a

Sylvester equation:

δB∆
fV +δBV∆k=Bkf (0). (16)

This analytical approach generates a dense matrix Bkf ,

and therefore, it cannot be applied to large-scale problems

(n>10,000). For these problems, we adopt the explicit Euler

method and alternate V -updates based on two Laplacians:

Bkf (t+1)=Bkf (t)−δB∆
fBkf (t) (17a)

Bkf (t+1)=Bkf (t)−δBBkf (t)∆
k (17b)

explicitly controlling the sparsity of Bkf (t): At each

iteration, each row of Bkf (t) is sparsified by keeping only

the largest K values and assigning zero to the rest of the

elements. Given the initial label of {0,1} in Bkf (0), the

diffused variables Bkf stay bounded in [0, 1]. At each

iteration, we normalize each row of Bkf (t) such that its

element values sum to 1.

2.2.3 Joint diffusion

Our final algorithm consists of two diffusion processes:

f -diffusion updates the predictor variables f while B-

diffusion updates the bridge variables. These diffusions are
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Algorithm 1: Predictor combination using joint mani-

fold diffusion.
Input: Initial main predictor f and reference predictors

{gk}mk=1; weight matrix Wx and reference graph

Laplacians {∆k}mk=1 (Eq. 14); hyperparameters σ2

(Eq. 5), δ (Eq. 7), T1, and T2;

Output: Refined predictions f .

t = 0;

Build graph Laplacian ∆xf using Wx and f(0) (Eq. 14);

for t1=1,...,T1 do

for t2=1,...,T2 do
Update f(t) based on the score function O (Eq. 7)

and metric 〈·,·〉Bgf
(Eq. 12).

t= t+1;
end

for t2=1,...,T2 do
Update {Bkf (t)}

m

k=1 based on Eqs. 15-17b;

Normalize rows of {Bkf (t)}
m

k=1;

t= t+1;
end

Update ∆xf using Wx and f(t);
end

respectively governed by two classes of graph Laplacians

∆ (Eq. 5) and {∆f ,∆k}mk=1 (Eq. 14), and as both ∆(t) and

∆f (t) depend on f(t), the two diffusion processes interact

nonlinearly. We propose to interweave the two processes:

First, we initialize B by performing the B-diffusion. Then,

the two steps of f -diffusion and B-diffusion alternate

until the termination condition is satisfied. Algorithm 1

summarizes the proposed joint diffusion process.

2.2.4 Hyperparameters

Unlike the implicit Euler method (Eq. 15), the explicit

Bkf update rule (Eqs. 17a and 17b) is not stable uniformly

over all values of δB . Hence, we fix δB at a small value

10−5. Building the graph Laplacian ∆f (similarly for

{∆k}mk=1) requires tuning the scale parameters σ2
x and

σ2
f , and the number of nearest neighbors (NN) N in X .

We determine σ2
x as twice the mean distance within the

local N -neighborhood following Hein and Maier [9]. The

NN parameter N , the sparsity parameter K, and f -scale

parameter σ2
f (similarly, σ2

k) are globally tuned to maximize

the maximum coupling score 〈f ,gk〉Bkf
across all reference

{gk}mk=1 (Eq. 11). They are determined during the first

iteration and are held fixed throughout the diffusion process.

The step-size parameter δ (Eq. 7) and the scale parameter

σ2 (Eq. 5) for f -diffusion is decided based on the ranking

accuracy (defined as the ratio of correctly ranked pairs

with respect to all pair-wise comparisons) on the validation

sets: While our algorithm is unsupervised, we automatically

tune the hyperparameters using small validation sets to

facilitate fair comparisons with other algorithms (see Sec. 3

for details). In practice, the hyperparameters would be

adjusted by the user trying different parameter combinations.

Figure 1. Accuracy of our algorithm on OSR dataset (attribute 3)

with respect to varying hyperparameters σ2 and δ.

Figure 1 shows that indeed, this sampling approach is

feasible as the accuracy surface varies smoothly with respect

to these hyperparameters.

For joint diffusion, we set an upper bound T2 on the

number of steps in each f - and B-diffusion process, and

terminate the iterations immediately when the validation ac-

curacy (for f -diffusion) or alignment score (for B-diffusion)

does not increase. These two processes alternate until the

joint iteration number meets the upper bound T1, or the

f -validation accuracy does not improve. Our algorithm

converges fairly quickly, typically within 10 iterations. We

set T1,T2=20 (see Algorithm 1).

3. Experiments

3.1. Design evaluation on a synthetic dataset

To gain an insight into the effectiveness of our bridge

estimation approach, we constructed a toy dataset with a

known task metric structure. First, we generated 12 different

tasks by explicitly building their ground-truth predictors

{t̃k}12k=1: Each member is constructed as a linear function on

the 100-dimensional input space: t̃k(x) = x⊤w̃k. Among

the parameter vectors of 12 predictors, the last four are

randomly generated (with each element sampled from the

uniform distribution on [−1,1]) while the first 8 parameter

vectors form two groups of 4 linearly depending predictors:

W̃ 1 = [w̃1, ... , w̃4] is obtained by multiplying a pair of

randomly generated vectors of sizes 100 × 1 and 1 × 4,

respectively. The parameters of the second group (tasks 5-8)

are generated similarly. The corresponding coupled noisy

observations Hc={hk
c }mk=1 are obtained by evaluating these

ground-truths on an input dataset of n=1,000 data points

X̃={x̃1,...,x̃n} and adding a mild level of noise (i.i.d. zero-

mean Gaussian with standard deviation 0.2) to the result.

Similarly, decoupled observations Hd = {hk
d}mk=1 are

constructed based on task-specific feature sets {Xk :Xk=

{xk
1 ,...,x

k
n(k)}}mk=1 each sub-sampled from X̃ (n(k)≈n/2):

To simulate different feature extraction operations, we

applied principal component analysis with the feature dimen-

sions varying randomly across tasks (under the condition

that 95% of the total variance is retained): Xk⊂ek|
X̃

with

ek being the k-th principal component feature extractor. Fi-
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Figure 2. Example estimation of the task metric 〈·,·〉M (Eq. 8) from

decoupled predictions {gk}12k=1. By design, tasks 1-4 and tasks 5-8

respectively form groups of strongly correlated tasks. (left) pair-

wise metric evaluations from the ground-truth predictions; (center)

metric estimated based on decoupled predictions using the initial

bridge estimate; (right) final metric evaluations constructed via

joint diffusion.

nally, the noisy predictions Hd are obtained by constructing

the least-squares parameter approximations of Hc:

wk=argmin
w

n(k)∑

i=1

(w⊤xk
i −[hk

c ]i)
2, (18)

evaluating the resulting predictors {gk :gk(x)=x⊤wk}12k=1
respectively on {Xk}12k=1, and adding Gaussian noise to

the results. Across different feature matrices {Xk}12k=1, the

source of feature instances in the first 30 rows are shared,

providing coupling labels.

For each task k, we used hk as the main predictor f

and the rest as the references constituting a total of 12

predictor combination problems. Figure 2 shows the results

of the bridge estimation process. (Left) shows the metric

evaluated from the coupled predictions Hc: the k-row of the

displayed matrix shows the metric evaluations of hk
c (as the

main predictor) with respect to the remaining predictors (as

references). This matrix can be regarded as the ground-truths

for bridge estimation process. (Center) shows the metric

evaluated on the decoupled predictors Hd using the initially

estimated bridge variables Bkf (0) (Eq. 15). Given the mild

level of task noise (as shown in Fig. 2(left)), the initial

metric evaluations on decoupled observations already well-

recovered the underlying task dependence. Finally, (Right)

shows the metric evaluated on the predictions denoised

via the joint diffusion process. Our algorithm successfully

suppressed noise and refined the underlying metric structure.

3.2. Evaluation on real datasets

We evaluate our joint manifold diffusion algorithm on

seven datasets and compare its performance with four base-

line algorithms. Each entry in these datasets is assigned with

multiple ground-truth attributes and therefore, predicting

the relative strengths of these attributes constitutes multiple

predictor combination problems: For each target attribute,

our algorithm refines the corresponding predictor based on

the remaining predictors as references.

3.2.1 Baseline methods

A) Ind: The first baseline algorithm (Ind) evaluates and

selects the best predictor per dataset, per attribute from

among deep neural networks (DNNs[24]), and linear and

nonlinear rank support vector machines (RankSVMs[17])

based on validation accuracy. For all experiments, the

baseline algorithms were trained based on pair-wise

rank labels extracted from 200 training data points. For

given training inputs X = {x1,...,xn} and pair-wise rank

labels {(i(1), j(1)), ... , (i(l), j(l))}, the linear RankSVM

(f(x)=w⊤x) minimizes the regularized rank energy:

ES(f)=

l∑

k=1

L([xi(k),xj(k)],f)+λS‖w‖2, (19)

where the margin-based rank loss L is defined as

L([xi,xj ],f)=(max(1−(f(xi)−f(xj)),0))
2
. (20)

The regularization hyperparameter λS ≥ 0 is tuned based

on the accuracy on a separate validation set of the same

size as the training set. For non-linear RankSVMs, we use

a Gaussian kernel k(x,x′) = exp
(
−‖x−x′‖2/σ2

S

)
with a

scale hyperparameter σ2
S > 0. In this case, the parameter

norm ‖w‖2 in Eq. 19 is replaced by the RKHS norm

corresponding to k: ‖w‖2k.

B) TPC: The second baseline uses Kim et al.’s test-time

predictor combination approach (TPC) [10]. This algorithm

was originally developed for regression but adapting it to

ranking using rank loss L is straightforward. Both TPC

and our algorithm require the initial main rank predictor

f(0) and reference predictors {gk}mk=1 as inputs, which we

obtain from Ind.

C) MTL
1: The last two baselines (MTL1 and MTL2)

implement adaptations of two existing multi-task learning

algorithms. MTL1 is based on Evgeniou and Pontil’s ap-

proach of penalizing the pair-wise parameter deviations [6].

Adapted to test time combination setting, MTL1 minimizes4

LMTL1(f)=

l∑

k=1

L([xi(k),xj(k)],f)

+λS‖w‖2+λ2
m∑

k=1

Wk‖w−wk‖2 (21)

where the weight parameters {Wk}mk=1 are defined

similarly as in our task graph Laplacian (Eq. 5):

Wk = exp(−‖w − wk‖2/σ2
w). The hyperparameters

λS , λ2, and σ2
w are tuned based on a validation set.5

4Many other existing MTL approaches, e.g. parameter matrix decompo-
sition approaches [8] and low-rank matrix learning algorithms [1], strictly
require simultaneous training, making them difficult to apply in the test-time
combination setting of improving a predictor given fixed references.

5Evgeniou and Pontil’s original algorithm assumes that all tasks are re-
lated and therefore uses uniform weights, i.e. Wk=1/m. Our preliminary
experiments demonstrated that the non-uniform version (Eq. 21) always
achieves higher accuracy indicating that not all tasks are equally relevant.
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Similarly to RankSVM, MTL1 can also construct non-linear

predictors using Gaussian kernels (with hyperparameter σ2
S).

D) MTL
2 adapts Pentina et al.’s curriculum learning

approach [19], which penalizes the deviation of the main

predictor parameter w from a single best reference predictor

wk. Pentina et al.’s original algorithm uses a bound on the

generalization accuracy to select the reference predictor,

which is not directly applicable to our rank learning problem.

Instead, validation accuracy is used to select the reference.

For all datasets, we ran ten experiments with different

training and validation set configurations and report the

average results.

3.2.2 Datasets

A) Public Figure Face (PubFig) dataset contains 800

images from 8 random identities [17]. Our goal is to

estimate a linear ordering of database images based on the

relative strengths of each of 11 different facial attributes

(Masculine-looking, White, Young, Smiling, Chubby,

Visible-forehead, Bushy-eyebrows Narrow-eyes, Pointy-nose,

Big-lips, and Round-face).

B) Outdoor Scene Recognition (OSR) dataset provides

2,688 images of 8 scene categories and 6 attributes [17].

We use a combination of GIST features and color

histograms for PubFig and GIST features for OSR. The

attribute rank labels are constructed from the category labels

as provided by the authors of [17]. For each attribute, we

improve the corresponding predictor using the predictors

of the remaining attributes as references.

C) Shoes dataset contains 14,658 images of 10 categories

and 10 attributes [11]. We use a combination of GIST

features and color histograms provided by the authors

of [11]. Our goal is to estimate the attribute rankings

similarly to PubFig and OSR settings. However, here

the datasets for the main and reference predictors are

disjoint and we explicitly estimate the bride variables using

additional 200 paired instances. As in this case TPC is not

applicable, we compare with MTL1 and MTL2.

D) Cal7 dataset contains 1,474 images of 7 categories (Face,

Motorbikes, Dolla-Bill, Garfield, Snoopy, Stop-Sign, and

Windor-Chair) as a subset of Caltech-101 dataset [7]. The

dataset provides five different feature representations per

image: wavelet, Gabor, CENTRIST, HOG, GIST, and LBP

features [14]. The goal is to estimate a linear database order-

ing according to the category of each entry. For each single

feature, we configured a corresponding main prediction task

and constructed reference predictors using the remaining

features. For each experiment, two disjoint feature sets for

the main and reference predictors, respectively are prepared

(roughly, half of the dataset was allocated for the main

and the rest were allocated for references) representing the

scenario where multiple predictions are generated based on

heterogeneous, decoupled feature observations. To estimate

the bridge variables, we use 200 coupled data instances as

a sample from the joint distribution P (f,g1,...,gm). As the

predictor variables are decoupled across tasks, TPC is not

applicable. Further, since the respective feature spaces and

the corresponding predictors are heterogeneous, (adaptations

of) classical parametric MTL approaches cannot be directly

applied. Therefore, we compare our algorithm with only

independent baselines (Ind).

E) NUS-WIDE-Object (NUS) dataset contains 30,000

images of 31 categories [3]. We use color histogram, color

moments, color correlation, edge distribution and wavelet

features as provided by the authors of [3] and [14].

F) Handwritten digits (HW) dataset provides 6 different

feature representations of 2,000 handwritten digits, each

represented by Fourier coefficients, profile correlations,

Karhunen-Loève coefficients, pixel averages in 2 × 3
windows, Zernike moment and morphological features [2].

Experimental settings for NUS and HW are identical to

Cal7. We use 200 paired data to learn bridge variables.

G) Animals With Attributes (AWA) dataset contains

30,475 images of 50 animal categories. We use the SURF,

SIFT and PHOG histograms and the features extracted

by pre-trained DeCAF [5] and VGG19 [21] networks as

provided by the authors of [13]. The experimental setting is

similar to those of Cal7-HW except that, here we explicitly

pair all data points across tasks enabling the application

of TPC. This toy setting constitutes the ideal case where

all reference predictors are inherently relevant in refining

the main predictor and it enables us to verify the correct

operation of TPC and our approach.

3.2.3 Results

Figure 3 summarizes the results. While not all target at-

tributes show marked improvements, TPC and our algorithm

consistently improve upon or are on par with Ind. Comparing

TPC and ours, the performances are almost identical on OSR.

For PubFig, the two algorithms demonstrated the comple-

mentary strengths across different target attributes, while our

algorithm achieves higher average accuracy. The correspond-

ing results on AWA are notably different: While TPC already

achieves better results than the baseline Ind, our algorithm

further improves accuracy by a large margin. In addition,

by virtue of the fast Eigen-decomposition-based approach

(Eq. 10) the runtime of our algorithm is around 20× shorter

than TPC: For AWA with 30,475 images, our algorithm took

around 0.2 seconds for the entire combination process. As

TPC requires fully coupled predictor evaluations, it cannot

be applied to Cal7, NUS, and HW datasets, in which our

algorithm continues to outperform Ind. For these datasets,

our algorithm demonstrates even better performance than

the best individual task predictors, which demonstrates the

utility of combining predictors across multiple features.

The two multi-task learning adaptations MTL1 and MTL2

to the test-time combination setting also showed measurable

performance improvement over Ind. In particular, they
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Figure 3. Average accuracy of different ranking algorithms (over 10 different training and test set configurations. Ind: best baseline

independent predictors; MTL1 and MTL2: adaptations of existing MLT algorithms ([6] and [19], respectively); TPC: Kim et al.’s test-time

predictor combination algorithm [10]. The length of each error bar corresponds to twice the standard deviation.

achieved the highest average accuracy on target attributes 2,

4, and 5 of the OSR dataset. On the other hand, for PubFig

and Shoes, our algorithm constantly outperformed these

algorithms demonstrating complementary strengths. As

both MTL1 and MTL2 require the parametric forms of all

predictors to be shared across different tasks, it is not straight-

forward to apply these algorithms when different tasks use

heterogeneous features (Cal7, NUS, and HW datasets).

4. Conclusion

In this paper, we have presented a new algorithm improv-

ing a given task predictor by combining multiple reference

predictors, each constructed from the respective tasks.

Conventional approaches require either all task predictor’s

known and shared parametric forms or multiple predictors’

evaluation on a single fixed dataset. We address these

limitations by formulating the problem as a non-parametric

task dependence estimation and by a robust joint diffusion

process that automatically couples the predictors of disjoint

data instances. This not only facilitates a new (decoupled,

parameter-free) predictor combination application but also

significantly improves the accuracy and run-time over

existing algorithms when applied to challenging relative

attributes ranking datasets.

Our manifold structure (Eq. 1) and metric therein (Eqs. 2–

3) are directly aligned with the case when the predictor

outputs are one-dimensional (e.g. ranking and regression

problems). When the output space is multi-dimensional

(e.g. multi-class classification), our metric structure needs

changing to align predictions of different dimensions.

We expect that this can be done by calculating canonical

correlations between the input pairs, but it would involve

non-trivial modifications.

Identifying data coupling across heterogeneous domains is

a challenging problem. This problem arises in the predictor

combination setting where different predictors are evaluated

on data instances sampled from multiple heterogeneous do-

mains. We attempted to address this challenge by estimating

soft couplings via a joint diffusion process propagating a

small set of coupled data points. An alternative possibility

that we have not explored in this work is to consider recent

label-free set pairing approaches, e.g. instantiated using

cyclic GANs [26]. This type of approach is not immediately

applicable to our setting as they do not generate explicit

pairings and, therefore, would require modifying the entire

task dependence measure and the corresponding denoising

process. Future work should explore this possibility.

7556



References

[1] A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task

feature learning. Machine Learning, 73(3), 2008. 1, 6

[2] C. L. Blake and C. J. Merz. UCI repository

of machine learning databases, 1998. https:

//archive.ics.uci.edu/ml. 7

[3] T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. NUS-

WIDE: a real-world web image database from National Uni-

versity of Singapore. In ACM CIVR, pages 48:1–48:9, 2009. 7

[4] C. Cortes, M. Mohri, and A. Rostamizadeh. Algorithms

for learning kernels based on centered alignment. JMLR,

13:795–828, 2012. 4

[5] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. DeCAF: a deep convolutional

activation feature for generic visual recognition. In ICML,

pages 647–655, 2014. 7

[6] T. Evgeniou and M. Pontil. Regularized multi–task learning.

In KDD, pages 109–117, 2004. 1, 6, 8

[7] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative

visual models from few training examples: An incremental

bayesian approach tested on 101 object categories. Computer

Vision and Image Understanding, 106(1):59–70, 2007. 7

[8] P. Gong, J. Ye, and C. Zhang. Robust multi-task feature

learning. In KDD, pages 895–903, 2012. 1, 6

[9] M. Hein and M. Maier. Manifold denoising. In NIPS, pages

561–568, 2007. 3, 5

[10] K. I. Kim, J. Tompkin, and C. Richardt. Predictor combination

at test time. In ICCV, pages 3553–3561, 2017. 1, 2, 3, 6, 8

[11] A. Kovashka, D. Parikh, and K. Grauman. Whittlesearch:

Image search with relative attribute feedback. In CVPR,

pages 2973–2980, 2012. 2, 7

[12] A. Kumar and H. Daumé III. Learning task grouping and

overlap in multi-task learning. In ICML, pages 1383–1390,

2012. 1

[13] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning

to detect unseen object classes by between-class attribute

transfer. In CVPR, pages 951–958, 2009. 7

[14] Y. Li, F. Nie, H. Huang, and J. Huang. Large-scale multi-view

spectral clustering via bipartite graph. In Proc. AAAI, pages

2750–2756, 2015. 7

[15] Y. Lu, L. Wang, J. Lu, J. Yang, and C. Shen. Multiple

kernel clustering based on centered kernel alignment. Pattern

Recogn., 47:3656–3664, 2014. 4

[16] Y. Luo, D. Tao, B. Geng, C. Xu, and S. J. Maybank. Manifold

regularized multitask learning for semi-supervised multilabel

image classification. IEEE TIP, 22(2):523–536, 2013. 1

[17] D. Parikh and K. Grauman. Relative attributes. In ICCV,

pages 503–510, 2011. 2, 6, 7

[18] A. Passos, P. Rai, J. Wainer, and H. Daumé III. Flexible

modeling of latent task structures in multitask learning. In

ICML, pages 1103–1110, 2012. 1

[19] A. Pentina, V. Sharmanska, and C. H. Lampert. Curriculum

learning of multiple tasks. In CVPR, pages 5492–5500, 2015.

1, 7, 8

[20] I. Redko and Y. Bennani. Kernel alignment for unsupervised

transfer learning,. In arXiv:1610.06434v1, 2016. 4

[21] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, page

arXiv:1409.1556, 2015. 7

[22] B. Wang and Z. Tu. Sparse subspace denoising for image

manifolds. In CVPR, pages 468–475, 2013. 3

[23] Y. Yan, E. Ricci, R. Subramanian, G. Liu, and N. Sebe.

Multitask linear discriminant analysis for view invariant

action recognition. IEEE TIP, 23(12):5599–5611, 2014. 1

[24] X. Yang, T. Zhang, C. Xu, S. Yan, M. S. Hossain, and

A. Ghoneim. Deep relative attributes. IEEE T-MM,

18(9):1832–1842, 2016. 2, 6

[25] L. W. Zhong and J. T. Kwok. Convex multitask learning with

flexible task clusters. In ICML, pages 49–56, 2012. 1

[26] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired

image-to-image translation using cycle-consistent adversarial

networks. In ICCV, pages 2223–2232, 2017. 8

7557


