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Abstract

There are tremendous unmet needs and unprecedented opportunities in drug development for
rare diseases. Advances in emerging techniques such as next generation sequencing has
changed the landscape of research in rare diseases, exemplified by our increasing knowledge of
the genetic origins of disease. In silico drug repositioning is a promising approach and has been
successfully applied to the development of treatments for diseases. The underlying genetic
nature of rare diseases influences the treatment responses of different genetic mutation
carriers, which is an important component of precision medicine. However, how to utilize this
knowledge and effectively conduct and implement in silico drug repositioning approaches for
rare disease therapies is still an open question. In this review, we will focus on the means of
utilizing accumulated genomic data for accelerating and facilitating drug repositioning for the
treatment of rare diseases. First, we summarize the current genome landscape of rare diseases.
Second, we propose several promising bioinformatics approaches and pipelines for
computational drug repositioning for rare diseases. Finally, we discuss recent regulatory
incentives and other enablers in rare disease drug development and outline the remaining

challenge.

Keywords: drug repositioning; rare diseases; precision medicine; genome; next generation
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Introduction

Most rare diseases have a genetic etiology, affect a small proportion of the population (usually
less than 200,000 in U.S. or 1/2000 in Europe), but are severe and life-threatening [1-3].
Although rare diseases are themselves infrequent by definition, collectively they are a common
occurrence. There are more than 7,000 rare diseases based on the European Organization for

Rare Diseases (EURORDIS) statics (http://www.eurordis.org/about-rare-diseases). However,

there are only approximately 500 treatment options available after the Orphan Drug Act of
1983 was passed [4]. The average time to diagnosis of a rare disease is more than seven years.
Over one-third of children with a rare disease will not live more than five years, and about 35%
of these children will die within the first year of life [5].

The fundamental challenge of orphan drug development is a lack of knowledge about
pathophysiology, etiology, and the natural history of rare diseases. Few patients are available
and together with their geographical dispersal, clinical trials are often impractical [6]. Also,
researchers also have great difficulty in gauging the genetic origin of rare diseases [1]. The
causative genetic mutations are either hereditary (even when the disease has a late onset in
the patient's life), or they are caused by a new mutation (de novo) [7]. Like common disease,
heterogeneity also exists in rare diseases, which makes it extremely challenging to distinguish
patients with different morphological features or genetic variants and then look for the right
treatment options. One example is cystic fibrosis (CF), which is accounted for by the genetic
mutation of the transmembrane conductance regulator (CFTR) gene. There are approximately
2000 identified mutations within the CFTR gene from CF patients. Among the 2000 identified
CFTR mutations, the F508del mutation and G551D are major mutations that are carried by
more than 90% of CF patients. However, the associated phenotypic outcomes of the two
mutations are quite distinct. The F508del mutation is mainly associated with CFTR folding
impairment, and stability at the endoplasmic reticulum and plasma membrane, and chloride
channel gating. The G551D is mainly related to channel gating alternation [8, 9]. The only FDA
approved drug, ivacaftor, is only effective to patients with the G551D mutation. Meanwhile,
there are still a substantial number of CF patients carrying the F508del mutation without a

treatment option.



The advent of next-generation sequencing (NGS) has changed the landscape of rare disease
research, presenting the opportunity for the causative genes of rare diseases to be identified at
an unprecedented pace and resolution [1]. Next generation sequencing (NGS) is also considered
as a key technology for advancing precision medicine [10]. Many genetic variants of rare
diseases have been detected and the data are publicly accessible. However, there is still a large
number of undetected genes associated with rare diseases [7, 11, 12]. On-going efforts are
being made and will lead to substantial improvement in our understanding of the genetic origin
of rare diseases. For example, the International Rare Diseases Research Consortium (IRDiRC) set
a goal of developing the capacity to diagnose all of the rare diseases, and to establish 200 new
or repurposed therapies for rare diseases by the year 2020 [13].

How to translate the accumulated genetic knowledge to facilitate rare disease treatment
development is still an open question [14]. First, to identify and validate therapeutic targets of
rare diseases is a great challenge. Even if a causative genetic mutation in a patient with rare
diseases is detected, there is no guarantee that a therapeutic option might arise from this
knowledge. This is because the mutated protein may be unsuitable as a therapeutic target for a
variety of reasons such as inaccessibility or lack of suitability as a small molecule target. [15]. In
this context, the current drug design paradigm has proved generally successful in inhibiting
therapeutic targets in rare diseases with gain-of-function mutations [16]. Rare diseases with
gain-of-function mutations, like most common diseases, are defined as the activation of specific
pathways or the ectopic activity in relation to the proteins, which aligns well with the current
concept of target identification. However, there are many rare diseases that are due to loss-of-
function where the impairment of a particular protein drives the etiology [16]. Therefore, a
novel approach for translating knowledge of loss-of-function genetic variants nto clinical utility
is urgently needed.

Drug repositioning that aims to find new uses for existing drugs is considered as an effective
and alternative paradigm of drug development [17]. Computational drug repositioning provides
a systematic and rational solution for identifying treatment options as compared to
conventional drug repositioning approaches arising from serendipity or close clinical

observation[18-21]. Linking the genetic findings of rare disease and drug repositioning into the



same framework to accelerate drug development for rare diseases is imperative and is also a
necessary practice for precision medicine. In this review, first, we summarize current progress
in research on the genetic origins of rare diseases. Second, we propose several novel strategies
to integrate these accumulated genetic findings into computational drug repositioning
frameworks for the development of treatments for rare diseases (Figure 1). Finally, we will

discuss the remaining challenges and future perspectives in this field.

The genetic landscape of rare diseases

In the past decade, much progress has been made in the detection the genetic origin of rare
diseases even though patient recruitment is a challenge both for obtaining samples and for
carrying out clinical studies for the development of treatment options. This has resulted from
the advancement of new techniques, the assistance of social media, and the policy shifts of
regulatory agencies [1, 22, 23]. Particularly, NGS techniques have greatly enabled the detection
of the possible genetic basis of rare diseases [24]. Table 1 summarizes the public available
resources and efforts of rare disease genetics.

Up to date, the molecular level etiology information of around one third of rare disease has
been uncovered, although many causative genes of rare diseases remain to be identified [25,
26]. Based on the Orphanet data [27], there are a total of 6,289 rare diseases with a causative
gene relationship, which corresponds to 3343 rare diseases and 3,398 genes. Among 3343 rare
diseases, 2,442 (2442/3343 = 73.0%) have a single causative gene (Figure 2(A)). Among 6,289
rare disease and causing gene relationships, 5,032 (4,171 unclassified + 715 loss of function +
146 gain of function) belong to germline mutation in the causative genes, which account for
more than 80% of mutation types (Figure 2(B)). It could be also seen that 4,171 unclassified
mutation (4,171/5,032 = 82.9% of total germline mutations) remain to be annotated at the
functional level.

Genetic structural variants have been implicated in mutation functions and phenotypic
outcomes. However, genetic structural variants are still considered as one of most difficult to
interpret with regards to their functional consequence [22]. Structural variants comprise

different unbalanced forms of variants such as deletion, insertion, reduplication, and also



balanced forms such as translocation and inversion. ClinVar is a database for the clinical
significance of mutations [11]. Based on ClinVar, there are a total 52,944 genetic mutations
from 3,502 unique rare disease-associated genes, which distributes into different chromosome
locations. The types of 52,944 rare disease structure variants includes single nucleotide variant
(SNV), deletion, duplication, insertion, insertion, indel, undetermined variant, NT expansion,
protein only, copy number loss, copy number gain, inversion, short repeat, structural variant.
Among 13 mutation types, SNV, deletion, and duplication are the three most frequent mutation

types (Figure 2(C)).

Paths toward to rare disease therapy

The emerging techniques have accelerated the pace of the identification of rare diseases
genetic variants [1]. However, the majority of the detected variants remain to be translated
into treatment options. . Here, we summarize and propose several computational drug

repositioning approaches for facilitating this process (Figure 1).

Phenome-wide association

The candidate gene and genome-wide association studies (GWAS) studies have identified a
large number of SNP-trait/disease relationships [28], which could be used to prioritize genetic
findings and further identify therapeutic targets [29-31]. Sanseau et. al. [32] assessed the utility
of GWAS for identifying alternative uses of existing drugs. It was found that a list of 155 genes
identified from GWAS studies had been targeted by at least one existing drug or candidate in
clinical trials. For 92 of 155 genes, the suggested drug indication was different from the original
disease trait identified by GWAS, which implies that these new drug-indication pairs should be
further verified for identifying new disease treatment options [33]. Similarly, Nelson et.al. [31]
filtered SNP-trait/disease relationships from GWASdb with OMIM and obtained rare diseases
related SNP-trait/disease relationships. Then, these were linked to drug—target-disease
relationships to determine whether the known genetic associations could play a role in drug
development. It was found that drug mechanisms with plausible genetic associations were

twice as successful as those where this associated was missing.



However, results from GWASs contain a high false positive rate due to the limitations posed by
both technique or sample size [34].

Integration of electronic health records (EHR) of various disease types from different ethnic
groups to the dense genomic information presents a new vision of precision medicine [35].
Denny et. al. [36] reported a novel paradigm named phenome-wide association study
(PheWAS), which incorporated SNP-trait relationship identified from GAWS studies with the
electronic medical records of genetic scanning from a large cohort of people with European
ancestry. The PheWAS not only provided an extra verification of the results from GWA studies,
but also revealed some potentially interesting associations. The PheWAS tremendously
expanded the scale of SNP-trait relationship and provided more opportunities for looking for
new uses of existing drugs. Rastegar-Mojarad et. al. [37] combined PheWAS and DrugBank [38]
to identify repositioning candidates for rare and common diseases. A total of 52,966 drug-
disease pairs were enriched by the approach. Approximate 30% of 52,966 drug pairs were
verified for known drug-disease relationship, on-going clinical trial or literature reports. About

70% of drug pairs could be candidates for drug repositioning.

Pathway/network based approaches

Genes with genetic variants may not be suitable “druggable” targets. However, pathway or
network approaches can be helpful in finding genes involved in general signaling networks or
biological pathways, and could provide a list of proteins for therapeutic target identification
[39]. For example, the Ras/MAPK syndromes (Noonan, LEPAROD, Costello and cardio-facio-
cataneous syndromes) are a class of rare developmental disorders caused by germline
mutations of genes including PTPN11, PTPN11, SOS1, RASA1, NF1, KRAS, HRAS, NRA S, BRAF,
RAF1, MAP2K1, MAP2K2, SPRED1, RIT1, SHOC2 and CBL. Ras/MAPK signaling pathways
deregulated by cancerous somatic mutations exist in approximately one-third of all cancer
types [40, 41]. Naturally, it is assumed oncology drugs that could inhibit the Ras/MAPK signaling
pathways components could be used to treat RASopathy related rare development disorders. A
mouse model was developed for verification of the oncology drug rapamycin for treating

LEOPARD syndrome (LS) [42]. Specifically, mice carrying the ptpnil mutation developed LS



symptoms, and experiments verified that the mTOR inhibitor rapamycin could reverse some of
these, such as hypertrophic cardiomyopathy (HCM).

Linking the common disease with the rare disease based on a shared gene is an idea originally
proposed by Goh [43] which developed as a concept to identify the disease-disease relationship
based on their shared pathways [44]. However, there is little knowledge about the underlying
molecular mechanism of the influence of genetic variants on the pathways. This knowledge is
crucial to understanding the pathogenesis of diseases. Kiel et. al. developed a structure-energy-
based prediction and network modeling framework to uncover the different degrees of
perturbation of the Ras/MAPK pathway by germline mutations and somatic mutations. By
measuring quantitative activity changes in the pathway based on mutated 3D protein structure,
the difference between germline RASopathy mutation and cancer mutations could be explained
by switching the genes on and off and assessing the degree of protein-protein interactions..
Furthermore, the binding constants and affinities could be quite different for the same protein
with different disease related mutations. In addition, the energy change noted in a pathway
was higher with a somatic mutation compared to a germline mutation. Overall, these
pathway/network-based methodologies and conclusions are of great value in uncovering the
impact of genetic variants on pathways, further facilitating target identification and subsequent

treatment development for rare diseases.

Genomic data integration

Deciphering the effect of genetic variants on cellular processes such as gene expression at the
cellular or organism level is crucial in dissecting genetic contributions to phenotypic endpoints
[45, 46]. This also paves the way for linking genetic variants to treatment development since
vast amounts of drug transcriptome data in different cell types and organisms are publicly
available [47-49].

The correlation between genetic variants and gene expression has been discussed and applied
in the cancer genome field (Table 2). Although the proposed approaches are tailored to driver
gene enrichment and patient survival, it also could be applied for treatment development. For

example, Masica et. al. [50] proposed a statistical strategy with network analysis for correlating



somatic mutation and gene expression and applied it to 149 human glioblastoma (GBM)
samples. They found that somatic mutations of 41 genes were highly related to GBM
progression and patient survival. Bertrand et. al. [51] developed a network approach by
integrating SNP, CNV and gene expression for driver gene enrichment. The proposed
methodology was also applied to GBM and a novel driver gene TRIM24 was found and
experimentally verified. In addition, the methodology was used for more than 1000 tumor
samples from 5 different cancer types for identifying modes of synergistic action, which could
be potentially used for combination drug design for cancer treatment. Peng et. al. [52]
developed a hybrid integrative approach named CMDD by combining partial least squares
regression and network methods covering multiple- omics profiles such as CNV, DNA
methylation, miRNA and gene expression. CMDD was also applied to GBM and six other cancer
types and the genes involved in the enriched modules were correlated with overall patient
survival. Ding et. al. [53] presented a novel hierarchical Bayes graphic modeling approach for
symmetrically qualifying the effect of somatic mutation on gene expression across 12 pan
cancers. Some very interesting conclusion were drawn: (1) the patients carried the same
somatic mutations, which influenced different downstream gene expression; (2) some somatic
mutations are conserved across cancer types. Gerstung et. al. [54] developed a computational
approach for detecting the phenotypic heterogeneity caused by distinct genotype and applied it
to 124 patients with myelodysplastic syndromes (a rare cancer) and with TCGA acute myeloid
leukemia (AML). It was found that the one or more genetic variants were correlated with
around 20% of all genes, which dictated 20~65% of gene expression variability. These proposed
methodologies have been successfully used to uncover genetic mutation and gene expression
relationships for common or rare cancers. It is worth investigating the utility of these
approaches in the rare diseases field to decipher germline mutations and their influencing on
gene expression profiles.

Furthermore, dysfunctional non-coding RNA such as miRNAs and IncRNA in different biological
process often leads to disease [55]. The genetic mutation may change the binding affinity to
miRNA impairing gene expression, and contributing to the phenotypic expression of the

diseases [56]. Liu et. al. [57] introduced a feed-forward loop concept into the drug repositioning



field and applied it for the development of treatment for cystic fibrosis (CF) by integrating
information including germline mutation, miRNA, transcription factors (TF) and gene
expression. Then, 15 CF specific miRNA-TF feed-forward loops were enriched by using a
cumulative hypergeometric test. Finally, by investigating the perturbation of obtained CF
specific FFLs with small molecules, a list of 48 CF repurposed candidates were proposed. Among
the 48 repurposed candidates for CF, 26 candidates were verified by literature survey and
existing clinical trials.

Once the correlation between genetic variants and gene expression, drug transcriptome data
could be applied to look for repositioning opportunities (Table 3). The Connectivity Map (CMap)
[49] as the key source has been successfully applied to drug repositioning fields [58, 59]. For
example, Dudley et. al. [60] proposed a novel approach that aims to look for inverse drug
diseases relationship by comparing the disease signature generated from the Gene Expression
Omnibus (GEO) databases [61] and drug signatures obtained from CMap. They found several
repurposing candidates for treating inflammatory bowel disease (IBD) and these were verified
by in vitro assays.

Besides CMap, several large toxicogenomics efforts such as TG-GATEs [48] and DrugMatrix [47]
have accumulated hundreds of drugs transcriptome data profiles at multiple time/dose/assay
type points. Iskar et. al. [62] identified a large set of drug induced transcriptional modules with
CMap and DrugMatrix data that are from human cancer cell lines and from rat liver in vivo.
They found that 70% of drug induced transcriptional modules were conserved in both assay
types, which suggests that toxicogenomics data could be also used for drug repositioning,
although further comprehensive assessment is needed. Furthermore, miRNAs have been
considered as novel and promising therapeutic targets against various diseases [63, 64], several
miRNA and small molecule relationship databases such as SM2miR [65] and Pharmaco-miR [66]

were constructed by curation from literature or in silico prediction.

Discussion
Computational drug repositioning provides a rapid turnaround list of repositioning candidate

drugs. The challenge is to experimentally verify the efficacy and safety of these and to move the
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drugs forward into clinical trials. Currently, most in silico drug repositioning approaches are
verified by either animal-based in vitro or in vivo models [59, 60, 67-69]. Moving these in silico
findings towards clinical application is challenging due to difficulties in patient recruitment,
which are especially hard with patients with rare diseases. About 30% of clinical Phase 3 studies
fail due to patient enrollments [70]. Therefore, a lot of proposed repositioning candidates
remain at the report or literature level. Patient registries, which have been created by patient
advocacy groups, none-profit organization, government agencies and companies, facilitate
progress in the enrollment and retention of patients with rare diseases. For example, the
National Institutes of Health (NIH) established the Rare Diseases Clinical Research Network |

(RDCRN |, http://www.rarediseasesnetwork.org/) to address the unique challenges of research

on rare diseases. RDCRN studies more than 90 rare diseases at about 100 academic institutions.
Patient advocacy groups actively participate in the research.

The NGS technologies have driven a dramatic shift in our understanding of rare diseases at a
genome-wide scale [71]. Bioinformatics play a central role and has become an important
component in NGS data analysis, generating many algorithms and workflows. However,
building a standard bioinformatics solution for NGS analysis and application to clinical practice
remains to be carried out. Accurate and reliable NGS analysis ensures patients with rare
diseases receive the correct diagnosis. Accurate and reliable NGS further facilitates the practice
of precision medicine. However, inaccurate NGS testing can lead to poor or misleading results.
Therefore, the drug makers, scientific researches, and reviewers need to collaboratively to
standardize NGS techniques and performance evaluation approaches. The FDA

(https://precision.fda.gov/) and the NIH Precision Medicine Initiative Cohort Program

(https://www.nih.gov/precision-medicine-initiative-cohort-program) have been created to

provide insightful vision on precision medicine taking advantage of emerging techniques.
Government-sponsored initiatives and accompanying policy shifts have also had a great impact
on the development of treatments for rare diseases. For example, FDA awarded 18 new
research grants for the development of rare disease products or biomarkers or to efray the cost
of clinical trials

(http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm463539.htm). So far
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40 orphan disease products were partially funded by grants from the “orphan products grant
program”. Furthermore, the FDA has developed four distinct and promising routes, which
enacts faster drug review and approval, shortening rare disease therapy development. In
addition, there are other government-sponsored initiatives such as the Medical Research
Council in the United Kingdom and the NIH National Center for Advancing Translational
Sciences (NCATS). The NIH has established partnerships among public funders, the
pharmaceutical industry and academic investigators, which will also be beneficial for the

development of therapies for rare diseases [72].

Closing Remarks

In summary, under the precision medicine umbrella, the landscape of rare diseases has been
redrawn by applying NGS techniques. The accumulated genomic data provides great
opportunities for the development of treatments for rare diseases by providing insight into the
possibility of drug repositioning. Enabling the translation of these novel findings to clinical
practice of rare disease treatment development is the real practice of precision medicine.
Several promising bioinformatics approaches as summarized, have shown great potential in
tailoring genomic findings to developing therapies for rare diseases. Combined with other
established drug repositioning approaches and efforts form scientific communities, government
agencies, and pharmaceutical companies, the timing is excellent for furthering the
development of innovative approaches and clinical practice towards precision medicine for

rare diseases.
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Table 1 Public available resources and efforts in rare disease genetics

Databases/Consortiums

Web link

Remarks

Public databases

Orphanet

Online Mendelian Inheritance in Man
(OMIm)

Clinvar

CosMIC

Database of genomic variation and
phenotype in humans using ensemble
Resources (DECIPHER)

The NHGRI GWAS Catalog

DisGeNET

http://www.orphadata.org/cgi-bin/index.php

http://www.omim.org/

http://www.ncbi.nlm.nih.gov/clinvar/intro/

http://cancer.sanger.ac.uk/cosmic

https://decipher.sanger.ac.uk/

www.genome.gov/gwastudies

http://www.disgenet.org/web/DisGeNET/menu

Orphanet is a comprehensive resource on rare diseases,
which provides rare disease information including rare
disease associated genes, clinical signs, epidemiological
data and rare disease classification.

OMIM is a comprehensive, authoritative compendium of
human genes and genetic phenotypes, which contains
the information about all the mendelian diseases and
over 15,000 genes and their variants

ClinVar is provides a free accessible, reported
relationships among human variations and phenotypes,
with supporting evidence. The human variants
information is also linked to Orphanet and OMIM
databases.

COSMIC is designed to store and display somatic
mutation information and related details and contains
information relating to human cancers. The somatic
mutation on rare cancers could be retrieved from
COSMIC

DECIPHER is an interactive web-based database which
incorporates a suite of tools designed to aid the
interpretation of genomic variants of rare disease.

A Catalog of Published Genome-Wide Association
Studies that provides SNP-traits association

DisGeNET is a curated efforts and aim to integrate the
disease and gene relationship from public database and
literature mining.

Consortiums efforts

Care for Rare

Finding of Rare Disease Genes in Canada

http://care4rare.ca/

http://www.cpgdsconsortium.com/default.aspx
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CARE for RARE is a Canadian nation-wide research
program focusing on the improvement of both the
diagnosis and treatment of rare diseases. Currently, their
researches embrace 637 different rare disease studies
with more than 1000 rare disease patients with 81 novel
rare diseases causing genes identified.

FORGE Canada (Finding of Rare Disease Genes) is a



(FORGE Canada)

The Centers for Mendelian Genomics (CMG)

The Global Alliance for Genomics and Health

The UK 100,000 Genomes Project

Deciphering Developmental Disorders (DDD)

The International Rare Diseases Research
Consortium (IRDiRC)

The Genetic Disorders of Mucociliary
Clearance Consortium (GDMCC)

http://www.mendelian.org/

https://genomicsandhealth.org/

http://www.genomicsengland.co.uk/

http://www.ddduk.org/

http://www.irdirc.org/

http://www.rarediseasesnetwork.org/cms/GDMCC

national consortium of clinicians and scientists using
next-generation sequencing technology to identify genes
responsible for a wide spectrum of rare pediatric-onset
disorders present in the Canadian population.

The CMG aim to discover genetic basis of Mendelian
disorders in two main ways including applying novel
sequencing technique for rare diseases researches and
collaboration with other rare disease research
consortiums.

The Global Alliance for Genomics and Health (Global
Alliance) was formed to help accelerate the potential of
genomic medicine to advance human health by using
emerging sequencing technique.

The project will sequence 100,000 genomes from around
70,000 people. Participants are NHS patients with a rare
disease, plus their families, and patients with cancer.
The aim of the DDD study is to advance clinical genetic
practice for children with developmental disorders by
the systematic application of the latest microarray and
sequencing methods while addressing the new ethical
challenges raised.

IRDIRC teams up researchers and organizations investing
in rare diseases research in order to achieve two main
objectives by the year 2020, namely to deliver 200 new
therapies for rare diseases and means to diagnose most
rare diseases.

The Genetic Disorders Of Mucociliary Clearance
Consortium is a clinical research network created to
improve the diagnostic testing and treatment of rare
airway diseases, including primary ciliary dyskinesia
(PCD), variant forms of cystic fibrosis (CF),
pseudohypoaldosteronism (PHA), and now idiopathic
bronchiectasis and NTM pulmonary disease.
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Table 2 Data integration strategy for correlating genetic mutation and gene expression

Data profiles

Diseases

Methodology

Notes

PubMed
ID

Somatic mutation and

gene expression

SNP, CNV and gene

expression

CNV, methylation,
miRNA and gene

expression

Somatic mutation and

gene expression

Germline mutation,
miRNA, transcription

factor, gene expression

Somatic mutation and

gene expression

glioblastoma (GBM)

glioblastoma (GBM)
and other five
cancer types

glioblastoma (GBM)
and other six

cancer types

12 pan cancers

Cystic fibrosis

myelodysplastic
syndromes
and acute myeloid

leukaemia (AML)

Fisher’s exact test with network analysis

Network analysis for integrative data
including SNP, CNV and gene expression

for driver genes enrichment
Partial least squares regression and

network analysis

hierarchical Bayes statistical model

http://compbio.bccrec.ca/software/xseq/

miRNA transcription factor feed-
forward loop construction by

cumulative hypergeometric test

principal component analysis (PCA) with

schematic linear decomposition

The somatic mutation and gene expression are
needed for each patients

OncolMPACT is developed and source code is
available from

http://sourceforge.net/projects/oncoimpact.

The results were verified by survival analysis and a
core gene module of 17 genes was enriched for
candidate GBM driver genes.

Patient genetic heterogeneity was observed and the
some mutation types was conserved across cancer
types

The 48 repurposing candidate were enriched for
cystic fibrosis treatment, 26 of 48 candidates were
verified by literature survey or existing clinical trails
One or more genetic lesions correlate with
expression levels of ~20% of all genes, explaining 20—
65% of observed expression variability. Differential
expression patterns vary between mutations and

reflect the underlying biology

21555372

25572314

25653168

26436532

25484921

25574665
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Table 3 Drug transcriptome and drug—miRNAs relationship resources

Databases

Web link

Remarks

The Connectivity Map (CMap)

Open TG-GATEs

DrugMatrix

SM2miR

Pharmaco-miR

https://www.broadinstitute.org/cmap/

http://toxico.nibio.go.jp/english/index.html

https://ntp.niehs.nih.gov/drugmatrix/index.html

http://210.46.85.180:8080/sm2mir/index.jsp

http://www.pharmaco-mir.org/

Provide an comprehensive drug transcriptional
responses of 1309 drugs or lead compounds in the
clinical trials to six or seven different cancer cell
lines

TG-GATEs consists of the comprehensive
toxicogenomic profiles of 170 compounds with
four different assay types (human/rat in vitro/vivo)
and multiple time and dose points in rat liver and
kidney. The histopathological profiles for
compounds are also available.

DrugMatrix contains toxicogenomic profiles for
638 different compounds from both Codelink and
Affymetrix platforms, which covers multiple
organism including liver, kidney, heart, bone
marrow, spleen and skeletal muscle.

SM2miR is a manual curated database which
collects and incorporates the experimentally
validated small molecules and miRNA relationship
from around twenty species by literature survey.
Pharmaco-miR identifies associations of miRNAs,
genes and drugs by integrating PharmaGKB

database and in silico prediction.
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Figure Captions:

Figure 1 The proposed computational drug repositioning approaches for rare disease
therapy
Figure 2 The statistics of rare diseases genetic information: (A) The relationship between

rare disease and its causative genes based on Orphadata; (B) the known mutation origin and
functions of rare diseases based on Orphadata; (C) the structure variants distribution of rare

diseases based on ClinVar.
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