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Plant root systems play vital roles in the biosphere, environment and agricul-

ture, but the quantitative principles governing their growth and architecture

remain poorly understood. The ‘forward problem’ of what root forms can

arise from given models and parameters has been well studied through

modelling and simulation, but comparatively little attention has been

given to the ‘inverse problem’: what models and parameters are responsible

for producing an experimentally observed root system? Here, we propose

the use of approximate Bayesian computation (ABC) to infer mechanistic

parameters governing root growth and architecture, allowing us to learn

and quantify uncertainty in parameters and model structures using

observed root architectures. We demonstrate the use of this platform on

synthetic and experimental root data and show how it may be used to ident-

ify growth mechanisms and characterize growth parameters in different

mutants. Our highly adaptable framework can be used to gain mechanistic

insight into the generation of observed root system architectures.
1. Introduction
Root systems are essential to plants’ structure and uptake of water and nutrients

and constitute more than 5% by mass of the total global carbon budget [1].

They stabilize plants [2], stabilize soils [3], foster beneficial microbes [4] and

are the entry point for water and nutrients to the plant [5]. The shape of a

plant’s root system is generated by a variety of physiological and signalling

pathways within the plant, and understanding the generation of this system

opens paths to its optimization to maximize crop yield [6].

Despite this importance, the mechanisms underlying root growth remain

challenging to quantitatively understand [7–9]. The complexity of root systems

and their below-ground nature poses observational challenges. Experimental

techniques aiming to elucidate root architecture have historically included

sketches of root systems and the use of hydroponics, then images of cleaned

root systems. More recent advances have facilitated the imaging of plants

in situ through the use of X-ray m-computed tomography [10], magnetic reson-

ance imaging scanning [11,12] and transparent soil [13], which have been used

to investigate root soil exploration and uptake of water and nutrients.

In parallel with this experimental elucidation, in an effort to understand how

root systems grow, many physical and mathematical models of root growth and

structure have been produced. These models attempt to solve the ‘forward pro-

blem’: given knowledge of the parameters governing growth processes

in plants, they produce the details and dynamics of a likely simulated

root system. For example, the Lockhart equation described the elongation of a

cell under turgor pressure [14] and has been widely adapted to describe the
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growth of many plant organs, including roots [15,16]. Hackett

& Rose produced the first root system model in the 1970s [17]

based on the growth and branching of barley roots, while

Lungley [18] produced a computational model which gener-

ated root systems represented using ASCII characters. Fitter

[19] introduced a topological model of root architecture

where a root system was considered as a set of links. This

idea was extended in the three-dimensional modelling of

Pagès et al. [20] and Diggle, whose ROOTMAP model could

be applied to a variety of plant species [21], while Tatsumi

et al. represented variation in root systems using fractal analysis

[22,23]. Lynch et al. modelled a root system as a network with

nodes as branches and inter-branch distances as edges. The

model also included root radius and volume changes along

the growing root [24]. Advances in computation have led to a

further plethora of root system architecture models, which pro-

duce a three-dimensional reproduction of a root system using a

detailed parameter set [7]. Previous modelling approaches

were combined in the production of Root Typ in 2004 [25].

This has allowed the underlying model structure to be adapted

for use by other researchers [26,27]. Another key root architec-

ture model is RootBox [28], which is designed to be combined

with soil and water uptake models along with allowing for the

simulation of roots grown in containers of user-defined shape

and dimensions. This model has been recently updated to pro-

duce CRootBox, and there are plans to eventually extend the

modelling approach to also consider above-ground plant

growth [29]. Many of these effective models are able to repro-

duce root systems of many different plant species, which

necessitates the incorporation of root data collected in situ [8].

While a great number of advances have been made in

simulating root systems from a set of parameters, relatively

little work has been done on the inverse problem: extracting

the growth parameters from an observed root system. Model

parametrization is often limited by difficulties in root

observation [27,30]; however, this step is crucial to gain bio-

logical insight from these root models. It is vital that

we can validate root models and the predictions they

make, and quantify uncertainty in their mechanisms and par-

ameters. A manual approach to the inverse problem, feeding

specific measured parameters into generative models for

root systems and assessing their ability to reproduce obser-

vations, has been used to gain biological insight and

validate generative models [31]. However, without an auto-

mated approach, it remains challenging to explore the full

ranges of parameters and mechanisms that could give rise

to observed structures and the likelihoods of each. Advancing

technologies are allowing observation of root systems in

increasing detail, making it even more important to bridge

the gap between theory and observation.

A major challenge in solving the inverse problem with

traditional statistical methods is finding a likelihood function

for an observed root system. Modern statistical approaches

allow this challenge to be circumvented through the use of

stochastic simulation and approximate Bayesian computation

(ABC) techniques [32], which produce a computational

approximation replacing the likelihood and remove the

need for its explicit calculation. Another strength of these

techniques lies in their natural capacity for model selection

and the inclusion of prior knowledge about the system in

an inference setting. Here, we report a novel pipeline by

which ABC, embedded in a sequential Monte Carlo (SMC)

framework [33], can be used to learn the values of, and
uncertainty in, generative, mechanistic parameters under-

lying root growth and architecture, and to compare

different root architecture models. Arabidopsis thaliana (thale

cress) is used in both computational and experimental investi-

gation throughout as a model plant, but this process can

readily be extended to any root system, as we also demonstrate

with Lupinus angustifolius (narrowleaf lupin). We demonstrate

how this framework can be used to identify generative par-

ameters according to a given model, distinguish phenotypic

differences, and evaluate the comparative effectiveness of

different models for root elongation and root branching

processes, providing insight into the underlying mechanisms.
2. Results
2.1. An ABC SMC framework for inferring mechanistic

parameters from root systems
For generality, we begin by considering a highly simplified

model for root growth (see Material and methods). Starting

from an infinitesimal initial condition, a primary root

elongates according to a growth law. Branches from this

primary root occur stochastically according to a branching

law. Branches elongate according to the primary root

growth law multiplicatively scaled (allowing, for example,

branches to grow at a slower rate than the primary root).

Branching is for now restricted to first-order branches from

the primary root, though nothing in our framework is

dependent on this or any other structural choice.

This coarse-grained model was chosen to reflect the core be-

haviour shared at the intersection of several contemporary root

models [25,28,29]. Its computational simplicity is an advantage

but not a necessity for our inference framework; we later con-

sider an alternative generative model to demonstrate the

transferability of our approach. The details of the model are

described in Material and methods, but in this section we con-

sider constructing the inference framework for a general

mechanistic model, the parameters of which we denote u.

The platform proceeds by simulating outputs from this

model with different trial parametrizations, using a distance

function to compare these outputs to summary statistics of

experimental observations, and iterating this process within

a Bayesian framework to build up posterior distributions on

model structures and parameters given the observed data.

To compare simulation to experiment, we focus on a

mechanistically informative set of summary statistics. For a

given observation of root structure data d, these are the

number of branches B, length of the primary root L and aver-

age length of the lateral roots l̂. Within our scheme, these

lengths are for convenience measured in centimetres; differ-

ent scalings of these features can be used to emphasize

different aspects of root architecture in the simulation-data

comparison. The distance function we use to compare two

structures d1, d2 is based on the Euclidean distance

r(d1, d2) ¼ 1

3
((B1 � B2)2 þ (L1 � L2)2 þ (̂l1 � l̂2)2): (2:1)

A dataset D may consist of a set of structures dij, where

i labels individual plants and j labels longitudinal obser-

vations. In this case, for each observed plant i, a model

plant is simulated and its structure recorded at each of the

times corresponding to the longitudinal observations. We
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Figure 1. Validating root-inference platform with synthetic Arabidopsis data. (a) Output from CRootBox simulation of Arabidopsis root growth; black scale bar is
1 cm. (b – d ) Output posteriors from an ABC SMC framework run on CRootBox output, with final ABC SMC tolerance e ¼ 0.5 (Material and methods). (b) Posterior
distribution on branching rate b in the growth model. (c) Two-dimensional posterior on primary root growth rate g and lateral root growth scaling a. (d) Posterior
distribution on lmax, the maximum length parameter in the negative-exponential growth model used.
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will call these recorded structures d0ij and are interested in the

comparison between each recorded structure and its

observed counterpart

r(D, D0) ¼
X

i

X

jji
r(dij, d0ij): (2:2)

We deliberately choose this model and summary statistics

to focus on the topological aspects of root architecture and

ignore any specific physical embeddings (for example,

branching angles). This focus on topological degrees of free-

dom increases the generality of the approach, but features

like branching angles and higher-order topological statistics

can readily be included in the modelling and distance calcu-

lation if they reflect important degrees of freedom for the

scientific question under consideration.

Equation (2.1) balances the ability to capture the fine

detail of the root system against the computational time

required to obtain a reasonable number of samples from

the posterior. Including more detail and/or degrees of free-

dom in the distance function will allow more detailed

matching of observations but will increase the sampling

effort required to find regions of parameter space that

match these criteria.

ABC involves accepting a trial set of parameters as a

sample from the posterior distribution when r(D, D0) , e,

or, in other words, when the summary statistics of the

structure emerging from the simulation are ‘close’ to

those arising from the experimental data. The posterior distri-

bution on parameters u built up from a set of samples taken

in this way is P(ujD; r , e), which forms an increasingly

good approximation to the true posterior P(ujD) as e is

decreased [34].

For parametric inference within a fixed model, a simple

rejection-sampling pipeline is then given by algorithm 1

(Material and methods). This approach would be sufficient

to identify generative parameters from data, but rejection

sampling is an inefficient paradigm, as any ‘good’ regions

of parameter space are immediately forgotten when the

next draw from the prior is made. To facilitate more efficient

parametric inference as well as model selection, we use ABC

embedded in a SMC framework as in Toni et al. [33]. ABC

SMC first enforces only a relaxed fit to the data then sequen-

tially uses the inferred parameter distributions as effective

priors while enforcing a tighter fit to data. This sequential

process is parametrized by a sequence of e values describing

the fit threshold required at each step in the sequence. Model

selection can proceed by including a ‘model index’ parameter
describing which model structure is to be used, applying a

prior to this parameter (thus incorporating prior knowledge

about which model structures are more likely), then treating

this index as a parameter to be inferred through SMC. Fol-

lowing Toni et al. [33], the coupled inference and model

selection pipeline is then given by algorithm 2 (Material

and methods).
2.2. Inferring parameters from a simulated root system
We first sought to test the applicability of our likelihood-free

inference process on synthetic root data, to confirm its ability

to identify known generative parameters. To this end, the

CRootBox root simulation model [29] was used to produce

an example of an Arabidopsis thaliana root system. The govern-

ing parameters were mean growth rates of 0.49 cm day21 for

the primary root, 0.08 cm day21 for the lateral roots, and an

inter-lateral distance of 0.2 cm, although the inter-lateral

distance is not an explicit parameter in our model (see next

section). CRootBox adds an element of stochasticity to its

generative parameters; in the default Arabidopsis case, this

corresponded to a coefficient of variation of 0.1 in the

growth rates and 0.45 in the lateral spacing parameters.

The simulation was run over 15 simulated days, yielding

the structure in figure 1a.

To mirror the pipeline that will be used for experimental

data, we analysed this simulation output with SmartRoot

image analysis software [35], obtaining the statistics of tap

and lateral root length and placement. We then applied our

ABC SMC framework to estimate posterior distributions on

the mechanistic parameters of our simple growth model

(Material and methods). These parameters are g (primary

root growth rate), lmax (primary root scaling constant), b
(branching rate) and a (lateral root growth scaling).

As shown in figure 1b–d, the growth rates and, notably,

their variability are well captured in the resultant posteriors,

with g inferred to lie around 0.55+0.10 cm day21, compati-

ble with the true growth rate parametrizing the synthetic

data. The branching rate parameter is more broadly spread,

with a mean of 0.6 day21 corresponding to the observed

number of branches, and flexibility in the posterior reflecting

the stochastic nature of this parameter’s influence. a was

inferred to lie around 0.021+ 0.02, corresponding to a lateral

growth rate around 0�0:02 cm day�1; this is rather lower

than the value used in the simulation, reflecting the rather

limited lateral growth occurring in the specific simulated

instance of the model. The posterior for lmax is close to
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Figure 2. Posterior distributions on Arabidopsis thaliana and Lupinus angustifolius roots generated using RootBox. (a) Output from RootBox simulation of Lupinus
angustifolius root growth; black scale bar is 1 cm. (b,c) Output posteriors from an ABC SMC framework run on RootBox output of Lupinus angustifolius, with final ABC
SMC tolerance e ¼ 0.4 (Material and methods). (b) Two-dimensional posterior on primary root growth rate g and lateral root growth scaling a. (c) Posterior
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1 cm. (e,f ) Output posteriors from an ABC SMC framework run on RootBox output of Arabidopsis thaliana, with final ABC SMC tolerance e ¼ 0.4 (Material
and methods). (e) Two-dimensional posterior on primary root growth rate g and lateral root growth scaling a. ( f ) Posterior distribution on branch separation
d in the RootBox growth model. (Online version in colour.)
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recovering the prior, which suggests that the model output is

minimally dependent on the value of this parameter. We

found this limited lmax dependence to generally be the case,

and in subsequent sections will omit lmax from the posterior

plots; all lmax posteriors, generally recovering priors, are

plotted in the electronic supplementary material, figure S1.

This assessment of the relative importance of, and flexibility

in, generative mechanistic parameters reflects a powerful

aspect of this inverse modelling approach.

2.3. Inferring mechanistic parameters for other
synthetic phenotypes and root simulation models

To test the wider applicability of our likelihood-free inference

process, we next tested the ability to identify known

generative parameters when using a different, existing root

simulation model, and for different plant species. RootBox

[28] was chosen for its wide application in the field. We

embedded RootBox as the generative model in our inference

framework, which was then applied as in §2.2 to the previous

synthetic Arabidopsis thaliana data and a simulated Lupinus
angustifolius root system. The Lupinus simulation involved

an initial growth rate of 1 cm day21 for the primary root,

0.2 cm day21 for the laterals and an inter-root distance of

0.9 cm, and proceeded for 15 simulation days.

RootBox employs a different branching protocol from our

simple model above. Rather than allowing stochastic branch-

ing anywhere on the primary root, RootBox allows lateral
branches to emerge at specified intervals along the primary

structure. This interval d, and a value bmax governing the

maximum number of allowed lateral branches, are parameters

of the model and we therefore seek posterior distributions on

these quantities as well as the other mechanistic parameters

which directly map to those in our simple model.

Figure 2 shows the resultant posteriors after applying

our inference approach using RootBox as the core mechanistic

model. Once more, the original generative parameters are well

supported by the resulting posteriors, which also agree with

the inferred values for primary and lateral growth rates

using our simplified core model above (figure 1). The inter-

lateral distances d, present in RootBox but not above, are

also well recovered by the inference process. The maximum

number of branches bmax is not tightly constrained by the

synthetic data (electronic supplementary material, figure S2).

2.4. Inferring mechanistic parameters for wild-type
Arabidopsis thaliana root systems

To test the pipeline on experimental data, we grew Arabidop-
sis Col-0 plants on vertical (1/2) MS agar plates (Material and

methods) and used a digital camera to capture their root

system structure over several days. We used SmartRoot

image analysis software [35] to extract the lengths and place-

ments of tap and lateral roots from these digital images at

each sampled timepoint. An example of the digitized data

is shown in figure 3.
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Figure 3. Example data and simulation output for the root-inference framework. (a) Arabidopsis seedlings grown vertically on agar (Material and methods) provide
example root systems for the analysis pipeline. (b) Digitization of the root systems using SmartRoot [35] provides the quantitative data used in the inference process.
(c) Example outputs from the stochastic growth model with parameters identified through the ABC SMC inference process. Black scale bar is 1 cm. (Online version
in colour.)
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We applied our ABC SMC framework to estimate the

posterior distributions of the mechanistic parameters under-

lying the development of these root systems. The earlier,

high-e populations of the SMC process gave a diverse

range of simulated root structures; by the final population,

the simulation outputs provide excellent visual matches to

the observed experimental structures (figure 3) given the

deliberate simplicity of the model. This intuitive snapshot

matching is supported by the good agreement between the

experimentally observed time series of summary statistics

and those arising from simulation with the final posteriors

(figure 4). Here, both the mean and the variability in the
experimental statistics over time are captured by the distri-

butions of simulated behaviour arising from the posteriors.

The posterior distributions themselves are shown in

figure 5. The primary root growth rate g is reasonably well

constrained, with a mean that intuitively falls around the

total growth average. Notably, the posterior distribution

on g is tighter than for the synthetic data example. This

refinement reflects the strength of including time-course

data in the inference platform. Observations of systems at

different times provide more information on dynamic rate

parameters, allowing better estimates than are available

from single-instance observations alone.
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The scaling of lateral growth rate a has a broader

variance, reflecting the greater variability in average lateral

root length observed in the data, and is correlated to some

extent, as expected, with the value of g. The distribution of

branching rate b is also broad, reflecting a greater variability

in the experimental observation of branch number over time,

and also the stochastic nature of this process: as b reflects the

mean rate of a Poisson process, the same branching structure

can be achieved with a variety of different b values. The

modal value of b matches the average branching rate

observed in the data. Overall, therefore, the ABC SMC frame-

work gives reliable and intuitive readouts linked to both the

average observed behaviour and plant-to-plant variability in

the root structure.
2.5. Model selection for root growth and branching
mechanisms

We next asked whether our approach could select between

competing generative models, given time course data on

the evolution of a root system. To this end, we considered a

range of possible generative mechanisms for root growth

and branching. We will employ uniform priors over compet-

ing models, reflecting the fact that, before any observations

are made, we have no belief that one mechanism is more

likely than another. This prior belief can of course be arbitra-

rily changed within our Bayesian framework to reflect prior

information. We then use our ABC SMC framework to

identify the posterior support for each mechanistic model,

given the observed data [33] (Material and methods).

First, we consider different elongation laws for root

growth. The first model involves root growth at a constant

rate; the second involves a negative-exponential growth law

supported by [29] of the form

l(t) ¼ lmax(1� e�gt=lmax ), (2:3)

where l(t) is the length of the root at time t, parametrized by a

rate constant g and scaling constant lmax. The posterior distri-

bution over model index through the SMC process is shown

in figure 6a,b. The most permissive population (highest e)

shows less support for the exponential model, favouring

model parsimony. As a better fit to the data is required, the

support for the exponential model increases until it over-

comes the lower weightings due to the additional

parameter and is preferentially selected.
Next, we explore a more nuanced mechanistic question

underlying root architecture. We compared two models for

branch placement positions. First, a uniform branching

model, where the branching location was chosen at random

anywhere along the primary root. Second, a minimally

spaced model, which imposed a distance parameter d

around each existing branch where no further branching

could occur. If a branch was attempted within this distance

no branch was implemented and the algorithm continues.

Figure 6b,c shows the model selection posteriors with

decreasing tolerance, and the posterior on d when the mini-

mally spaced model was implemented. Here, the posteriors

for the spacing model are lower for the more permissive

populations, reflecting the increased model complexity—the

extra parameter d makes the model less parsimonious. The

support for the model increases as a better fit to data is

required in the subsequent populations. By the final toler-

ance, the models have comparable support. Hence, the

dataset suggests roughly equal support for both models

despite their difference in complexity.

These simple experiments serve to illustrate the ability of

ABC SMC to provide statistical support for competing

mechanistic hypotheses (for example, linear versus nega-

tive-exponential root elongation laws). There is, however,

nothing to prevent other targeted mechanistic questions

being addressed using this framework (see Discussion).

2.6. Comparison between root structures
Next, we asked whether the ABC SMC framework could dis-

tinguish between two phenotypes—those corresponding to

wild-type Arabidopsis and the friendly mutant line. FRIENDLY
is a mitochondrial fusion gene that when compromised has a

range of bioenergetic effects which lead to reduced root

growth [36].

Wild-type and friendly plants were grown under the

same conditions as above (Material and methods), and the

inference pipeline was run as before, with exponential

growth and uniform branching. The output posteriors in

figure 7 reflect the differing root systems shown in the tra-

cings, with a clear separation in the parameter space

between the two phenotypes. The branching rate b is

fairly unconstrained as observed in §2.4 due to inherent sto-

chasticity in the branching mechanism. The values of g vary

significantly between wild-type and friendly, as reflected in

the tracings, with little change in the value of a. The
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Figure 7. Distinguishing phenotypes with mechanistic inference. (a) (left) Wild-type and (right) friendly Arabidopsis seedlings grown in agar as described in §4.1,
demonstrating the root growth phenotype of friendly. The tracings were produced using SmartRoot software [35] and the colours adjusted; black scale bar is 1 cm.
(b,c) Output posteriors for branching rate b show similar distributions for wild-type and friendly. (d,e) Two-dimensional posteriors on primary root growth rate g and
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distribution of g is substantially shifted towards lower

values for the friendly plants, reflecting the known chal-

lenge to root growth resulting from this mutation. lmax

shows a wide variability in both phenotypes, while repre-

senting clear differences consistent with the reduced root

growth observed in the friendly mutant line. There is a

very little constraint in the value of lmax, suggesting little

reliance on the value, although smaller values appear to

be favoured for the friendly phenotype.

Taken together, these results demonstrate that the phys-

ical parameters governing root architecture growth can be
learned using this ABC SMC approach, and uncertainty in

these learned outcomes quantified. The mechanistic model

within our inference process both allows us to harness

time-course data and dissects which parameters change

(here, growth rate g) and which remain similar (here, lateral

root scaling a) in different cases. This is a key strength of

this method and would be difficult to obtain through tra-

ditional parameter inference methods. The platform readily

identifies the physical different mechanisms underlying root

architecture in a mutant line and identifies accepted physical

model structures for root growth.
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3. Discussion
We have presented a framework for the inference of par-

ameter values and mechanisms in root growth models

when applied to an observed root system. While there

has been much work undertaken producing plant root simu-

lations from given parameters, our approach addressed

the much less-studied ‘inverse problem’: that of finding gen-

erative parameter values and mechanisms that can reproduce

a given root system. Knowledge about these mechanisms

and parameters, and their ranges, flexibility and relative

importance, is necessary for an understanding of root

growth processes such as growth and branching decisions,

and how these may relate to biological processes within the

plant. We hope that this highly general approach will allow

for a more mechanistic understanding of root growth and

to quantify the efficacy of existing models.

We first used a very general growth model to (i) retain

consistency with the ‘core’ of the maximum possible

number of existing growth models and (ii) focus on par-

ameters related to the growing plant and its phenotype,

rather than the specifics of its physical embedding. We

have demonstrated using RootBox [28] that our approach

can readily be adapted to other specific existing root

models to allow the quantification of values of and uncer-

tainty in generative parameters, furthering understanding

of root system architecture. We also illustrated how alterna-

tive hypothesized mechanistic models can straightforwardly

be compared, using SMC model selection. A strength of the

Bayesian embedding here is that the most parsimonious

model that is capable of explaining observations is naturally

selected in the case of models with different numbers of

parameters [33].

Advances in imaging techniques are allowing for greater

insight into root system architecture [8] and specially

designed image analysis software [37] allows for increasingly

efficient data collection from images. The combination of

root models, advanced imaging techniques, image analysis

software and an SMC framework could allow further

advances in our understanding of root growth. We anticipate

that, with the increasing developments in root imaging, this

technique will find application in a growing variety of data-

sets, allowing for the investigation of generative parameters

for a wide variety of root system phenotypes. A natural

future extension for this work would be to perform inference

based directly on image data, rather than statistics of these

data. This approach would require simulation of the imaging

process as well as the generation of model root systems, for

example, embedding the idealized root system in a simulated

soil substrate and simulating the artefacts and noise involved

in the imaging process. While (much) more computationally

intensive, this approach would allow a more direct leveraging

of phenotype data from experimental studies.

Notably, our approach allows inference based on time-

course measurements of a developing root system, which

increase the power and precision with which parameters

and mechanisms can be identified. As demonstrated with

our synthetic examples, this approach can readily be applied

to single-instance observations but also naturally leverages

dynamic information to refine posterior distributions on

physical rate parameters.

A stochastic modelling framework for root growth allows

for a wide variety of possible outputs to be considered in the
inference process, reflecting the variation between root sys-

tems in the real world. In this way, the modelling approach

allows for investigation into the underlying mechanisms

which are widely applicable, while avoiding a reliance on

specificities and overfitting to a particular phenotype or

growth environment. Predicting a branching event would

require the consideration of processes such as genetics, cellu-

lar interactions and organism-scale resource partitioning [38],

necessitating the development of a multiscale framework. As

such multiscale approaches develop, we anticipate the use of

likelihood-free inference to be further embraced to resolve

inverse problems in parameter identification.

While the generality of our approach is appropriate for

the scope of this study, greater specificity is required to

gain a true understanding of plant processes. Care needs to

be taken in the application of ABC techniques: choices must

be made over elements such as the tolerance, priors and

summary statistics to achieve a balance between convergence

rate and specificity of results. As specific choices for these

values can be hard to interpret, simulation outputs must

be verified to provide a reasonable match to genuine

behaviour (as we have attempted throughout). We have

worked with different models to explore the behaviour of

our method under different generative assumptions. In

Bayesian model selection, prior beliefs about models can

strongly affect their support and interpretation must take

this into account [33]. However, we have aimed to demon-

strate the strength of this approach when carefully applied

and interpreted.

Overall, we have demonstrated a technique to allow for

greater insight into model parameters for root systems,

which could aid in increasing understanding of root

growth mechanisms. The generalized approach allowed for

investigation of the key aspects underlying root topology

while being highly adaptable for use with existing root

architecture models.
4. Material and methods
4.1. Plant growth
Arabidopsis Col-0 and friendly seeds were sterilized with three

3 min washing steps in 50% domestic bleach and water rinses,

then plated on (1/2) MS agar in vertical plates. Plants were

grown at constant 258C on a 16 h light/8 h dark cycle. Plates

were photographed over a time course of 2, 5, 7 and 10 days

to produce time-series images of the seedling growth. Summary

statistics were extracted from the images using SmartRoot [35],

an imageJ plugin. The root systems were traced manually

using thresholding, producing a skeleton over the original

image. Summary statistics on root length and branch placement

were then recorded from this skeleton.
4.2. Model structure
Root growth was simulated using a hybrid stochastic–determi-

nistic algorithm. Primary root growth, by default, was assumed

to follow a negative-exponential growth law

l(t) ¼ lmax(1� e�gt=lmax ), (4:1)

parametrized by a rate constant g and a scaling constant lmax. The

alternative uniform growth model simply took the form l(t) ¼ gt.
Lateral roots grow according to the same growth law as the
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primary root, but with a multiplicative factor a applied to g so

that for lateral roots gl ¼ ag.

Branching was treated as a Poisson event with rate parameter

b. The time until the next branching event is found using the

Gillespie algorithm [39], and the length of existing branches

is updated from the current time until the time of the

branching event. The branching location was then determined

by a specified branching model, initially specified as a uniform

probability distribution along the length of the primary root. In

visualizing structures, branching angle was always set to an

angle of 458 from the growth direction, with the equal change of

being placed each side of the primary root, although these

angles and positions play no role in the simulation. These steps

are repeated until the time of the next branch exceeds the maxi-

mum simulation time, at which point the branch lengths are

updated up to the maximum simulation time, and no branching

event occurs. Once a branching event has occurred, the sidebranch

grows according to the same growth law as the main root, scaled

by parameter a; variability in lateral root length thus corresponds

to variability in initial branching times and positions.
16:20190293
4.3. ABC SMC implementation
An ABC framework was implemented in Matlab. Model par-

ameters were drawn from specified distributions and passed to

the model as described in model structure above. Broadly,

the simulated root systems are then compared to data, and the

parameter values accepted if the simulation is sufficiently close

to the data, with tolerance e defined at the time of implementation.

If the previous values were accepted, the parameter values are

perturbed with a perturbation kernel Kt. If the previous values

were not accepted, the parameter values were drawn from the

priors as previously described. This process was repeated until

1000 hits were obtained at the specified tolerance.

We follow [33] in our ABC SMC implementation. For com-

pleteness, algorithm 2 introduces a simple rejection-sampling

scheme under ABC. Algorithm 2 embeds this scheme in an

SMC framework for parameter inference and model selection.

Algorithm 1. ABC rejection sampling for parameter inference.

(1) Given N p plant structures and Nt (i) longitudinal observations for

plant i, characterize the summary statistics dij ¼ {B, L, l̂} from

every plant i and observation j in the dataset.

(2) Draw a trial set of parameters u� from the prior distribution

p(u).

(3) Simulate N p instances of root growth, recording the state of

structure i at each of the Nt (i) time points corresponding to an

experimental observation.

(4) Compute r using equation (2.2) above, to give the separation

between each recorded structure and its simulated counterpart.

(5) If r , e, where e is a given tolerance, accept u� as a sample

from the posterior.

(6) If a termination condition is not met, return to 2.
Algorithm 2. ABC SMC for parameter inference and model

selection.

(1) Given N p plant structures and Nt (i) longitudinal observations for

plant i, characterize the summary statistics dij ¼ {B, L, l̂} from

every plant i and observation j in the dataset.

(2) Initialize tolerance vector E containing T elements. Set

population indicator t ¼ 0.

(3) Set particle indicator i ¼ 1.

(4) Sample model indicator m� from prior p(m).

(5) If t ¼ 0, sample u�� from p(u(m�)). If t . 0, sample u�

from the previous population {u(m�)t�1} with weights

w(m�)t�1, and set u�� � Kt (uju�).

(6) If p(u��) ¼ 0, go to 4.

(7) Simulate N p instances of root growth using u��, recording the

state of structure i at each of the Nt (i) time points

corresponding to an experimental observation.

(8) Compute r using equation (2.2) above.

(9) If r � E[t], go to 4.

(10) Set m(i)
t ¼ m� and add u�� to the population {u(m�)t }. If

t ¼ 0, set weights w(i)
t ¼ 0, otherwise

wðiÞt ¼
pðu��Þ

PN
j¼1 wð jÞ

t�1Ktðuð jÞ
t�1; u

��Þ
:

If i , N, set i ¼ i þ 1, go to 4.

(11) For every m, normalize the weights. If t , T , set t ¼ t þ 1,

go to 3.
For a single model, the prior p(m) associated with that model

is unity and the choice of model indicator m* plays no role in the

inference process.

We used uniform priors over all model structures for p(m)

and uniform priors between 021.4 day21 for g, 021.4 day21

for b, 0–1 for a and 5–40 cm for lmax. The perturbation kernel

we used was Kt � N(0, 0.1P), where P is the width of the uniform

prior. The tolerance vector was E ¼ ef5, 3, 2, 1.5, 1g.
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