

University of Birmingham

Modular specification of monads through higher-
order presentations
Ahrens, Benedikt; Hirschowitz, André ; Lafont, Ambroise; Maggesi, Marco

DOI:
10.4230/LIPIcs.FSCD.2019.6

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Ahrens, B, Hirschowitz, A, Lafont, A & Maggesi, M 2019, Modular specification of monads through higher-order
presentations. in H Geuvers (ed.), 4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019)., 6, Leibniz International Proceedings in Informatics, LIPIcs, vol. 131, Schloss Dagstuhl,
pp. 6:1-6:19, International Conference on Formal Structures for Computation and Deduction (FSCD 2019),
Dortmund, Germany, 24/06/19. https://doi.org/10.4230/LIPIcs.FSCD.2019.6

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 22/07/2019

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.4230/LIPIcs.FSCD.2019.6
https://doi.org/10.4230/LIPIcs.FSCD.2019.6
https://birmingham.elsevierpure.com/en/publications/0970dbcd-0e5a-42d5-bf1d-baa4290267fe

Modular Specification of Monads Through
Higher-Order Presentations
Benedikt Ahrens
University of Birmingham, United Kingdom
B.Ahrens@cs.bham.ac.uk

André Hirschowitz
Université Côte d’Azur, CNRS, LJAD, Nice, France
ah@unice.fr

Ambroise Lafont
IMT Atlantique, Inria, LS2N CNRS, Nantes, France
ambroise.lafont@inria.fr

Marco Maggesi
Università degli Studi di Firenze, Italy
marco.maggesi@unifi.it

Abstract
In their work on second-order equational logic, Fiore and Hur have studied presentations of simply
typed languages by generating binding constructions and equations among them. To each pair
consisting of a binding signature and a set of equations, they associate a category of “models”, and
they give a monadicity result which implies that this category has an initial object, which is the
language presented by the pair.

In the present work, we propose, for the untyped setting, a variant of their approach where
monads and modules over them are the central notions. More precisely, we study, for monads over
sets, presentations by generating (“higher-order”) operations and equations among them. We consider
a notion of 2-signature which allows to specify a monad with a family of binding operations subject
to a family of equations, as is the case for the paradigmatic example of the lambda calculus, specified
by its two standard constructions (application and abstraction) subject to β- and η-equalities. Such
a 2-signature is hence a pair (Σ,E) of a binding signature Σ and a family E of equations for Σ. This
notion of 2-signature has been introduced earlier by Ahrens in a slightly different context.

We associate, to each 2-signature (Σ, E), a category of “models of (Σ, E)”; and we say that a
2-signature is “effective” if this category has an initial object; the monad underlying this (essentially
unique) object is the “monad specified by the 2-signature”. Not every 2-signature is effective; we
identify a class of 2-signatures, which we call “algebraic”, that are effective.

Importantly, our 2-signatures together with their models enjoy “modularity”: when we glue
(algebraic) 2-signatures together, their initial models are glued accordingly.

We provide a computer formalization for our main results.

2012 ACM Subject Classification Theory of computation → Algebraic language theory

Keywords and phrases free monads, presentation of monads, initial semantics, signatures, syntax,
monadic substitution, computer-checked proofs

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.6

Supplement Material Computer-checked proofs with compilation instructions on https://github.
com/UniMath/largecatmodules/tree/50fd617.

Funding This work has partly been funded by the CoqHoTT ERC Grant 637339. This material
is based upon work supported by the Air Force Office of Scientific Research under award number
FA9550-17-1-0363.
Benedikt Ahrens: Ahrens acknowledges the support of the Centre for Advanced Study (CAS) in
Oslo, Norway, which funded and hosted the research project Homotopy Type Theory and Univalent
Foundations during the 2018/19 academic year.
Marco Maggesi: Supported by GNSAGA-INdAM and MIUR.

© Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 6; pp. 6:1–6:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6786-4538
mailto:B.Ahrens@cs.bham.ac.uk
https://orcid.org/0000-0003-2523-1481
mailto:ah@unice.fr
https://orcid.org/0000-0002-9299-641X
mailto:ambroise.lafont@inria.fr
https://orcid.org/0000-0003-4380-7691
mailto:marco.maggesi@unifi.it
https://doi.org/10.4230/LIPIcs.FSCD.2019.6
https://github.com/UniMath/largecatmodules/tree/50fd617
https://github.com/UniMath/largecatmodules/tree/50fd617
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Modular Specification of Monads Through Higher-Order Presentations

Acknowledgements We thank Paige R. North for a valuable hint regarding preservation of epi-
morphisms. We also thank the referees for their careful reading and thoughtful and constructive
criticism.

1 Introduction

The present work is devoted to the study of presentations of monads on the category of
sets. More precisely, there is a well established theory of presentations of monads through
generating (first-order) operations equipped with relations among the corresponding derived
operations. Here we propose a counterpart of this theory, where we consider generation of
monads by binding operations. Various algebraic structures generated by binding operations
have been considered by many, going back at least to Fiore, Plotkin, and Turi [10], Gabbay
and Pitts [12], and Hofmann [18]. Every such operation has a binding arity, which is a
sequence of non-negative integers. For example, the binding arity of the application operation
of the lambda calculus is (0, 0): it takes two arguments without binding any variable in them,
while the abstraction operation on the monad of the lambda calculus has binding arity (1),
as it binds one variable in its single argument. For each family Σ of binding arities, there is
a generated “free” monad Σ̂ on Set which maps a set of free variables X to the set of terms
Σ̂(X) taking variables in X.

If p : Σ̂→ R is a monad epimorphism, we understand that R is generated by a family
of operations whose binding arities are given by Σ, subject to suitable identifications. In
particular, for Σ := ((0, 0), (1)), Σ̂ may be understood as the monad LC of syntactic terms of
the lambda calculus, and we have an obvious epimorphism p : Σ̂→ LCβη, where LCβη is the
monad of lambda-terms modulo β and η. In order to manage such equalities, the approach
in the first-order case suggests to identify p as the coequalizer of a double arrow from T to Σ̂
where T is again a “free” monad. Let us see what comes out when we attempt to find such
an encoding for the β-equality of the monad LCβη. It should say that for each set X, the
following two maps from Σ̂(X + {∗})× Σ̂(X) to Σ̂(X),

(t, u) 7→ app(abs(t), u)
(t, u) 7→ t[∗ 7→ u]

are equal. Here a problem occurs, namely that the above collections of maps, which can
be understood as a morphism of functors, cannot be understood as a morphism of monads.
Notably, they do not send variables to variables.

On the other hand, we observe that the members of our equations, which are not
morphisms of monads, commute with substitution, and hence are more than morphisms of
functors: indeed they are morphisms of modules over Σ̂. (In Section 2, we recall briefly what
modules over a monad are.) Accordingly, a (second-order) presentation for a monad R could
be a diagram

T //

f
// Σ̂ p

// R (1)

where Σ is a binding signature, Σ̂ is the associated free monad, T is a module over Σ̂, f is
a pair of morphisms of modules over Σ̂, and p is a monad epimorphism. And now we are
faced with the task of finding a condition meaning something like “p is the coequalizer of f”1.
To this end, we introduce the category MonΣ “of models of Σ”, whose objects are monads
“equipped with an action of Σ”. Of course Σ̂ is equipped with such an action which turns it
into the initial object. Next, we define the full subcategory of models satisfying the equation

1 This cannot be the case stricto sensu since f is a pair of module morphisms while p is a monad morphism.

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:3

f , and require R to be the initial object therein. Our definition is suited for the case where
the equation f is parametric in the model: this means that now T and f are functions of the
model S, and f(S) = (u(S), v(S)) is a pair of S-module morphisms from T (S) to S. We say
that S satisfies the equation f if u(S) = v(S). Generalizing the case of one equation to the
case of a family of equations yields the notion of 2-signature already introduced by Ahrens
[1] in a slightly different context.

Now we are ready to formulate our main problem: given a 2-signature (Σ, E), where E is
a family of parametric equations as above, does the subcategory of models of Σ satisfying
the family of equations E admit an initial object?

We answer positively for a large subclass of 2-signatures which we call algebraic 2-
signatures (see Theorem 32).

This provides a construction of a monad from an algebraic 2-signature, and we prove
furthermore (see Theorem 27) that this construction is modular, in the sense that merging
two extensions of 2-signatures corresponds to building an amalgamated sum of initial models.
This is analogous to our previous result for 1-signatures shown in [2, Theorem 32].

As expected, our initiality property generates a recursion principle which is a recipe
allowing us to specify a morphism from the presented monad to any given other monad.

We give various examples of monads arising “in nature” that can be specified via an
algebraic 2-signature (see Section 6), and we also show through a simple example how our
recursion principle applies (see Section 7).

Computer-checked formalization. This work is accompanied by a computer-checked form-
alization of the main results, based on the formalization of our previous work [2]. We
work over the UniMath library [27], which is implemented in the proof assistant Coq
[23]. The formalization consists of about 9,500 lines of code, and can be consulted on
https://github.com/UniMath/largecatmodules. A guide is given in the README, and
a summary of our formalization is available at https://initialsemantics.github.io/
doc/50fd617/Modules.SoftEquations.Summary.html.

For the purpose of this article, we refer to a fixed version of our library, with the short
hash 50fd617. This version compiles with version 10839ee of UniMath.

Throughout the article, statements are annotated with their corresponding identifiers in
the formalization. These identifiers are also hyperlinks to the online documentation stored
at https://initialsemantics.github.io/doc/50fd617/index.html.

Related work. The present work follows a previous work of ours [2] where we study a
slightly different kind of presentation of monads. Specifically, in [2], we treat a class of
1-signatures which can be understood as quotients of algebraic 1-signatures. This should
amount to considering a specific kind of equations, as suggested in Section 6.2, where we
recover, in the current setting, all the examples given there.

Ahrens [1] introduces the notion of 2-signature which we consider here, in the slightly
different context of (relative) monads on preordered sets, where the preorder models the
reduction relation. In some sense, our result tackles the technical issue of quotienting the
initial (relative) monad constructed in [1] by the preorder.

In a classical paper, Barr [3] explained the construction of the “free monad” generated by
an endofunctor2. In another classical paper, Kelly and Power [19] explained how any finitary

2 Fiore and Saville [11] give an enlightening generalization of the construction by Barr.

FSCD 2019

https://github.com/UniMath/largecatmodules
https://github.com/UniMath/largecatmodules/blob/50fd617/README.md
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Summary.html
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Summary.html
https://github.com/UniMath/largecatmodules/tree/50fd6170bd37f706900494366c296a572facaa24
https://github.com/UniMath/UniMath/tree/10839eec83e48397b5544f249662d3b5d126b5cd
https://github.com/UniMath/UniMath
https://initialsemantics.github.io/doc/50fd617/index.html

6:4 Modular Specification of Monads Through Higher-Order Presentations

monad can be presented as a coequalizer of free monads3. There, free monads correspond to
our initial models of an algebraic 1-signature without any binding construction.

As mentioned above, the present work is also closely related to that of Fiore and
collaborators:

Our notion of equations and that of model for them seem very close to the notion of
equational systems and that of algebra for them in [7]: in particular, the preservation of
epimorphisms, which occurs in their construction of inductive free algebras for equational
systems, appears here in our definition of elementary equation. It would be interesting to
understand formal connections between the two approaches.
In [8], Fiore and Hur introduce a notion of equation based on syntax with meta-variables:
essentially, a specific syntax, say, T := T (M,X) considered there depends on two contexts:
a meta-context M , and an object-context X. The terms of the actual syntax are then
those terms t ∈ T (∅, X) in an empty meta-context. An equation for T is, simply speaking,
a pair of terms in the same pair of contexts. Transferring an equation to any model of the
underlying algebraic 1-signature is done by induction on the syntax with meta-variables.
The authors show a monadicity theorem which straightforwardly implies an initiality
result very similar to ours. That monadicity result is furthermore an instance of a more
general theorem by Fiore and Mahmoud [9, Theorem 6.2].
Translations between languages similar to the translation we present in Section 7 are also
studied in [9]. Here again, it would be interesting to understand formal connections.
At this stage, our work only concerns untyped syntax, but we anticipate it will generalize
to the sorted setting as in [8] (see also the more general [6]).

Furthermore, Hamana [15] proposes initial algebra semantics for “binding term rewriting
systems”, based on Fiore, Plotkin, and Turi’s presheaf semantics of variable binding and
Lüth and Ghani’s monadic semantics of term rewriting systems [21].

The alternative nominal approach to binding syntax initiated by Gabbay and Pitts [12]
has been actively studied4. We highlight some contributions:

Clouston [4] discusses signatures, structures (a.k.a. models), and equations over signatures
in nominal style.
Fernández and Gabbay [5] study signatures and equational theories as well as rewrite
theories over signatures.
Kurz and Petrisan [20] study closure properties of subcategories of algebras under
quotients, subalgebras, and products. They characterize full subcategories closed under
these operations as those that are definable by equations. They also show that the
signature of the lambda calculus is effective, and study the subcategory of algebras of
that signature specified by the β- and η-equations.

2 Categories of modules over monads

In this section, we recall the notions of monad and module over a monad, as well as some
constructions of modules. We restrict our attention to the category Set of sets, although most
definitions are straightforwardly generalizable. See [17] for a more extensive introduction.

A monad (over Set) is a triple R = (R,µ, η) given by a functor R : Set −→ Set, and
two natural transformations µ : R · R −→ R and η : I −→ R such that the well-known
monadic laws hold. A monad morphism to another such monad (R′, µ′, η′) is a natural

3 Their work has been applied to various more general contexts (e.g. [25]).
4 The approaches by Fiore and collaborators and Gabbay and Pitts [12] are nicely compared by Power

[24], who also comments on some generalization of the former approach.

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:5

transformation f : R → R′ that commutes with the monadic structure. The category of
monads is denoted by Mon.

Let R be a monad. A (left) R-module5 is given by a functor M : Set −→ Set equipped
with a natural transformation ρ : M ·R −→M , called module substitution, which is compatible
with the monad composition and identity:

ρ ◦ ρR = ρ ◦Mµ, ρ ◦Mη = 1M .

Let f : R −→ S be a morphism of monads and M an S-module. The module substitution
M ·R Mf−→M · S ρ−→M turns M into an R-module f∗M , called pullback of M along f .

A natural transformation of R-modules ϕ : M −→ N is linear if it is compatible with
module substitution on either side, that is, if ϕ ◦ ρM = ρN ◦ ϕR. Modules over R and their
morphisms form a category denoted Mod(R), which is complete and cocomplete: limits and
colimits are computed pointwise.

We define the total module category
∫
R

Mod(R) as follows: its objects are pairs (R,M)
of a monad R and an R-moduleM . A morphism from (R,M) to (S,N) is a pair (f,m) where
f : R −→ S is a morphism of monads, and m : M −→ f∗N is a morphism of R-modules.
The category

∫
R

Mod(R) comes equipped with a forgetful functor to the category of monads,
given by the projection (R,M) 7→ R. This functor is a Grothendieck fibration with fiber
Mod(R) over R. In particular, any monad morphism f : R −→ S gives rise to a functor
f∗ : Mod(S) −→ Mod(R) which preserves limits and colimits.

I Example 1. We give some important examples of modules:
1. Every monad R is a module over itself, which we call the tautological module.
2. For any functor F : Set −→ Set and any R-module M : Set −→ Set, the composition

F ·M is an R-module (in the evident way).
3. For every set W we denote by W : Set −→ Set the constant functor W := X 7→W . Then

W is trivially an R-module since W = W ·R.
4. Given an R-module M , the R-module M ′ is defined on objects by M ′(X) := M(X+{∗}),

and with the obvious module structure. Derivation yields an endofunctor on Mod(R)
that is right adjoint to the functor M 7→M ×R, “product with the tautological module”.
Details are given, e.g., in [2, Section 2.3].

5. Derivation can be iterated. Given a list of non negative integers (a) = (a1, . . . , an)
and a left module M over a monad R, we denote by M (a) = M (a1,...,an) the module
M (a1) × · · · ×M (an), with M () = 1 the final module.

3 1-signatures and their models

In this section, we review the notion of 1-signature studied in detail in [2] – there only called
“signature”.

A 1-signature is a section of the forgetful functor from the category
∫
R

Mod(R) to the
category Mon. A morphism between two 1-signatures Σ1,Σ2 : Mon −→

∫
R

Mod(R)
is a natural transformation m : Σ1 −→ Σ2 which, post-composed with the projection∫
R

Mod(R) −→ Mon, is the identity. The category of 1-signatures is denoted by 1-Sig.
Limits and colimits of 1-signatures can be easily constructed pointwise: the category of

1-signatures is complete and cocomplete.

5 The analogous notion of right R-module is not used in this work, we hence simply write “R-module”
instead of “left R-module” for brevity.

FSCD 2019

6:6 Modular Specification of Monads Through Higher-Order Presentations

Table 1 Examples of 1-signatures.

Hypotheses On objects Notation of the 1-signature
R 7→ R Θ

Σ 1-signature, F functor R 7→ F · Σ(R) F · Σ
R 7→ 1R 1

Σ, Ψ 1-signatures R 7→ Σ(R)×Ψ(R) Σ×Ψ
Σ, Ψ 1-signatures R 7→ Σ(R) + Ψ(R) Σ + Ψ

R 7→ R′ Θ′

n ∈ N R 7→ R(n) Θ(n)

(a) = (a1, . . . , an) ∈ Nn R 7→ R(a) = R(a1) × . . .×R(an) Θ(a) elementary signatures

Table 1 lists important examples of 1-signatures. An algebraic 1-signature is a (possibly
infinite) coproduct of elementary signatures (defined in Table 1). For instance, the algebraic
1-signature of the lambda calculus is ΣLC = Θ2 + Θ′.

Given a monad R over Set, we define an action of the 1-signature Σ in R to be a
module morphism from Σ(R) to R. For example, the application app : LC2 −→ LC is an
action of the elementary 1-signature Θ2 into the monad LC of syntactic lambda calculus.
The abstraction abs : LC′ −→ LC is an action of the elementary 1-signature Θ′ into the
monad LC. Then [app, abs] : LC2 + LC′ −→ LC is an action of the algebraic 1-signature of
the lambda-calculus Θ2 + Θ′ into the monad LC.

Given a 1-signature Σ, we build the category MonΣ of models of Σ as follows. Its objects
are pairs (R, r) of a monad R equipped with an action r : Σ(R) → R of Σ. A morphism
from (R, r) to (S, s) is a morphism of monads m : R→ S making the following diagram of
R-modules commutes:

Σ(R) r //

Σ(m)
��

R

m

��

m∗(Σ(S))
m∗s

// m∗S

Let f : Σ −→ Ψ be a morphism of 1-signatures and R = (R, r) a model of Ψ. The linear
morphism Σ(R) f(R)−→ Ψ(R) r−→ R defines an action of Σ in R. The induced model of Σ is
called pullback of R along f and noted f∗R.

The total category
∫

Σ MonΣ of models is defined as follows:
An object of

∫
Σ MonΣ is a triple (Σ, R, r) where Σ is a 1-signature, R is a monad, and r

is an action of Σ in R.
A morphism in

∫
Σ MonΣ from (Σ1, R1, r1) to (Σ2, R2, r2) consists of a pair (i,m) of a

1-signature morphism i : Σ1 −→ Σ2 and a morphism m of Σ1-models from (R1, r1) to
(R2, i

∗(r2)).
The forgetful functor

∫
Σ MonΣ → Sig is a Grothendieck fibration.

Given a 1-signature Σ, the initial object in MonΣ, if it exists, is denoted by Σ̂. In this
case, the 1-signature Σ is said effective6.

I Theorem 2 ([16, Theorems 1 and 2]). Algebraic 1-signatures are effective.

6 In our previous work [2], we call representable any 1-signature Σ that has an initial model, called a
representation of Σ, or syntax generated by Σ.

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:7

4 2-Signatures and their models

In this section we study 2-signatures and models of 2-signatures. A 2-signature is a pair of a
1-signature and a family of equations over it.

4.1 Equations

Our equations are those of Ahrens [1]: they are parallel module morphisms parametrized by
the models of the underlying 1-signature. The underlying notion of 1-model is essentially the
same as in [1], even if, there, such equations are interpreted instead as inequalities.

Throughout this subsection, we fix a 1-signature Σ, that we instantiate in the examples.

I Definition 3. We define a Σ-module to be a functor T from the category of models of
Σ to the category

∫
R

Mod(R) commuting with the forgetful functors to the category Mon of
monads,

MonΣ

##

T //
∫
R

Mod(R)

yy

Mon

I Example 4. To each 1-signature Ψ is associated, by precomposition with the projection
from MonΣ to Mon, a Σ-module still denoted Ψ. All the Σ-modules occurring in this work
arise in this way from 1-signatures; in other words, they do not depend on the action of the
1-model. In particular, we have the tautological Σ-module Θ, and, more generally, for
any natural number n ∈ N, a Σ-module Θ(n). Also we have another fundamental Σ-module
(arising in this way from) Σ itself.

I Definition 5. Let S and T be Σ-modules. We define a morphism of Σ-modules from S

to T to be a natural transformation from S to T which becomes the identity when postcomposed
with the forgetful functor

∫
R

Mod(R)→ Mon.

I Example 6. Each 1-signature morphism Ψ→ Φ upgrades into a morphism of Σ-modules.
Further in that vein, there is a morphism of Σ-modules τΣ : Σ→ Θ. It is given, on a model
(R,m) of Σ, by m : Σ(R)→ R. (Note that it does not arise from a morphism of 1-signatures.)
When the context is clear, we write simply τ for this morphism, and call it the tautological
morphism of Σ-modules.

I Proposition 7. Our Σ-modules and their morphisms, with the obvious composition and
identity, form a category.

I Definition 8. We define a Σ-equation to be a pair of parallel morphisms of Σ-modules.
We also write e1 = e2 for the Σ-equation e = (e1, e2).

I Example 9 (Commutativity of a binary operation). Here we instantiate our fixed 1-signature
as follows: Σ := Θ×Θ. In this case, we say that τ is the (tautological) binary operation.
Now we can formulate the usual law of commutativity for this binary operation.

We consider the morphism of 1-signatures swap : Θ2 −→ Θ2 that exchanges the two
components of the direct product. Again by Example 6, we have an induced morphism of
Σ-modules, still denoted swap.

FSCD 2019

6:8 Modular Specification of Monads Through Higher-Order Presentations

Then, the Σ-equation for commutativity is given by the two morphisms of Σ-modules

Θ2 swap
// Θ2 τ // Θ

Θ2
τ

// Θ

See also Section 6.1 where we explain in detail the case of monoids.

For the example of the lambda calculus with β- and η-equality (given in Example 11), we
need to introduce currying:

I Definition 10. By abstracting over the base monad R the adjunction in the category of
R-modules of Example 1, item 4, we can perform currying of morphisms of 1-signatures:
given a morphism of signatures Σ1 × Θ → Σ2 it produces a new morphism Σ1 → Σ′2. By
Example 4, currying acts also on morphisms of Σ-modules.

Conversely, given a morphism of 1-signatures (resp. Σ-modules) Σ1 → Σ′2, we can define
the uncurryied map Σ1 ×Θ→ Σ2.

I Example 11 (β- and η-conversions). Here we instantiate our fixed 1-signature as follows:
ΣLC := Θ×Θ + Θ′. This is the 1-signature of the lambda calculus. We break the tautological
Σ-module morphism into its two pieces, namely app := τ ◦ inl : Θ×Θ −→ Θ and abs := τ ◦ inr :
Θ′ −→ Θ. Applying currying to app yields the morphism app1 : Θ −→ Θ′ of ΣLC-modules.
The usual β and η relations are implemented in our formalism by two ΣLC-equations that we
call eβ and eη respectively:

eβ :
Θ′ abs // Θ

app1 // Θ′

Θ′
1

// Θ′
and eη :

Θ
app1 // Θ′ abs // Θ

Θ
1

// Θ

4.2 2-signatures and their models
I Definition 12. A 2-signature is a pair (Σ, E) of a 1-signature Σ and a family E of
Σ-equations.

I Example 13. The 2-signature for a commutative binary operation is (Θ2, τ ◦ swap = τ)
(cf. Example 9).

I Example 14. The 2-signature of the lambda calculus modulo β- and η-equality is ΥLCβη =
(Θ×Θ + Θ′, {eβ , eη}), where eβ , eη are the ΣLC-equations defined in Example 11.

I Definition 15 (satisfies_equation). We say that a model M of Σ satisfies the Σ-
equation e = (e1, e2) if e1(M) = e2(M). If E is a family of Σ-equations, we say that a
model M of Σ satisfies E if M satisfies each Σ-equation in E.

I Definition 16. Given a monad R and a 2-signature Υ = (Σ, E), an action of Υ in R is
an action of Σ in R such that the induced 1-model satisfies all the equations in E.

I Definition 17 (category_model_equations). For a 2-signature (Σ, E), we define the
category Mon(Σ,E) of models of (Σ, E) to be the full subcategory of the category of models
of Σ whose objects are models of Σ satisfying E, or equivalently, monads equipped with an
action of (Σ, E).

I Example 18. A model of the 2-signature ΥLCβη = (Θ×Θ+Θ′, {eβ , eη}) is given by a model
(R, appR : R × R → R, absR : R′ → R) of the 1-signature ΣLC such that appR1 · absR = 1R′
and absR · appR1 = 1R (see Example 11).

https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Equation.html#satisfies_equation
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Equation.html#category_model_equations

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:9

I Definition 19. A 2-signature (Σ, E) is said to be effective if its category of models
Mon(Σ,E) has an initial object, denoted (̂Σ, E).

In Section 4.4, we aim to find sufficient conditions for a 2-signature (Σ, E) to be effective.

4.3 Modularity for 2-signatures
In this section, we define the category 2Sig of 2-signatures and the category 2Mod of models
of 2-signatures, together with functors that relate them with the categories of 1-signatures
and 1-models. The situation is summarized in the commutative diagram of functors

2Mod
UMod

((

FMod

hh >

2π

��

Mod

π

��

2Sig
USig

((

FSig

hh > Sig

where
2π is a Grothendieck fibration;
π is the Grothendieck fibration defined in [2, Section 5.2];
USig is a coreflection and preserves colimits; and
UMod is a coreflection.

As a simple consequence of this data, we obtain, in Theorem 27, a modularity result in
the sense of Ghani, Uustalu, and Hamana [13]: it explains how the initial model of an
amalgamated sum of 2-signatures is the amalgamation of the initial model of the summands7.

We start by defining the category 2Sig of 2-signatures:

I Definition 20 (TwoSig_category). Given 2-signatures (Σ1, E1) and (Σ2, E2), a morph-
ism of 2-signatures from (Σ1, E1) to (Σ2, E2) is a morphism of 1-signatures m : Σ1 →
Σ2 such that for any model M of Σ2 satisfying E2, the Σ1-model m∗M satisfies E1.

These morphisms, together with composition and identity inherited from 1-signatures,
form the category 2Sig.

We now study the existence of colimits in 2Sig. We know that Sig is cocomplete, and we
use this knowledge in our study of 2Sig, by relating the two categories:

Let FSig : Sig → 2Sig be the functor which associates to any 1-signature Σ the empty
family of equations, FSig(Σ) := (Σ, ∅). Call USig : 2Sig→ Sig the forgetful functor defined on
objects as USig(Σ, E) := Σ.

I Lemma 21 (TwoSig_OneSig_is_right_adjoint, OneSig_TwoSig_fully_faithful). We
have FSig a USig. Furthermore, USig is a coreflection.

We are interested in specifying new languages by “gluing together” simpler ones. On the
level of 2-signatures, this is done by taking the coproduct, or, more generally, the pushout of
2-signatures:

7 As noticed by an anonymous referee, this definition of “modularity” does not seem related to the specific
meaning it has in the rewriting community (see, for example, [14]).

FSCD 2019

https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#TwoSig_category
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#TwoSig_OneSig_is_right_adjoint
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#OneSig_TwoSig_fully_faithful

6:10 Modular Specification of Monads Through Higher-Order Presentations

I Theorem 22 (TwoSig_PushoutsSET). The category 2Sig has pushouts.

Coproducts are computed by taking the union of the equations and the coproducts of
the underlying 1-signatures. Coequalizers are computed by keeping the equations of the
codomain and taking the coequalizer of the underlying 1-signatures. Thus, by decomposing
any colimit into coequalizers and coproducts, we have this more general result:

I Proposition 23. The category 2Sig is cocomplete and USig preserves colimits.

We now turn to our modularity result, which states that the initial model of a coproduct
of two 2-signatures is the coproduct of the initial models of each 2-signature. More generally,
the two languages can be amalgamated along a common “core language”, by considering a
pushout rather than a coproduct.

For a precise statement of that result, we define a “total category of models of 2-signatures”:

I Definition 24. The category
∫

(Σ,E) Mon(Σ,E), or 2Mod for short, has, as objects, pairs
((Σ, E),M) of a 2-signature (Σ, E) and a model M of (Σ, E).

A morphism from ((Σ1, E1),M1) to ((Σ2, E2),M2) is a pair (m, f) consisting of a morph-
ism m : (Σ1, E1)→ (Σ2, E2) of 2-signatures and a morphism f : M1 → m∗M2 of (Σ1, E1)-
models (or, equivalently, of Σ1-models).

This category of models of 2-signatures contains the models of 1-signatures as a coreflective
subcategory. Let FMod : Mod→ 2Mod be the functor which associates to any 1-model (Σ,M)
the empty family of equations, FMod(Σ,M) := (FSig(Σ),M). Conversely, the forgetful functor
UMod : 2Mod→ Mod maps ((Σ, E),M) to (Σ,M).

I Lemma 25 (TwoMod_OneMod_is_right_adjoint, OneMod_TwoMod_fully_faithful). We
have FMod a UMod. Furthermore, UMod is a coreflection.

The modularity result is a consequence of the following technical result:

I Proposition 26 (TwoMod_cleaving). The forgetful functor 2π : 2Mod→ 2Sig is a Grothen-
dieck fibration.

The modularity result below is analogous to the modularity result for 1-signatures [2,
Theorem 32]:

I Theorem 27 (Modularity for 2-signatures, pushout_in_big_rep). Suppose we have a
pushout diagram of effective 2-signatures, as on the left below. This pushout gives rise to
a commutative square of morphisms of models in 2Mod as on the right below, where we
only write the second components, omitting the (morphisms of) signatures. This square is a
pushout square.

Υ0 //

��

Υ1

��

Υ2 // Υ
p

Υ̂0 //

��

Υ̂1

��

Υ̂2 // Υ̂
p

Intuitively, the 2-signatures Υ1 and Υ2 specify two extensions of the 2-signature Υ0, and Υ
is the smallest extension containing both these extensions. By Theorem 27 the initial model
of Υ is the “smallest model containing both the languages generated by Υ1 and Υ2”.

https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#TwoSig_PushoutsSET
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#TwoMod_OneMod_is_right_adjoint
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#OneMod_TwoMod_fully_faithful
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#TwoMod_cleaving
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Modularity.html#pushout_in_big_rep

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:11

4.4 Initial Semantics for 2-Signatures
We now turn to the problem of constructing the initial model of a 2-signature (Σ, E). More
specifically, we identify sufficient conditions for (Σ, E) to admit an initial object (̂Σ, E) in
the category of models. Our approach is very straightforward: we seek to construct (̂Σ, E)
by applying a suitable quotient construction to the initial object Σ̂ of MonΣ.

This leads immediately to our first requirement on (Σ, E), which is that Σ must be an
effective 1-signature. (For instance, we can assume that Σ is an algebraic 1-signature, see
Theorem 2.) This is a very natural hypothesis, since in the case where E is the empty family
of Σ-equations, it is obviously a necessary and sufficient condition.

Some Σ-equations are never satisfied. In that case, the category Mon(Σ,E) is empty. For
example, given any 1-signature Σ, consider the Σ-equation inl, inr : Θ ⇒ Θ + Θ given by
the left and right inclusion. This is obviously an unsatisfiable Σ-equation. We have to find
suitable hypotheses to rule out such unsatisfiable Σ-equations. This motivates the notion of
elementary equations.

IDefinition 28. Given a 1-signature Σ, a Σ-module S is nice if S sends pointwise epimorphic
Σ-model morphisms to pointwise epimorphic module morphisms.

I Definition 29 (elementary_equation). Given a 1-signature Σ, an elementary Σ-
equation is a Σ-equation such that

the target is a finite derivative of the tautological 2-signature Θ, i.e., of the form Θ(n) for
some n ∈ N, and
the source is a nice Σ-module.

I Example 30 (BindingSigAreEpiSig). Any algebraic 1-signature is nice [2, Example 45].
Thus, any Σ-equation between an algebraic 1-signature and Θ(n), for some natural number
n, is elementary.

I Definition 31. A 2-signature (Σ, E) is said algebraic if Σ is algebraic and E is a family
of elementary equations.

I Theorem 32 (elementary_equations_on_alg_preserve_initiality). Any algebraic
2-signature has an initial model.

The proof of Theorem 32 is given in Section 5.

I Example 33. The 2-signature of lambda calculus modulo β and η equations given in
Example 14 is algebraic. Its initial model is precisely the monad LCβη of lambda calculus
modulo βη equations.

The instantiation of the formalized Theorem 32 to this 2-signature is done in LCBetaEta8.

Let us mention finally that, using the axiom of choice, we can take a similar quotient on
all the 1-models of Σ:

I Proposition 34 (ModEq_Mod_is_right_adjoint, ModEq_Mod_fully_faithful). Here we
assume the axiom of choice. The forgetful functor from the category Mon(Σ,E) of 2-models
of (Σ, E) to the category MonΣ of Σ-models has a left adjoint. Moreover, the left adjoint
is a reflector.

8 An initiality result for this particular case was also previously discussed and proved formally in the Coq
proof assistant in [17].

FSCD 2019

https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.quotientequation.html#elementary_equation
https://initialsemantics.github.io/doc/50fd617/Modules.Signatures.BindingSig.html#BindingSigAreEpiSig
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.AdjunctionEquationRep.html#elementary_equations_on_alg_preserve_initiality
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Examples.LCBetaEta.html#LCBetaEta
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.AdjunctionEquationRep.html#ModEq_Mod_is_right_adjoint
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Equation.html#ModEq_Mod_fully_faithful

6:12 Modular Specification of Monads Through Higher-Order Presentations

5 Proof of Theorem 32

Our main technical result on effectiveness is the following Lemma 35. In Theorem 32, we
give a much simpler criterion that encompasses all the examples we give.

The main technical result is encapsulated in the following lemma.

I Lemma 35 (elementary_equations_preserve_initiality). Let (Σ, E) be a 2-signature
such that:
1. Σ sends epimorphic natural transformations to epimorphic natural transformations,
2. E is a family of elementary equations,
3. the initial 1-model of Σ exists,
4. the initial 1-model of Σ preserves epimorphisms,
5. the image by Σ of the initial 1-model of Σ preserves epimorphisms.
Then, the category of 2-models of (Σ, E) has an initial object.

Before tackling the proof of Lemma 35, we discuss how to derive Theorem 32 from it,
and we prove some auxiliary results.

We start with a lemma about preservation of epimorphisms:

I Lemma 36 (algebraic_model_Epi and BindingSig_on_model_isEpi). Let Σ be an al-
gebraic 1-signature. Then Σ̂ and Σ(Σ̂) preserve epimorphisms.

Now we have everything we need to prove Theorem 32:

Proof of Theorem 32. The “epimorphism” hypotheses of Lemma 35 are used to transfer
structure from the initial model Σ̂ of the 1-signature Σ onto a suitable quotient. There are
different ways to prove these hypotheses:

The axiom of choice implies conditions 4 and 5 since, in this case, any epimorphism in
Set is split and thus preserved by any functor.
Condition 5 is a consequence of condition 4 if Σ sends monads preserving epimorphisms
to modules preserving epimorphisms.
If Σ is algebraic, then conditions 1, 3, 4 and 5 are satisfied, cf. Example 30 and Lemma 36.

From the remarks above, we derive the simpler and weaker statement of Theorem 32 that
covers all our examples, which are algebraic. J

The rest of this section is dedicated to the proof of the main technical result, Lemma 35.
The reader inclined to do so may safely skip this part, and rely on the correctness of the
machine-checked proof instead.

The proof of Lemma 35 uses some quotient constructions that we present now:

I Proposition 37 (u_monad_def). Given a monad R preserving epimorphisms and a collec-
tion of monad morphisms (fi : R→ Si)i∈I , there exists a quotient monad R/(fi) together
with a projection pR : R −→ R/(fi), which is a morphism of monads such that each fi factors
through p.

Proof. The set R/(fi)(X) is computed as the quotient of R(X) with respect to the relation
x ∼ y if and only if fi(x) = fi(y) for each i ∈ I. This is a straightforward adaptation of
Lemma 47 of [2]. J

Note that the epimorphism preservation is implied by the axiom of choice, but can be
proven for the monad underlying the initial model Σ̂ of an algebraic 1-signature Σ even
without resorting to the axiom of choice.

The above construction can be transported on Σ-models:

https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.AdjunctionEquationRep.html#elementary_equations_preserve_initiality
https://initialsemantics.github.io/doc/50fd617/Modules.Signatures.BindingSig.html#algebraic_model_Epi
https://initialsemantics.github.io/doc/50fd617/Modules.Signatures.BindingSig.html#BindingSig_on_model_isEpi
https://initialsemantics.github.io/doc/50fd617/Modules.Prelims.quotientmonadslice.html#u_monad_def

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:13

I Proposition 38 (u_rep_def). Let Σ be a 1-signature sending epimorphic natural transform-
ations to epimorphic natural transformations, and let R be a Σ-model such that R and Σ(R)
preserve epimorphisms. Let (fi : R→ Si)i∈I be a collection of Σ-model morphisms. Then the
monad R/(fi) has a natural structure of Σ-model and the quotient map pR : R −→ R/(fi) is
a morphism of Σ-models. Any morphism fi factors through pR in the category of Σ-models.

The fact that R and Σ(R) preserve epimorphisms is implied by the axiom of choice. The
proof follows the same line of reasoning as the proof of Proposition 37.

Now we are ready to prove the main technical lemma:

Proof of Lemma 35. Let Σ be an effective 1-signature, and let E be a set of elementary
Σ-equations. The plan of the proof is as follows:
1. Start with the initial model (Σ̂, σ), with σ : Σ(Σ̂)→ Σ̂.
2. Construct the quotient model Σ̂/(fi) according to Proposition 38 where (fi : Σ̂→ Si)i is

the collection of all initial Σ-morphisms from Σ̂ to any Σ-model satisfying the equations.
We denote by σ/(fi) : Σ(Σ̂/(fi))→ Σ̂/(fi) the action of the quotient model.

3. Given a model M of the 2-signature (Σ, E), we obtain a morphism iM : Σ̂/(fi) → M

from Proposition 38. Uniqueness of iM is shown using epimorphicity of the projection
p : Σ̂→ Σ̂/(fi). For this, it suffices to show uniqueness of the composition iM ◦p : Σ̂→M

in the category of 1-models of Σ, which follows from initiality of Σ̂.
4. The verification that

(
Σ̂/(fi), σ/(fi)

)
satisfies the equations is given below. Actually, it

follows the same line of reasoning as in the proof of Proposition 37 that Σ̂/(fi) satisfies
the monad equations.

Let e = (e1, e2) : U → Θ(n) be an elementary equation of E. We want to prove that the two
arrows

e1,Σ̂/(fi), e2,Σ̂/(fi) : U(Σ̂/(fi)) −→ (Σ̂/(fi))(n)

are equal. As p is an epimorphic natural transformation, U(p) also is by definition of an
elementary equation. It is thus sufficient to prove that

e1,Σ̂/(fi) ◦ U(p) = e2,Σ̂/(fi) ◦ U(p) ,

which, by naturality of e1 and e2, is equivalent to p(n) ◦ e1,Σ̂ = p(n) ◦ e2,Σ̂.
Let x be an element of U(Σ̂) and let us show that p(n)(e1,Σ̂(x)) = p(n)(e2,Σ̂(x)). By

definition of Σ̂/(fi) as a pointwise quotient (see Proposition 37), it is enough to show that
for any j, the equality f (n)

j (e1,Σ̂(x)) = f
(n)
j (e2,Σ̂(x)) is satisfied. Now, by naturality of e1

and e2, this equation is equivalent to e1,Sj (U(fj)(x))) = e2,Sj (U(fj)(x))) which is true since
Sj satisfies the equation e1 = e2. J

6 Examples of algebraic 2-signatures

We already illustrated our theory by looking at the paradigmatic case of lambda calculus
modulo β- and η-equations (Examples 11 and 33). This section collects further examples of
application of our results.

In our framework, complex signatures can be built out of simpler ones by taking their
coproducts. Note that the class of algebraic 2-signatures encompasses the algebraic 1-
signatures and is closed under arbitrary coproducts: the prototypical examples of algebraic
2-signatures given in this section can be combined with any other algebraic 2-signature,
yielding an effective 2-signature thanks to Theorem 32.

FSCD 2019

https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.quotientrepslice.html#u_rep_def

6:14 Modular Specification of Monads Through Higher-Order Presentations

6.1 Monoids
We begin with an example of monad for a first-order syntax with equations. Given a set
X, we denote by M(X) the free monoid built over X. This is a classical example of monad
over the category of (small) sets. The monoid structure gives us, for each set X, two maps
mX : M(X)×M(X) −→M(X) and eX : 1 −→M(X) given by the product and the identity
respectively. It can be easily verified that m : M2 −→ M and e : 1 −→ M are M -module
morphisms. In other words, (M,ρ) = (M, [m, e]) is a model of the 1-signature Σ = Θ×Θ + 1.

We break the tautological morphism of Σ-modules (cf. Example 6) into constituent pieces,
defining m := τ ◦ inl : Θ×Θ→ Θ and e := τ ◦ inr : 1→ Θ.

Over the 1-signature Σ we specify equations postulating associativity and left and right
unitality as follows:

Θ3 Θ×m
// Θ2 m // Θ

Θ3
m×Θ

// Θ2
m
// Θ

Θ e×Θ
// Θ2 m // Θ

Θ
1

// Θ
Θ Θ×e

// Θ2 m // Θ
Θ

1
// Θ

and we denote by E the family consisting of these three Σ-equations. All are elementary
since their codomain is Θ, and their domain a product of Θs.

One checks easily that (M, [m, e]) is the initial model of (Σ, E).
Several other classical (equational) algebraic theories, such as groups and rings, can be

treated similarly, see Section 6.3 below. However, at the present state we cannot model
theories with partial construction (e.g., fields).

6.2 Colimits of algebraic 2-signatures
In this section, we argue that our framework encompasses any colimit of algebraic 2-signatures.

Actually, the class of algebraic 2-signatures is not stable under colimits, as this is not
even the case for algebraic 1-signatures. However, we can weaken this statement as follows:

I Proposition 39. Given any colimit of algebraic 2-signatures, there is an algebraic 2-
signature yielding an isomorphic category of models.

Proof. As the class of algebraic 2-signatures is closed under arbitrary coproducts, using
the decomposition of colimits into coproducts and coequalizers, any colimit Ξ of algebraic
2-signatures can be expressed as a coequalizer of two morphisms f, g between some algebraic
2-signatures (Σ1, E1) and (Σ2, E2),

(Σ1, E1)
f
//

g
// (Σ2, E2) p

// Ξ = (Σ3, E2) .

where Σ3 is the coequalizer of the 1-signatures morphisms f and g. Note that the set of
equations of Ξ is E2, by definition of the coequalizer in the category of 2-signatures. Now,
consider the algebraic 2-signature Ξ′ = (Σ2, E2 + (2)) consisting of the 1-signature Σ2 and
the equations of E2 plus the following elementary equation (see Example 30):

Σ1
f
// Σ2

τΣ2
// Θ

Σ1 g
// Σ2

τΣ2
// Θ

(2)

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:15

We show that MonΞ and MonΞ′ are isomorphic. A model of Ξ′ is a monad R together with
an R-module morphism r : Σ2(R)→ R such that r ◦ fR = r ◦ gR and that the equations of
E2 are satisfied. By universal property of the coequalizer, this is exactly the same as giving
an R-module morphism Σ3(R)→ R satisfying the equations of E2, i.e., giving R an action
of Ξ = (Σ3, E2).

It is straightforward to check that this correspondence yields an isomorphism between
the category of models of Ξ and the category of models of Ξ′. J

This proposition, together with the following corollary, allow us to recover all the examples
presented in [2], as colimits of algebraic 1-signatures: syntactic commutative binary operator,
maximum operator, application à la differential lambda calculus, syntactic closure operator,
integrated substitution operator, coherent fixpoint operator.

I Corollary 40. If F is a finitary endofunctor on Set, then there is an algebraic 2-signature
whose category of models is isomorphic to the category of 1-models of the 1-signature F ·Θ.

Proof. It is enough to prove that F ·Θ is a colimit of algebraic 1-signatures.
As F is finitary, it is isomorphic to the coend

∫ n∈N
F (n) × _n where N is the full

subcategory of Set of finite ordinals (see, e.g., [26, Example 3.19]). As colimits are computed
pointwise, the 1-signature F ·Θ is the coend

∫ n∈N
F (n)×Θn, and as such, it is a colimit of

algebraic 2-signatures. J

However, we do not know whether we can recover our theorem [2, Theorem 35] stating
that any presentable 1-signature is effective.

6.3 Algebraic theories
From the categorical point of view, several fundamental algebraic structures in mathematics
can be conveniently and elegantly described using finitary monads. For instance, the category
of monoids can be seen as the category of Eilenberg–Moore algebras of the monad of lists.
Other important examples, like groups and rings, can be treated analogously. A classical
reference on the subject is the work of Manes, where such monads are significantly called
finitary algebraic theories [22, Definition 3.17].

We want to show that such “algebraic theories” fit in our framework, in the sense that they
can be incorporated into an algebraic 2-signature, with the effect of enriching the initial model
with the operations of the algebraic theory, subject to the axioms of the algebraic theory.

For a finitary monad T , Corollary 40 says how to encode the 1-signature T · Θ as an
algebraic 2-signature (ΣT , ET). Models are monads R together with an R-linear morphism
r : T ·R→ R.

Now, for any model (R,m) of T · Θ, we would like to enforce the usual T -algebra
equations on the action m. This is done thanks to the following equations, where τ denotes
the tautological morphism of T ·Θ-modules:

Θ ηT ·Θ // T ·Θ τ // Θ
Θ

1
// Θ

T · T ·Θ µT ·Θ // T ·Θ τ // Θ
T · T ·Θ

Tτ
// T ·Θ

τ
// Θ

(3)

The first equation is clearly elementary. The second one is elementary thanks to the
following lemma:

I Lemma 41. Let F be a finitary endofunctor on Set. Then F preserves epimorphisms.

FSCD 2019

6:16 Modular Specification of Monads Through Higher-Order Presentations

Proof. An anonymous referee remarked that this is a consequence of the axiom of choice,
because then any epimorphism in the category of Set is split, and thus preserved by any functor.
Here we provide an alternative proof which does not rely on the axiom of choice. (However,
it may require the excluded middle, depending on the chosen definition of finitary functor.)

As F is finitary, it is isomorphic to the coend
∫ n∈N

F (n)× _n [26, Example 3.19]. By
decomposing it as a coequalizer of coproducts, we get an epimorphism α :

∐
n∈N F (n)×_n →

F . Now, let f : X → Y be a surjective function between two sets. We show that F (f) is
epimorphic. By naturality, the following diagram commutes:∐

n∈N F (n)×Xn
F (n)×fn

//

αX

��

∐
n∈N F (n)× Y n

αY

��

F (X)
F (f)

// F (Y)

The composition along the top-right is epimorphic by composition of epimorphisms. Thus, the
bottom left is also epimorphic, and so is F (f) as the last morphism of this composition. J

In conclusion, we have exhibited the algebraic 2-signature (ΣT , E′T), where E′T extends
the family ET with the two elementary equations of Diagram 3. This signature allows to
enrich any other algebraic 2-signature with the operations of the algebraic theory T , subject
to the relevant equations.

6.4 Fixpoint operator
Here, we show the algebraic 2-signature corresponding to a fixpoint operator. In [2, Sec-
tion 8.4] we studied fixpoint operators in the context of 1-signatures. In that setting, we
treated a syntactic fixpoint operator called coherent fixpoint operator, somehow reminiscent
of mutual letrec. We were able to impose many natural equations to this operator but we
were not able to enforce the fixpoint equation. In this section, we show how a fixpoint
operator can be fully specified by an algebraic 2-signature. We restrict our discussion to the
unary case; the coherent family of multi-ary fixpoint operators presented in [2, Section 8.4],
now including the fixpoint equations, can also be specified, in an analogous way, via an
algebraic 2-signature.

Let us start by recalling the following

I Definition 42. A unary fixpoint operator for a monad R [2, Definition 40] is a
module morphism f from R′ to R that makes the following diagram commute, where σ is the
substitution morphism defined as the uncurrying (see Definition 10) of the identity morphism
on Θ′:

R′ R′ ×R

R

(idR′ ,f)

f σR

In order to rephrase this definition, we introduce the obviously algebraic 2-signature Υfix
consisting of the 1-signature Σfix = Θ′ and the family Efix consisting of the single following
Σfix-equation:

efix : Θ′
〈1,τ〉

// Θ′ ×Θ σ // Θ
Θ′

τ
// Θ

(4)

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:17

This allows us to rephrase the previous definition as follows: a unary fixpoint operator
for a monad R is just an action of the 2-signature Υfix in R.

The name “fixpoint operator” is motivated by the following proposition:

I Proposition 43 ([2, Proposition 41]). Fixpoint combinators are in one-to-one correspondence
with actions of Υfix in the monad LCβη of the lambda calculus modulo β- and η-equality.

Recall that fixpoint combinators are lambda terms Y satisfying, for any (possibly open) term
t, the equation

app(t, app(Y, t)) = app(Y, t) .

Explicitly, such a combinator Y induces a fixpoint operator Ŷ : LC′βη → LCβη which associates,
to any term t depending on an additional variable ∗, the term Ŷ (t) := app(Y, abs t).

7 Recursion

In this section, we explain how a recursion principle can be derived from our initiality
result, and give an example of a morphism – a translation – between monads defined via the
recursion principle.

7.1 Principle of recursion
In our context, the recursion principle is a recipe for constructing a morphism from the
monad underlying the initial model of a 2-signature to an arbitrary monad.

I Proposition 44 (Recursion principle). Let S be the monad underlying the initial model of
the 2-signature Υ. To any action a of Υ in T is associated a monad morphism â : S → T .

Proof. The action a defines a 2-model M of Υ, and â is the monad morphism underlying
the initial morphism to M . J

Hence the recipe consists in the following two steps:
1. give T an action of the 1-signature Σ;
2. check that all the equations in E are satisfied for the induced model.

In the next section, we illustrate this principle.

7.2 Translation of lambda calculus with fixpoint to lambda calculus
In this section, we consider the 2-signature ΥLCβη,fix := ΥLCβη +Υfix where the two components
have been introduced above (see Example 18 and Section 6.4).

As a coproduct of algebraic 2-signatures, ΥLCβη,fix is itself algebraic, and thus the initial
model exists. The underlying monad LCβη,fix of the initial model can be understood as
the monad of lambda calculus modulo β and η enriched with an explicit fixpoint operator
fix : LC′βη,fix −→ LCβη,fix. Now we build by recursion a monad morphism from this monad to
the “bare” monad LCβη of lambda calculus modulo β and η.

As explained in Section 7.1, we need to define an action of ΥLCβη,fix in LCβη, that is to say
an action of ΥLCβη plus an action of Υfix. For the action of ΥLCβη , we take the one yielding
the initial model.

Now, in order to find an action of Υfix in LCβη, we choose a fixpoint combinator Y (say
the one of Curry) and take the action Ŷ as defined at the end of Section 6.4.

In more concrete terms, our translation is a kind of compilation which replaces each
occurrence of the explicit fixpoint operator fix(t) with app(Y, abs t).

FSCD 2019

6:18 Modular Specification of Monads Through Higher-Order Presentations

References

1 Benedikt Ahrens. Modules over relative monads for syntax and semantics. Mathematical
Structures in Computer Science, 26:3–37, 2016. doi:10.1017/S0960129514000103.

2 Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. High-Level
Signatures and Initial Semantics. In Dan Ghica and Achim Jung, editors, 27th EACSL
Annual Conference on Computer Science Logic (CSL 2018), volume 119 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 4:1–4:22, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2018.4.

3 Michael Barr. Coequalizers and free triples. Mathematische Zeitschrift, 116(4):307–322,
December 1970. doi:10.1007/BF01111838.

4 Ranald Clouston. Binding in Nominal Equational Logic. Electr. Notes Theor. Comput. Sci.,
265:259–276, 2010. doi:10.1016/j.entcs.2010.08.016.

5 Maribel Fernández and Murdoch J. Gabbay. Closed nominal rewriting and efficiently com-
putable nominal algebra equality. In Karl Crary and Marino Miculan, editors, Proceedings
5th International Workshop on Logical Frameworks and Meta-languages: Theory and Practice,
LFMTP 2010, Edinburgh, UK, 14th July 2010., volume 34 of EPTCS, pages 37–51, 2010.
doi:10.4204/EPTCS.34.5.

6 Marcelo P. Fiore and Makoto Hamana. Multiversal Polymorphic Algebraic Theories: Syntax,
Semantics, Translations, and Equational Logic. In 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages
520–529. IEEE Computer Society, 2013. doi:10.1109/LICS.2013.59.

7 Marcelo P. Fiore and Chung-Kil Hur. On the construction of free algebras for equational
systems. Theor. Comput. Sci., 410(18):1704–1729, 2009. doi:10.1016/j.tcs.2008.12.052.

8 Marcelo P. Fiore and Chung-Kil Hur. Second-Order Equational Logic (Extended Abstract).
In Anuj Dawar and Helmut Veith, editors, CSL, volume 6247 of Lecture Notes in Computer
Science, pages 320–335. Springer, 2010. doi:10.1007/978-3-642-15205-4_26.

9 Marcelo P. Fiore and Ola Mahmoud. Second-Order Algebraic Theories (Extended Abstract). In
Petr Hlinený and Antonín Kucera, editors, MFCS, volume 6281 of Lecture Notes in Computer
Science, pages 368–380. Springer, 2010. doi:10.1007/978-3-642-15155-2_33.

10 Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract Syntax and Variable Binding.
In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,
pages 193–202, 1999. doi:10.1109/LICS.1999.782615.

11 Marcelo P. Fiore and Philip Saville. List Objects with Algebraic Structure. In Dale Miller,
editor, 2nd International Conference on Formal Structures for Computation and Deduction
(FSCD 2017), volume 84 of Leibniz International Proceedings in Informatics (LIPIcs), pages
16:1–16:18, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.FSCD.2017.16.

12 Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax Involving
Binders. In 14th Annual Symposium on Logic in Computer Science, pages 214–224, Washington,
DC, USA, 1999. IEEE Computer Society Press. doi:10.1109/LICS.1999.782617.

13 Neil Ghani, Tarmo Uustalu, and Makoto Hamana. Explicit substitutions and higher-order
syntax. Higher-Order and Symbolic Computation, 19(2-3):263–282, 2006. doi:10.1007/
s10990-006-8748-4.

14 Bernhard Gramlich. Modularity in term rewriting revisited. Theoretical Computer Science,
464:3–19, 2012. New Directions in Rewriting (Honoring the 60th Birthday of Yoshihito
Toyama). doi:10.1016/j.tcs.2012.09.008.

15 Makoto Hamana. Term Rewriting with Variable Binding: An Initial Algebra Approach. In
Proceedings of the 5th ACM SIGPLAN International Conference on Principles and Practice
of Declaritive Programming, PPDP ’03, pages 148–159, New York, NY, USA, 2003. ACM.
doi:10.1145/888251.888266.

http://dx.doi.org/10.1017/S0960129514000103
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.4
http://dx.doi.org/10.1007/BF01111838
http://dx.doi.org/10.1016/j.entcs.2010.08.016
http://dx.doi.org/10.4204/EPTCS.34.5
http://dx.doi.org/10.1109/LICS.2013.59
http://dx.doi.org/10.1016/j.tcs.2008.12.052
http://dx.doi.org/10.1007/978-3-642-15205-4_26
http://dx.doi.org/10.1007/978-3-642-15155-2_33
http://dx.doi.org/10.1109/LICS.1999.782615
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.16
http://dx.doi.org/10.1109/LICS.1999.782617
http://dx.doi.org/10.1007/s10990-006-8748-4
http://dx.doi.org/10.1007/s10990-006-8748-4
http://dx.doi.org/10.1016/j.tcs.2012.09.008
http://dx.doi.org/10.1145/888251.888266

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:19

16 André Hirschowitz and Marco Maggesi. Modules over Monads and Linearity. In D. Leivant
and R. J. G. B. de Queiroz, editors, WoLLIC, volume 4576 of Lecture Notes in Computer
Science, pages 218–237. Springer, 2007. doi:10.1007/978-3-540-73445-1_16.

17 André Hirschowitz and Marco Maggesi. Modules over monads and initial semantics. Information
and Computation, 208(5):545–564, May 2010. Special Issue: 14th Workshop on Logic, Language,
Information and Computation (WoLLIC 2007). doi:10.1016/j.ic.2009.07.003.

18 Martin Hofmann. Semantical Analysis of Higher-Order Abstract Syntax. In 14th Annual
IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages 204–213.
IEEE Computer Society, 1999. doi:10.1109/LICS.1999.782616.

19 G. Maxwell Kelly and A. John Power. Adjunctions whose counits are coequalizers, and
presentations of finitary enriched monads. Journal of Pure and Applied Algebra, 89(1):163–179,
1993. doi:10.1016/0022-4049(93)90092-8.

20 Alexander Kurz and Daniela Petrisan. On universal algebra over nominal sets. Mathematical
Structures in Computer Science, 20(2):285–318, 2010. doi:10.1017/S0960129509990399.

21 Christoph Lüth and Neil Ghani. Monads and Modular Term Rewriting. In Eugenio Moggi
and Giuseppe Rosolini, editors, Category Theory and Computer Science, 7th International
Conference, CTCS ’97, volume 1290 of Lecture Notes in Computer Science, pages 69–86.
Springer, 1997. doi:10.1007/BFb0026982.

22 Ernest Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathematics. Springer,
1976.

23 The Coq development team. The Coq Proof Assistant, version 8.9, 2019. Version 8.9. URL:
http://coq.inria.fr.

24 A. John Power. Abstract Syntax: Substitution and Binders: Invited Address. Electr. Notes
Theor. Comput. Sci., 173:3–16, 2007. doi:10.1016/j.entcs.2007.02.024.

25 Sam Staton. An Algebraic Presentation of Predicate Logic (Extended Abstract). In Frank
Pfenning, editor, Foundations of Software Science and Computation Structures - 16th Interna-
tional Conference, FOSSACS 2013, volume 7794 of Lecture Notes in Computer Science, pages
401–417. Springer, 2013. doi:10.1007/978-3-642-37075-5_26.

26 Jiří Velebil and Alexander Kurz. Equational presentations of functors and monads. Mathemat-
ical Structures in Computer Science, 21(2):363–381, 2011. doi:10.1017/S0960129510000575.

27 Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-checked
library of univalent mathematics. Available at https://github.com/UniMath/UniMath.

FSCD 2019

http://dx.doi.org/10.1007/978-3-540-73445-1_16
http://dx.doi.org/10.1016/j.ic.2009.07.003
http://dx.doi.org/10.1109/LICS.1999.782616
http://dx.doi.org/10.1016/0022-4049(93)90092-8
http://dx.doi.org/10.1017/S0960129509990399
http://dx.doi.org/10.1007/BFb0026982
http://coq.inria.fr
http://dx.doi.org/10.1016/j.entcs.2007.02.024
http://dx.doi.org/10.1007/978-3-642-37075-5_26
http://dx.doi.org/10.1017/S0960129510000575
https://github.com/UniMath/UniMath

	Introduction
	Categories of modules over monads
	1-signatures and their models
	2-Signatures and their models
	Equations
	2-signatures and their models
	Modularity for 2-signatures
	Initial Semantics for 2-Signatures

	Proof of Theorem 32
	Examples of algebraic 2-signatures
	Monoids
	Colimits of algebraic 2-signatures
	Algebraic theories
	Fixpoint operator

	Recursion
	Principle of recursion
	Translation of lambda calculus with fixpoint to lambda calculus

