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Abstract 

The automated diagnosis of control charts to detect faults is a problem studied by many 

researchers. In recent years, they have turned their attention to processes that do not fulfil the 

condition of having normally, identically and independently distributed (NIID) variables. 

With those processes, it is common to have one or more manipulatable variables that can 

affect the quality characteristic under investigation. The Engineering Process Control (EPC) 

approach is often used to minimise the variance around the target value of the monitored 

characteristic by adjusting the manipulatable variables. In this work, a control chart pattern 

recognition (CCPR) system was developed for processes adjusted by EPC (also known as 

SPC-EPC or feedback-control processes). This issue of simultaneous identification of simple 

control chart patterns for feedback-control processes had previously not been studied. A 

Machine Learning algorithm was proposed to train a pattern recognition system. All the 

possible combinations of factors of the CCPR system were studied to determine the 

combination yielding the highest recognition accuracy, namely, using raw data as input, 

generating patterns with significance level α=0.01, monitoring the output signal, and 

employing a Proportional Integrative Derivative (PID) controller and the Radial Basis 

Function (RBF) kernel. This combination yielded overall accuracies of 94.18% and 94.14% 

for the AR(1) and ARMA(1,1) models, respectively. 

Keywords: Control chart pattern recognition, PID control, Support Vector Machine, SPC, 
EPC  

Comment [HDlTG1]: I hope this 
phrase is understood as “identify any of 
the seven simple patterns, not only by 
pairs or a subset of patterns as it was done 
by other authors.  
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Abbreviations  

ANOVA  Analysis of variance 

AR(1)   First-order autoregressive 

ARMA(1,1)  First-order autoregressive moving-average 

BA   Bees Algorithm 

BESSEL  Bessel kernel 

CCPR   Control chart pattern recognition   

CI   Confidence interval 

CYC   Cyclic pattern 

Dt   Disturbance magnitude at time t 

DS   Downward shift 

DT   Downward trend 

et   White noise at time t 

EPC   Engineering process control 

HDWT   Haar discrete wavelet transform 

IMA (1,1)  First-order integrated moving-average 

IRT   Input representation technique 

kD   Coefficient for the derivative part of the controller 

kI   Coefficient for the integral part of the controller 

kP   Coefficient for the proportional part of the controller  

MMSE   Minimum mean square error 

MSE   Mean square error 

n   Sample size 

Nt   Inherent noise at time t 

NIID   Normally, identically and independently distributed 

NN   Neural network 

NORM  Normal pattern 
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PGS   Pattern generation scheme 

PGS-1   Conventional pattern generation scheme 

PGS-2   Pattern generation scheme with α = 0.01 

PI   Proportional integral 

PID   Proportional integral derivative 

RBF   Radial basis function 

St   Scaled variable at time t 

sin   Sine function  

SPC   Statistical process control 

SVM   Support Vector Machine 

SYS   Systematic pattern 

T   Target value 

t   Time 

US   Upward shift 

UT   Upward trend 

Xt   Controller compensation at time t 

Yt   Output variable at time t 

Zt   Observed quality characteristic before the controller compensation  

α   Significance level 

β   Abnormal pattern parameter 

߶   Autoregressive coefficient 

σe   Standard deviation of white noise 

σN   Standard deviation of inherent noise 

߬	   Time when a break point occurs 

θ   Moving-average coefficient 
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1. Introduction 

Statistical Process Control (SPC) is a collection of statistical techniques aimed at identifying 

assignable causes of variations in a process by monitoring the process and analysing the data 

obtained. If assignable causes are efficiently determined, two benefits can be achieved: 

reduction of the variance of the output variable and increase of the monitoring capability. 

One of the most efficient tools used by SPC is the control chart (CC). There are two main 

approaches to analysing and identifying assignable causes with CC. The first approach is to 

apply run rules or zone tests. However, there might be more than one assignable cause related 

to each rule or test, which creates uncertainty. The second approach involves the 

identification of patterns in the control chart. When the process is running under its intended 

conditions, the control chart displays a “Normal” (NORM) pattern (see Figure 1). On the 

other hand, if there are external disturbances (assignable causes), the control chart can exhibit 

one or more of the fourteen different types of abnormal patterns (Western Electric Company, 

1956). Six of these patterns are considered basic patterns: Upward/Downward Trends 

(UT/DT), Upward/Downward Shifts (US/DS), Cycles (CYC) and Systematic (SYS). Figure 1 

outlines these simple patterns. The remaining eight patterns are regarded as either particular 

cases or combinations of the basic patterns. 

 

[Insert]Figure 1: Seven simple patterns in control charts 

Reduction of the variance in the monitored variables is essential in modern manufacturing 

due to the need to increase quality and reduce scrap. In discrete part manufacturing, SPC has 

shown to be effective at addressing assignable causes. However, when the aim of monitoring 

is the reduction of the variance of the process, SPC has not always succeeded. On the other 

hand, in continuous processes, different process conditions are observed. The most common 
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control charts cannot be used to monitor a continuous process as the assumption of time 

independence of the monitored quality characteristics is not fulfilled in most continuous 

processes. For these processes, it is usual that the variance of the output variable (the quality 

characteristic of interest) is reduced by means of a compensation or regulation scheme acting 

on manipulatable variables. These process compensation or regulation schemes are known as 

Engineering Process Control (EPC), stochastic control, or feedback/feedforward control, 

depending on the nature of the adjustments (Montgomery, 2009). A good quality control 

system is one that efficiently identifies patterns due to assignable causes and keeps the 

variance of the process at the minimum level, always around the nominal value of the 

process. Quality control systems that simultaneously monitor manipulatable variables and 

compensate for their effects are known as SPC-EPC or synergistic control schemes.  

EPC schemes assume that changes in the manipulatable variables will have repercussions on 

the output variable in accordance with a specific dynamic model that links these variables. If 

this dynamic model is correct, the variance of the output variable is reduced. However, when 

certain types of external disturbances or assignable causes occur that are outside the 

framework of this dynamic model, then the compensation rules will not completely account 

for them. As a result, variability will be increased. By applying SPC in a specific way, these 

assignable causes can be detected and the combined SPC-EPC procedure will be more 

effective than EPC alone (Montgomery, 2009). As the identification of the aforementioned 

seven simple patterns in SPC-EPC schemes has not been fully studied, it was necessary to 

develop a control chart pattern recognition (CCPR) system for these process types. 

CCPR systems for SPC-EPC schemes must take into account how the seven simple patterns 

are affected by the control scheme implemented by EPC. The main aim of this work is to 

develop CCPR systems for processes where the simple patterns are affected by a control 

scheme, as well as determining which variable - the output variable or the control 
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compensations - is suitable for efficient identification of assignable causes from observed 

control chart patterns. Two different time series were used to model the inherent disturbance, 

the first-order autoregressive (AR(1)) and first-order autoregressive moving average 

(ARMA(1,1)) models, the ARMA(1,1) never studied before when a feedback control scheme 

is implemented. The simultaneous identification of the seven simple control chart patterns 

has not previously studied in feedback-control processes as highlighted ahead in the 

Literature review.  

Two of the most common and effective controllers have been implemented and compared, 

namely, the Proportional Integrative Derivative (PID) and the Minimum Mean Squared Error 

(MMSE) controllers. As a consequence of applying controllers, two signals are produced: the 

output of the controller and the process output after the controller action. As aforementioned, 

determining which signal to monitor in order accurately to recognise patterns is another aim 

of this work. This comparative study of controllers when developing recognition systems is 

another contribution of this paper.  

CCPR for feedback-control processes has not been much studied and the combination of 

factors (pattern generation scheme (PGS), input representation technique (IRT) and kernel of 

the Machine Learning algorithm) that yields the highest recognition accuracies is not known. 

Thus, the best combination of these factors is determined.  

The rest of this paper is organised as follows. Section 2 reviews some of the publications 

most pertinent to this work. Section 3 presents the proposed CCPR system for feedback-

control processes. The results obtained are discussed in Section 4. Finally, Section 5 

concludes the paper and suggests areas for further investigation.  
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2. Literature review 

The design of quality systems where SPC is integrated with EPC techniques has been an 

issue studied by several researchers during the last two decades. 

This section reviews the most relevant publications related to SPC-EPC monitoring schemes 

and CCPR for normally, identically and independently distributed (NIID), autocorrelated and 

feedback-control processes. 

2.1.  SPC-EPC schemes 

In SPC-EPC schemes, monitoring is typically conducted on the output of a controlled process 

(Del Castillo, 2006), but which signal to monitor in SPC-EPC control systems is still an 

unresolved issue. Jiang & Tsui (2002) demonstrated that monitoring either the output or the 

control action can be more efficient depending on the autocorrelated process dynamics. Other 

authors such as Box & Kramer (1992) and Capilla, Ferrer, Romero, & Hualda (1999) 

suggested that monitoring controller actions may improve the chances of early detection of 

shifts in the mean. 

Kandananond (2010) quantified the effect of factors such as types of controllers, control 

charts and monitored signals on integrated SPC-EPC systems for non-stationary inherent 

disturbances when the Mean Squared Error (MSE) and average run length are measured as 

responses. Wang & Tsung (2007) proposed the use of the T2 control chart for detecting 

dynamic patterns in mean shifts of Proportional-Integral (PI) controlled and MMSE 

controlled processes for inherent noise modelled by an ARMA(1,1) time series. For a broader 

discussion and review of the integration of SPC and EPC, see Jiang & Farr (2007). 
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2.2.  CCPR for NIID processes 

Designing CCPR systems that deal effectively with NIID inherent noise has recently been the 

most commonly studied problem (Hachicha & Ghorbel, 2012). 

Xanthopoulos & Razzaghi (2014) proposed the use of weighted Support Vector Machines 

(SVM) for CCPR. Ranaee, Ebrahimzadeh, & Ghaderi (2010) introduced a CCPR system 

using a SVM as the recognition system and Particle Swarm Optimisation to improve the 

overall performance of the SVM by finding the best set of free parameters. Zhao et al. (2017) 

utilised Genetic Algorithms for searching the best set of free parameters in an improved-

SVM-based pattern recognition system. 

Pham & Wani (1997) proposed a set of shape features to be extracted directly from the 

control chart data and to be used as inputs for CCPR systems, increasing the pattern 

recognition accuracies and recognition stability. Based on these features, Gauri & 

Chakraborty (2006, 2009) suggested another set of shape features that not only increased 

pattern recognition accuracies and recognition stability but also were independent of the scale 

of the control chart data. Zaman & Hassan (2018) developed a two-staged recognition 

system, where the features are extracted and selected in the first stage, and in the final stage, 

the patterns are recognised using an adaptive neuro-fuzzy inference system (ANFIS) along 

with fuzzy c-mean (FCM). 

Guh & Tannock (1999) developed a sequential pattern analysis scheme with four networks 

divided into two sequences in order to identify more detailed information about abnormal 

patterns. Using a sequence of networks to obtain more detailed information about the pattern 

was also studied by Guh (2003, 2005); Jiang, Liu, & Zeng (2009) and Shaban & Shalaby 

(2012). Authors such as Du, Huang, & Lv (2013); Lu, Shao, & Li (2011) and Xie et al. 
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(2013) have focused on the application of signal analysis techniques to pre-process the 

control chart data in order to enhance the performance of the CCPR system 

2.3. CCPR for autocorrelated processes 

(Noorossana, Farrokhi, & Saghaei, 2003) developed a multi-layer neural network-based 

CCPR system to detect three types of abnormal patterns referred to as level shift, additive 

outlier and innovation outlier. The inherent disturbance was modelled by an AR(1) model. 

Bo, Beibei, Yuwei, & Shengran (2018) designed a recognition system based on Random 

Forest and Classification and Regression Trees, where the inherent disturbance is also 

modelled by a AR(1). 

Guh (2008) was the first author formally to study the identification of simple patterns in 

processes of which observations are not independent, using the AR(1) model to describe the 

inherent noise. He developed an on-line CCPR system for each of the nineteen 

autocorrelation levels studied. The designed on-line CCPR system neglected the biasing 

effect of the abnormal pattern over the estimated common-cause parameters (Boyles, 2000). 

Guh’s study showed encouraging results, introducing a new direction in CCPR research.  

Other authors (Lin, Guh, & Shiue, 2011; Yang & Zhou, 2015) developed on-line CCPR 

systems also neglecting how the correlation coefficient is biased when abnormal patterns 

occur, thus training one CCPR system for each of the studied autocorrelation levels.  

Cheng & Cheng (2008) used a multi-resolution analysis approach based on the Haar Discrete 

Wavelet Transform (HDWT) to denoise, decorrelate and extract features from AR(1) 

processes. They studied five pattern types and employed a multi-layer neural network as 

recognition system. The recognition accuracies of the proposed CCPR system were compared 

with those obtained using raw data as input. The best combination of coefficients of the 
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HDWT, approximation and detail, was determined by trial and error, causing long processing 

times and uncertainty. The proposed feature extraction technique increased the accuracy 

compared to those achieved using raw data as input. Wu & Yu (2010) developed a neural-

network-based system for recognising both mean and variance shifts in AR(1) processes, 

providing additional useful information about process changes. 

2.4.  CCPR for feedback-control processes 

The first authors to discuss the issue of pattern recognition and categorisation for feedback-

control processes were Shao & Chiu (1999). A neural network (NN) was used as pattern 

recognition system. A first-order integrated moving-average (IMA(1,1)) model was adopted 

to model the inherent noise and a PI controller, to adjust the process. The NN was trained to 

identify step and linear disturbances and their magnitudes and achieved good recognition 

accuracies. 

Lu, Wu, Keng, & Chiu (2008) developed a neural-network-based model with independent 

component analysis to recognise shifts in the correlated process parameters. They only 

considered two pattern types, step and linear changes, and assumed that the process can be 

modelled by an IMA(1,1) time series. They used a PI controller to make adjustments to the 

process. 

The issue of detecting the start time of some abnormal patterns was addressed by Shao, Lu, & 

Chiu (2011). The inherent disturbance was modelled with an AR(1) time series and a MMSE 

controller was employed to tune the process. SVM and NN were used to detect the start time 

of only step-changes with different magnitudes.  

Shao (2014) trained three SVMs to recognise pattern types in pairs, i.e., he studied three 

pattern types, having three possible pairwise combinations and training one SVM for each 

pair. He also assumed that the inherent noise could be modelled by an AR(1) time series with 
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a given autocorrelation level (߶=0.9) and the process could be adjusted by a MMSE 

controller. As result, the proposed CCPR systems proposed by the author were able only to 

recognise patterns that showed that autocorrelation level and only distinguishing between 

patterns by pair. 

The above review has revealed the need to develop CCPR systems for feedback-control 

processes robust to autocorrelation levels and able to identify the seven simple patterns 

simultaneously. It was noted that other time series models such as ARMA(1,1) must be 

considered to model the inherent noise before the controller action. Comparison between the 

two most efficient EPC controllers, MMSE and PID, is also required.     

3. Proposed CCPR for feedback-control processes 

3.1.  Generation of the feedback-control processes 

The proposed scheme for recognising patterns in feedback-control processes comprises three 

steps: 

i. Initial generation of in-control processes and estimation of the controller parameters. An 

autocorrelated process, Nt, is generated according to one of the two time series models 

employed in this work (see Appendix). Using Nt, the parameters of the following two 

controllers are estimated: 

 Minimum-Mean-Squared-Error (MMSE) controller (Jiang & Tsui, 2002): 

 ܺ௧ ൌ ߶ ௧ܺିଵ ൅ ሺߠ െ ߶ሻሺ ௧ܰ െ ܶሻ ( 1 ) 

The parameters ߶ and θ are estimated by fitting an ARMA(1,1) or AR(1) model to Nt. 

In this  research, the target value, T, was set to zero without loss of generality.  

 Proportional Integral Derivative (PID) (Montgomery, 2009): 
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 ܺ௧ ൌ െ݇௉ ௧ܰ െ ݇ூ෍ ௜ܰ

௧

௜ୀଵ

െ ݇஽ሺ ௧ܰ െ ௧ܰିଵሻ ( 2 ) 

The parameters kP, kI, kD are estimated by minimising the MSE of the output variable, 

Nt, constrained to the following stability region for stationary processes (Box, 

Jenkins, & Reinsel, 1994; Tsung & Shi, 1999): 

 

ە
ۖ
۔

ۖ
ۓ

݇ூ ൒ 0

݇௉ ൅
݇ூ

2ൗ ൅ 2݇஽ ൏ 1

െ1 ൏ ݇஽ ൏ 1
െ݇஽ሺ1 ൅ ݇௉ ൅ ݇ூሻ െ ݇௉ ൏ 1

 ( 3 ) 

ii. Using the autocorrelated data, Nt, generated in (i), two methods were followed to 

produce patterns: the method adopted in most of the work on CCPR (denoted as PGS-

1) and the scheme proposed by De la Torre Gutiérrez & Pham (2018) based on testing 

the statistical significance of the pattern parameters (denoted as PGS-2). In the first 

scheme, patterns are generated directly from equations (A2) - (A6) in the appendix 

and no further treatment is made to the data. In the second scheme, by fitting a 

dynamic regression model to the control chart data, the statistical significance of the 

pattern parameters is tested. The significance level chosen in this work was α = 0.01. 

This level had been tested in previous work (De La Torre Gutierrez & Pham, 2016, 

2018) to yield the best recognition accuracy. 

iii. Once the patterns have been generated and the parameters of the PID and MMSE 

controllers have been estimated, the controller is applied and two different variables 

are obtained from the original, the feedback-control output, Yt, and the controller 

compensations, Xt. Yt can be obtained from: 

 ௧ܻ ൌ ܼ௧ ൅ ௧ܺିଵ ( 4 ) 

where Zt represents the disturbance as described in the Appendix.  
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Determining which of these two signals, Yt or Xt, to monitor and analyse in order to 

achieve the highest pattern recognition accuracy is a key point in this work. 

3.2.  Input factors of the CCPR system 

In addition to the pattern generation methods described in the previous subsection, the CCPR 

scheme also involves applying an IRT and a recognition system. 

 The two IRTs tested in this work were: 

 Normalised raw data: The length of the input vector is preserved and the data 

are scaled to enable the CCPR system to recognise patterns in processes with 

any process mean and standard deviation (Zorriassatine & Tannock, 1998). The 

following expression was used for normalisation: 

  ܵ௧ ൌ
ܱ௧ െ തܱ

ො௢ߪ
  ( 5 ) 

where തܱ and ߪො௢ represent the mean and standard deviation of the output 

variable, Xt or Yt, respectively. 

 Shape features: To reduce the dimension of the input vector, the shape features 

initially proposed by Pham & Wani (1997) and then improved by Gauri (2010) 

for NIID observations are extracted. These features are independent of the data 

scale, increase pattern recognition accuracies and reduce training time. 

 Machine Learning kernels: SVM was used as the pattern recognition algorithm in this 

work. SVM is a relatively recent Machine Learning algorithm. It has many 

advantages compared to other existing methods: generalisation capacity, ease of use 

and solution uniqueness (De Tejada & Martìnez-Echevarrìa, 2007). SVMs can also 

deal with nonlinear formulations, provide a trade-off between dimensionality (space 

complexity) and accuracy and produce good results in pattern recognition 
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applications. Three SVM kernels for nonlinear classification were tested, namely, 

Radial Basis Function (RBF), Laplace (LAPLA) and Bessel. 

Figure 2 depicts the proposed scheme for CCPR of feedback-control processes for each 

inherent noise model.  

 

[Insert]Figure 2: Proposed scheme for CCPR of feedback-control processes 

3.3.  Training of the pattern recognition system 

Two sets of 5600 patterns, 800 of each type, were generated; one of the sets was produced 

using the methodology proposed by De la Torre Gutiérrez & Pham (2018), and the other 

following the PGS adopted in most of the CCPR literature (Pham, Otri, Ghanbarzadeh, & 

Koc, 2006; Pham & Oztemel, 1996). Each synthesised pattern consisted of a random 

sequence of length n=60, sampled at time t1, t2,....,t60. 

The Bees Algorithm (BA) proposed by Pham et al. (2006) was chosen to determine the best 

set of SVM parameters that minimise the misclassification rate during training. The 

misclassification rate under five-fold cross validation was selected as the loss function to be 

minimised. The BA was chosen for its proven ability to find globally optimal solutions in 

diverse complex optimisation problems, using both local and global search techniques (Pham, 

Castellani, & Chen, 2015). Table 1 shows the BA parameter values used. For further 

information regarding this algorithm and its parameters, see Pham et al. (2006) and Yuce, 

Packianather, Mastrocinque, Pham, & Lambiase (2013). 

Table 1: Parameters of the BA used during SVM training 

Parameter Symbol Value 

Initial population nb 20 

Number of “best” sites m 3 

Number of “elite” sites e 2 
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Patch size for Cost parameter C ngh-c 0.5 

Patch size for Kernel parameters ngh-k 0.02 

Number of bees for the elite sites ne 3 

Number of bees for the remaining “best” points nb 2 

4. Results 

For each inherent noise model, 200 test sets of 700 patterns each were generated, 100 sets 

using PGS-2 and the remaining using PGS-1. For simplicity, the analysis of accuracies has 

been divided into two parts; in the first part, the best combination of input factors is 

determined. In the second part, the performance for that combination is studied and 

disaggregated by controller type and pattern type.  

4.1. Analysis of input factors  

Figure 3 shows the mean accuracies and the 95% confidence intervals (CIs) found for the 

AR(1) process for the five studied factors, disaggregated by pattern type. Figure 4 gives the 

recognition accuracies achieved when the inherent noise was ARMA(1,1) distributed and the 

95% CIs for these accuracies for the five factors. 

To determine which of the aforementioned five factors affects the recognition accuracy, a 24 

x3 Analysis of Variance (ANOVA) with up to quintuple interactions was utilised.  

Table 2 shows the p-values obtained from the aforementioned ANOVA for the AR(1) and 

ARMA(1,1) models; the triple, quadruple and quintuple interactions have been omitted.  

Table 2: p-values obtained from ANOVA for the five input factors 

Factor AR(1) ARMA(1,1)
PGS ൎ0 ൎ0 
IRT ൎ0 ൎ0 
SIGNAL ൎ0 ൎ0 
KERNEL ൎ0 ൎ0 
CONTROLLER ൎ0 ൎ0 
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PGS*CONTROLLER ൎ0 ൎ0 
IRT*CONTROLLER ൎ0 ൎ0 
SIGNAL*CONTROLLER ൎ0 ൎ0 
KERNEL*CONTROLLER 0.4893 ൎ0 
PGS*IRT 0.1723 ൎ0 
PGS*SIGNAL ൎ0 ൎ0 
PGS*KERNEL 0.3730 0.2849 
IRT*SIGNAL ൎ0 ൎ0 
IRT*KERNEL ൎ0 ൎ0 
SIGNAL*KERNEL 0.3614 0.0008 

 

[Insert] Figure 3: Results for the five factors of the AR(1) model 

 

[Insert] Figure 4: Results of the five factors for the ARMA(1,1) process 

 

4.2. Analysis of the best factor arrangement  
 

For the analysis of the best arrangement, the controller type was taken as the fixed factor and 

its interaction with the inherent noise model was studied. The performance of each model-

controller type has been analysed by a post-hoc Tukey test. Table 3 presents the results 

obtained. 

Table 3: Best factor arrangements for AR(1) and ARMA(1,1) models 

Model-Controller 
Best arrangement 

PGS IRT Kernel Signal 
AR-PID PGS-2 Raw data RBF Yt 
AR-MMSE PGS-2 Raw data / Features RBF Yt 
ARMA-PID PGS-2 Raw data RBF Yt 
ARMA-MMSE PGS-2 Raw data / Features RBF / LAPLA Yt 
 

Table 4 shows the accuracies for each optimal arrangement, disaggregated by controller type 

and pattern. It can be observed that the accuracies for Normal patterns when a PID controller 

was applied were the lowest. As for the MMSE controller, the worst accuracies were 

observed for CYC patterns. 
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Table 4: Accuracies using the best arrangements of factors 

AR ARMA 
PID (%) MMSE (%) PID (%) MMSE (%) 

TOTAL 94.18 81.53 94.14 76.93 
NORM 88.13 82.93 88.95 81.32 

UT 93.00 77.66 92.70 70.66 
DT 95.99 81.58 96.48 73.24 
US 94.12 78.21 93.58 82.79 
DS 98.60 90.64 98.04 87.66 

CYC 92.63 77.41 93.10 70.12 
SYS 96.82 82.25 96.15 72.72 

 

To measure the impact of the controllers, the recognition accuracies achieved in this research 

were compared with those achieved in De la Torre Gutiérrez & Pham (2018) where no 

controllers were utilised. The results of the comparison are shown in Table 5.  

Table 5: Accuracies with and without controller application (%) 

  

AR ARMA 

PID No controller Difference PID No controller Difference
TOTAL 94.18 90.03 4.15 94.14 89.28 4.86 
NORM 88.13 83.92 4.21 88.95 81.04 7.91 

UT 93.00 91.08 1.92 92.70 89.81 2.90 

DT 95.99 93.60 2.39 96.48 93.30 3.19 

US 94.12 79.70 14.42 93.58 83.04 10.54 
DS 98.60 96.64 1.96 98.04 95.63 2.41 

CYC 92.63 90.97 1.66 93.10 89.47 3.63 
SYS 96.82 94.28 2.54 96.15 92.71 3.44 

 

As shown in Table 5, the overall accuracy increased by 4.15% and 4.86% for the AR and 

ARMA processes, respectively. Regarding the pattern type, US patterns showed the highest 

rise in recognition accuracy, by 14.42% and 10.54% for the AR and ARMA processes, 

respectively. This could have been caused by the amplitude effect of the controller on the 

magnitude of abnormal patterns. 
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4.3.  Real data application 

To demonstrate the ability of the proposed CCPR system to handle real data, 60 

measurements of the thickness of a very thin metallic film in the early stages of the 

development of an electronic device taken from Box, Luceño, & Paniagua-Quiñones (2009) 

were utilised (corresponding to observations 11 to 70), and the SPC-EPC approach was 

followed to adjust and monitor this quality characteristic (see Figure 5). Box et al. (2009) 

highlighted the existence of an assignable cause that abruptly increased the metallic film 

thickness after 30 observations. 

[Insert] Figure 5: Thickness of metallic film in the early stages of the development of an 

electronic device 

The CCPR trained with the best arrangement of input factors for the two signals (Xt and Yt) 

were used, and NORM and US patterns were identified for Yt and Xt, respectively (see 

Figure 6). As mentioned in Box et al. (2009), in the process before the adjustment, a US 

pattern can be observed. Therefore, this pattern is expected to be recognised in one of the two 

signals, in this case, Xt.  

In order further to categorise the pattern recognised by the aforementioned CCPR system, the 

methodology proposed for autocorrelated inherent noise was applied, i.e., two NLM-ARMA 

proposed for autocorrelated patterns were fitted to the original data. The p-value 

corresponding to the F-test for nested models was 0.0020; therefore, the full model better 

fitted the data. The most likely breakpoint was detected at ߬ = 30. Table 6 shows all the 

values regarding the full model fitted. It can be observed that the parameter related to the 

Shift pattern is statistically significant and greater than zero. Thus, like the CCPR, the NLM-

ARMA classifies the pattern as a US pattern. 

[Insert] Figure 6: Output and controller signals obtained from the SPC-EPC process 
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Table 6: ANOVA of the NLM-ARMA model fitted to the thickness measurements for a 

metallic film 

Parameter Estimate Std. Error t value p-value 

ϕ 0.306 0.1066 2.8701 0.0041 

Intercept 80.5090 2.9488 27.3023 0.0000 

Slope (Trend) 0.1784 0.0986 1.8093 0.0740 

Shift magnitude (Shift) 18.4251 4.0195 4.5839 0.0000 

Amplitude (Cyclic) 0.7434 1.4738 0.5044 0.6140 

Frequency (Cyclic) 3.2311 1.0233 3.1575 0.0016 

Departure (Systematic) 0.4504 1.2484 0.3608 0.7183 

 

5. Conclusion 
 

An important aspect to pay attention to when developing CCPR models is that they must be 

general, i.e., able to identify a wide variety of patterns. The generation of training patterns to 

ensure generality of the CCPR model and to create benchmarks for comparing recognition 

accuracies is an issue studied by De la Torre Gutiérrez & Pham (2016, 2018) who developed 

PGSs with that specific aim. The PGS proposed for autocorrelated patterns was the one 

adopted in this work. The control chart patterns, Zt, were synthesised using two different 

PGSs, PGS-1 and PGS-2. PGS-2 (De la Torre Gutiérrez & Pham, 2018) ensured that correct 

decision boundaries were drawn and the patterns were appropriately categorised before the 

action of the controller. Therefore, the models developed using PGS-2 represent general 

CCPR models and can be employed in real-world applications.  

SPC-EPC is a quality improvement technique that has shown good performance in a variety 

of production systems. As stated by Western Electric Company (1956), when a process is 

affected by assignable causes, SPC control charts exhibit patterns that can reveal those 

causes. However, those patterns have not been fully studied when feedback controllers are 
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used in EPC to reduce the variability of the output. This paper has described the design of 

CCPR for feedback-control processes. This task involves several factors such as IRT and 

signals to be monitored, determining the best arrangement of these factors being the focus of 

this paper. Another factor that can be set by production personnel and that was also studied 

here is the controller type, PID and MMSE being the two most commonly adopted.  

In the case of the AR(1) model, employing a PID controller and monitoring the output 

variable using the raw data as IRT was the arrangement that yielded the highest pattern 

recognition accuracies. In the case of the MMSE controller, the raw output data used as IRT 

also gave the best accuracies. The RBF, LAPLA and Bessel kernels showed similar 

accuracies for both controllers.  

When the ARMA(1,1) model was employed, using raw data also produced the highest pattern 

recognition accuracy for both controllers. As in the case of the AR(1) model, the RBF, 

LAPLA and Bessel kernels also showed similar accuracies for both controllers.  

As noted the previous section, to achieve the highest recognition accuracies, it is 

recommended to monitor the raw data of the signal Yt 

It is worth noting how different the recognition accuracies were between the controllers. For 

the AR(1) model, the overall difference was 12.60% and for the ARMA(1,1) model, it was 

17.21%.  

The proposed recognition systems only deal with two stationary time series models (AR and 

ARMA), so the future work will be focused on developing PGS and CCPR systems for non-

stationary processes (SARIMA and ARIMA models). Furthermore, another limitation of the 

proposed schemes is that the recognition accuracies are far to be satisfactory in nowadays 

industries, so increasing the recognition accuracies is also necessary. 
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As noted in the Results section, the recognition accuracies achieved when the MMSE 

controller is applied are low, around 80%, so future work could be focused on how to 

increase the accuracy, this can be achieved by either applying signal processing techniques or 

using Deep Learning algorithms as pattern recognisers.    

Future research will also focus on studying the identification of patterns in multivariate 

control charts, not only in the presence of autocorrelation but also in feedback-control 

processes and where assignable causes can be masked. Another research topic to study is the 

application of the T2 control chart to simultaneously monitor the output and controller 

performance in feedback-control processes. 

6. Appendix 

Two time series models were used to model the inherent noise of the monitored process, 

ARMA(1,1) and AR(1).  

 ௧ܰ ൌ ߶ ௧ܰିଵ െ ௧ିଵ݁ߠ ൅ ݁௧ (A1)  

where if θ=0, an AR(1) process is obtained. et represents white noise which is normally, 

independently and identically distributed, with mean equal to zero and standard deviation 

equal to one. For further information about generating stationary processes starting from 

white noise et, see Box, Luceño, & Paniagua-Quiñones (2011). 

 

The seven simple patterns, represented by Dt, were generated using the following 

expressions: 

 Normal: 

௧ܦ  ൌ ܶ (A2)  
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 Upward / Downward Trends: 

௧ܦ  ൌ േߚଵݐ ൅ ܶ (A3)  

 Upward / Downward Shifts: 

௧ܦ  ൌ േߚଶ݀ ൅ ܶ (A4)  

 Cyclic: 

௧ܦ  ൌ ݊݅ݏଷߚ ൬
ݐߨ2
ସߚ

൰ ൅ ܶ (A5)  

 Systematic: 

௧ܦ  ൌ ହሺെ1ሻ௧ߚ ൅ ܶ (A6)  

The meaning of the parameters and ranges used in this research are shown in Table A1: 

Table A1: Parameter definitions 

Pattern Parameter Range Meaning 

Target value T Set to 0 
Nominal value of the quality 
characteristic under study 

Upward trend β1 From 0.01ߪே to 0.30ߪே Slope 

Downward trend β1 From -0.30ߪே to -0.01ߪே Slope 

Upward shift / 
Downward shift 

d 
0 or 1, 
0 when t < ߬ and 1 when t ≥ ߬  
߬,  from 16 to n-15 

߬ is the time when the mean 
shift occurs.   

Upward shift β2 From 0.01ߪே to 3.0ߪே Mean shift magnitude 
Downward shift β2 From -3.0ߪே to -0.01ߪே Mean shift magnitude 
Cyclic β3 From 0.01ߪே to 3.0ߪே Cycle amplitude 
Cyclic β4 From 3 to 16 Frequency 
Systematic β5 From 0.01ߪே to 3.0ߪே Systematic departure 

 

In Table A1 ߪே represents the standard deviation of the ARMA model used for modelling the 

inherent noise, calculated the following expression: 

ேߪ  ൌ ඨ
1 ൅ 2ߠ െ ߠ߶2

1 െ ߶2
  (A7) ݁ߪ
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The magnitudes of the patterns were determined to remain in 6ߪே	control in the inspection 

window. The window length, n, was set to 60. The frequencies of the CYC patterns were 

such that the patterns had at least four cycles in the inspection window.  

The change points of the Shift patterns were randomly chosen between ߬=16 and ߬ = n-15. 

This was due to the number of parameters to be estimated and the degrees of freedom 

available during the PGS application.   

Let Zt be the quality characteristic under study without the effect of the controller, defined as 

follows: 

 
ܼ௧ ൌ ௧ܰ ൅   ௧ (A8)ܦ

Patterns, represented by Zt, are autocorrelated control chart patterns like those generated and 

studied in De la Torre Gutiérrez & Pham (2018) (and denoted as Yt  therein).  
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