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Abstract—A combinatorial theory of associative n-categories
has recently been proposed, with strictly associative and unital
composition in all dimensions, and the weak structure arising as
a notion of ‘homotopy’ with a natural geometrical interpretation.
Such a theory has the potential to serve as an attractive
foundation for a computer proof assistant for higher category
theory, since it allows composites to be uniquely described, and
relieves proofs from the bureaucracy of associators, unitors and
their coherence. However, this basic theory lacks a high-level way
to construct homotopies, which would be intractable to build
directly in complex situations; it is not therefore immediately
amenable to implementation.

We tackle this problem by describing a ‘contraction’ operation,
which algorithmically constructs complex homotopies that reduce
the lengths of composite terms. This contraction procedure allows
building of nontrivial proofs by repeatedly contracting subterms,
and also allows the contraction of those proofs themselves, yield-
ing in some cases single-step witnesses for complex homotopies.
We prove correctness of this procedure by showing that it lifts
connected colimits from a base category to a category of zigzags, a
procedure which is then iterated to yield a contraction mechanism
in any dimension. We also present homotopy.io, an online proof
assistant that implements the theory of associative n-categories,
and use it to construct a range of examples that illustrate this
new contraction mechanism. 12

I. INTRODUCTION

The theory of associative n-categories (ANCs) has recently
been proposed [1, 2]. As with the theory of strict n-cate-
gories [3], composition in this theory is strictly associative
and unital in all dimensions. However, unlike the strict theory,
ANCs retain a significant amount of weak structure—in the
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Fig. 1: A 3-dimensional homotopy of 2-dimensional diagrams.
(Link to online proof)

form of homotopies3, with a natural geometric interpretation—
making it reasonable to conjecture that every weak n-category
is equivalent to an ANC [1, Conjecture I.5.0.4].4

It may therefore be possible for ANCs to serve as an
attractive general language for calculations in higher category
theory, if suitably encoded into a computer proof assistant.
Strict associators and units would make composites unique,
eliminating some of the bureaucracy of coherence, while
the remaining weak structure—while still potentially of high
complexity—could be reasoned about geometrically.

The major obstacle to realizing this goal is the difficulty of
constructing nontrivial terms of the theory. In principle these
can encode complex data, including not only the composites
of generating types in arbitrary dimension, but also arbitrary
homotopies of these composites. Each term has a dimension,
and the n-dimensional terms are called n-diagrams.

As examples of such terms, consider Figures 1 and 2.
Figure 1 shows two 2-diagrams, which can be interpreted as
expressions in the string diagram calculus for a monoidal cate-
gory [5]; the arrow represents a homotopy of these 2-diagrams,
and forms part of the data of a 3-diagram. Figure 2 shows
two 3-diagrams, which can be interpreted as tangles [6] in the
string diagram calculus for a braided monoidal category; the
arrow represents a homotopy of these 3-diagrams, and forms
part of the data of a 4-diagram.

3Homotopy is a standard notion from algebraic topology, which can be
understood informally to mean the continuous deformation of one topological
structure into another. We use the term only in an informal sense, basing our
formal mathematical development on the theory of associative n-categories,
which have a combinatorial foundation.

4In dimension 3 the theory of ANCs agrees with the theory of Gray
categories, a well-known model of 3-categories which is equivalent to the
fully-weak theory [4], but which has strict associators and unitors; for n ą 3,
ANCs are not expected to be equivalent to any previously-described theory.

 

Fig. 2: A 4-dimensional homotopy of 3-dimensional diagrams.
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The main mathematical contribution of this paper is the de-
scription of a contraction algorithm, which builds homotopies
that reduce a given portion of the diagram in size, along with
a full mathematical theory that demonstrates correctness of
the procedure. This gives a high-level method for building
nontrivial homotopies in an associative n-category. Figures 1
and 2 both give examples; in each case, the second diagram
was obtained by executing the contraction procedure on the
first diagram.

Contraction can serve as the main workhorse for the con-
struction of a range of nontrivial proofs in the theory. Given
an initial composite n-diagram, we produce our pn ` 1q-
dimensional proof object by contracting various k-dimensional
subdiagrams for k ď n to produce the content of the
pn`1q-dimensional proof object, as well as applying algebraic
moves from the signature, and extending these recursively to
the diagram as a whole using some further techniques. Once
our proof is complete, we can then contract that proof term
itself, to yield a shorter proof of the same logical statement.
In Section IV we give two fully-worked examples of this
entire proof construction workflow. Indeed, we conjecture that
contractions, together with the associated recursive techniques,
yield a universal toolkit which can in principle construct any
homotopy in the theory.

We also present homotopy.io [7], an online proof assistant
that implements the theory of associative n-categories. This
proof assistant is enabled by our new theory of contractions,
which serves as the main engine for homotopy construction,
and is applied by clicking and dragging with the mouse on
the graphical representation rendered by the tool. We present
the tool as an accompaniment to the claims of the paper,
demonstrating that the theory of contractions that we build
here is useful and practical.

We keep the focus of this paper on logical foundations, and
do not give further details on the implementation. Nonetheless,
we accompany many of our examples with direct hyperlinks
to their online formalization in the tool, which we invite the
reader to investigate. To explore these workspaces, change
the parameters of the “Slice” control at the top-right of the
window; to manipulate the diagrams homotopically, use the
mouse to drag vertices (or crossings) up or down, or drag
wires left or right.

A. Related work

This work builds on the existing theory of ANCs due to Dorn,
Douglas and Vicary [1, 2]. That theory defines signatures
that give families of admissible types, diagrams that encode
composites and homotopies of these types, term normalization
which reduces a diagram to a standard form, and type checking
which verifies whether a normalized diagram is valid. The
tool homotopy.io implements all these core aspects of the
theory, about which we give no further details in this paper.
However, that existing theory does not include the concept of
contraction, or yield any other high-level method for homotopy
construction, motivating our results here.

The theory of ANCs can be seen as a development into

arbitrary dimension of the theory of quasistrict 4-categories
of Bar and Vicary [8], implemented as the proof assistant
Globular by Bar, Kissinger and Vicary [9]. That proof assistant
had a restricted notion of homotopy construction, limited
fundamentally to dimension 4, and could not even in principle
be generalized to arbitrary dimension, where our results apply.

Having in hand a high-level method for homotopy con-
struction in arbitrary dimension, it is interesting to ask for an
algorithm which, given a pair of n-diagrams, either constructs
a correct homotopy between them, or correctly reports that no
such homotopy exists. Such an algorithm was recently given
for the case of 2-diagrams [10], running in quadratic time. The
general case is known to be decidable by work of Makkai [11].

Contractions, as we present them in this paper, are colimit
constructions for sequences of cospans. Spans and cospans
have seen wide application in the theory of higher categories,
in particular by Baez and collaborators [12], Grandis [13],
Morton [14] and Stay [15]; however, in these approaches,
a colimit construction usually yields cospan composition is
often given as a colimit construction. This highlights a key
difference: in our work, we compose cospans just by arranging
them side-by-side, with the colimits—which do not always
exist—instead giving us the high-level contraction structure.

B. Overview of the paper

Our contribution is structured as follows. In Section II we
introduce zigzag categories and explore their properties, cul-
minating in simple definitions of untyped and typed n-dia-
grams. In Section III we give a construction procedure for
colimits on a zigzag category in terms of colimits in the
base category, prove its correctness, and show how this gives
rise to a contraction procedure for diagrams. In Section IV,
we show how contraction works together with some other
simple mechanisms to give a general toolkit for homotopy
construction, and we give a wide range of examples.

C. Notation

For a natural number n P N, we write rns for the totally-
ordered set t0, 1, . . . , n ´ 1u. We use boldface capital letters
A,B,C, . . . for categories. We write 1 for the terminal
category, with unique object ‚ and only the identity morphism,
and Δ for the category of (possibly empty) finite totally-
ordered sets and order-preserving functions.

D. Acknowledgements

We are grateful to Christoph Dorn and Christopher Douglas for
many useful discussions about associative n-categories. The
second author acknowledges funding from the Royal Society.

II. ZIGZAG CATEGORIES

Our theory is based on the notion of zigzag, a reworking and
simplification of the notion of singular interval from [1, 2],
and zigzag maps, corresponding to the notion of limit in that
reference. In this section we develop the theory of zigzags and
their maps, and show how they can be used to give definitions
of untyped and typed n-dimensional diagrams.
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r0 r3s

s0 r3s

r1 r4s

s1 r3s

r2 r3s

s2 r4s

r3 r3s

f0

b0

f1

b1

f2

b2

Fig. 3: Decomposing a 2-dimensional string diagram as a sequence of monotone functions.

A. Motivation

We motivate the theory of zigzags by examining a 2-dimen-
sional string diagram, as illustrated on the left of Figure 3,
drawn in the standard Joyal-Street graphical calculus for
monoidal categories [5, 16], and considering how we could
represent it combinatorially. At 3 distinct heights, the diagram
contains vertices (which we imagine to be pointlike); we call
these the singular heights, and label them s0, s1 and s2.

If we formally remove these heights, we disconnect the
diagram into 4 sections, none of which contain any vertices.
For any such section, the geometrical content of any two
heights will be equivalent; in particular, the number of wires
present at two such heights must be the same, since wires are
only created or destroyed by vertices. So we arbitrarily choose
one height in each of these sections, called the regular heights,
and label them r0, r1, r2 and r3.

We now have 7 chosen heights, and at each of them we
count how many geometrical entities (either vertices or wires)
are present at that height. For example, r0 intersects 3 entities
(all wires), and s2 intersects 4 entities (3 wires and 1 vertex).
These entities form a totally-ordered set in a natural way, in
their order of appearance from left-to-right within each height,
and we write the corresponding totally-ordered set rns at the
right of the diagram.

We then choose a regular height ri, and imagine it converg-
ing to one of its adjacent singular heights sj . This process will
induce an order-preserving function from the entities at height
ri to the entities at height sj , and we write these functions as
f0, b0, f1, b1, etc, to the side of the diagram.

From our original diagram, we have therefore obtained a
family of totally-ordered sets, and monotone functions be-
tween them, with an alternating pattern of directions. This is
an instance of the general theory of singular intervals [1, 2],
and directly motivates the more elementary theory of zigzags,
which we now explore.

B. Zigzags and zigzag maps

Definition 1. In a category C, a zigzag Z is a finite diagram
of the following sort:

r0

s0

r1

s1

¨ ¨ ¨

sn´1

rn

f0 b0 f1 b1 fn´1 bn´1 (1)

We write Zsing “ rns for the ordered set of singular heights,
and Zreg “ rn ` 1s for the ordered set of regular heights.
The objects r0, r1, . . . are called the regular objects, and
the objects s0, s1, . . . are called the singular objects. Such a
zigzag has length n, given by the number of singular heights.
Zigzags of length 0 are allowed, and consist of a single regular
height only, and no morphisms. We write fi : ri ÝÑ si and
bi : ri`1 ÝÑ si for the forward and backward morphisms in
the diagram as indicated, for all i P Zsing. Where it might
be unclear which zigzag Z we are referring to, we will write
rZ
i , sZ

i , fZ
i , bZ

i instead of ri, si, fi, bi.

Before we can define maps of zigzags, we need a short
formal development.

Definition 2. Let p´qT : Δ ÝÑ Δ be the functor that adds

‚‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

Fig. 4: An interleaved illustration of a monotone map
f : r3s ÝÑ r4s in Δ going up the page in red, and f 1 : r5s ÝÑ r4s
in Δ“ going down the page in black.
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r1
0 s1

0 r1
1 s1

1 r1
2 s1

2 r1
3 s1

3 r1
4 s1

4 r1
5

f 1
0 b1

0 f 1
1 b1

1 f 1
2 b1

2 f 1
3 b1

3 f 1
4 b1

4

r0 s0 r1 s1 r2 s2 r3 s3 r4
f0 b0 f1 b1 f2 b2 f3 b3

g0 g1 g2 g3

Fig. 5: A zigzag map diagram g : Z ÝÑ Z 1, running bottom-to-top.

an element “on top” of the total orders, acting on objects as
n ÞÑ n ` 1, and on a monotone map f : rns ÝÑ rms as
fTpnq “ m and fTpiq “ fpiq for 0 ď i ă n.

Definition 3. Given a monotone map f : rns ÝÑ rms, for any
element j P rms in the target, define fěj “ ti P rns|fpiq ě ju
as the elements in the source whose image is above j.

For any monotone map f : rns ÝÑ rms, for any j P rms, note
that that pfTqěj is always nonempty, due to the additional top
element, and thus max

`
pfTqěj

˘
is well-defined.

Definition 4. The category Δ“ has nonzero natural numbers
as objects, and as morphisms n ÝÑ m, monotone maps
rns ÝÑ rms preserving the first and last elements.

Definition 5. The functor p´q1 : Δ ÝÑ Δop
“ acts on objects

as n ÞÑ n ` 1, and acts on morphisms f : rns ÝÑ rms as
f 1pjq “ max

`
pfTqěj

˘
.

We illustrate this in Figure 4, which shows a monotone map
f in red, and its “reversal” f 1 in black.

Lemma 6. The functor p´q1 is an equivalence.

Proof. The functor is clearly surjective on objects. That it is
fully faithful can be seen by inspection of Figure 4: from any
black right-to-left monotone preserving first and last elements,
a red left-to-right monotone can be constructed by “filling in
the gaps”, and vice-versa.

Abusing notation, we also denote the inverse of this functor
Δ“ ÝÑ Δ by p´q1, restricting its use in this way to situations
where there is no ambiguity.

We now use this technology to define maps of zigzags.

Definition 7. In a category C, a zigzag map f : Z ÝÑ Z 1

comprises a monotone function fsing : Zsing ÝÑ Z 1
sing, and

for each i P Zsing a morphism fi : si ÝÑ s1
fsingpiq. Defining

freg “ pfsingq1 : Z 1
reg ÝÑ Zreg, we then require that the

diagram constructed as follows, which can always be laid out
in a planar way, is commutative:

(1) Take the disjoint union of Z and Z 1 as diagrams in C.

(2) For every i P Zsing, add the arrow fi to the diagram,
going from s P Zsing to fsingpsq P Z 1

sing.
(3) For every j P Z 1

reg, add an identity arrow to the diagram,
between j P Z 1

reg and fregpjq P Zreg.

This construction is quite simple to use in practice. We
illustrate it in Figure 5. Informally, it amounts to the following.
(1) Draw the zigzags Z and Z 1 one above the other. (2) For
each singular object of Z, add an arrow to some singular
object of Z 1, such that the implied function Zsing ÝÑ Z 1

sing

is monotone. (3) In the spaces between these arrows, add all
possible equalities between regular objects of Z and Z 1.

In the example of Figure 5, Z has length 4 and Z 1 has length
5, with g : Z ÝÑ Z 1 running bottom-to-top. The monotone
gsing : r4s ÝÑ r5s acts as 0 ÞÑ 0, 1 ÞÑ 1, 2 ÞÑ 1 and 3 ÞÑ 4,
with the morphisms g0, g1, g2 and g3 having source and target
objects as indicated. The equalities between regular heights
force equalities of regular objects r0 “ r1

0, r1 “ r1
1, r3 “

r1
2 “ r1

3 “ r1
4, and r4 “ r1

5. The diagram is formed from 9
squares, all of which must commute, leading in this case to
the requirements f 1

0 “ g0 ˝ f0, f 1
0 “ g0 ˝ b0, f 1

1 “ g1 ˝ f1,
f1 ˝ b1 “ g2 ˝ f2, b1

1 “ g2 ˝ b2, f 1
2 “ b1

2, f 1
3 “ b1

3, b1
4 “ g3 ˝ f3,

and f 1
4 “ g3 ˝ b3.

Zigzags and their maps form a category in the obvious way.

Definition 8. Given a category C, the zigzag category ZC

is defined to have zigzags as objects and zigzag maps as
morphisms.

Composition, associativity and units are clear. We will often
be interested in iterating this construction, as follows.

Definition 9. Given a category C, the iterated zigzag category
Zn

C is the category obtained by starting with the category C,
and taking the zigzag category n times.

Every zigzag category has forgetful functors to Δ and Δop
“ .

Definition 10 (Regular and singular monotone functors). For
a category C, the singular monotone functor SC : ZC ÝÑ Δ
acts as SCpZq “ Zsing and SCpfq “ fsing, and the regular
monotone functor RC : ZC ÝÑ Δop

“ acts as RC “ p´q1 ˝ SC.
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Example 11. Starting with the terminal category 1, we see
that Z1 “ Δ, the singular monotone functor S1 : Δ ÝÑ Δ is
the identity, and the regular monotone functor R1 “ p´q1.

C. Untyped and typed diagrams

We can use zigzag categories to give a straightforward notion
of untyped n-diagram, yielding an elementary untyped version
of the diagrams which form the terms of the theory of
associative n-categories [1].

Definition 12. An untyped n-diagram is an object of the
iterated zigzag category Zn

1 .

We explore this definition through the following examples,
illustrated in Figure 6.

Example 13. The only untyped 0-diagram is ‚, the point.

Example 14. An untyped 1-diagram is an object of Z1 “ Δ,
a finite ordinal. So the only parameter is the length of the
composite.

Example 15.An untyped 2-diagram is an object of ZZ1 “ ZΔ.

Note in particular that the untyped 2-diagram illustrated in
Figure 6(c) corresponds exactly to the example of Figure 3,
which motivated our construction in the first place.

To develop the theory of typed diagrams, suppose that L is
a set of labels equipped with an arbitrary dimension function
d : L ÝÑ N. The intuition is that L is a set of generators for
a higher category, and the dimension function assigns to each
generator its dimension as a cell. We can then build a poset
L, whose objects are elements of the set L, and where for any
l, l1 P L, there is a morphism l ÝÑ l1 in L just when l “ l1 or
dimplq ă dimpl1q. We can use this to give a generalization of
Definition 12 appropriate for the typed setting.

Definition 16. For a set of types L equipped with a dimension
function d : L ÝÑ N, an L-typed n-diagram is an object of the
iterated zigzag category Zn

L .

An L-typed n-diagram is a similar structure to an untyped
n-diagram, except that every “bottom-level point” is assigned
an element of the label set L, in a way which is arbitrary,
except that as we pass from one type to another along a
zigzag map, the types must either stay the same, or increase
in dimension. Indeed, it is clear that if we choose L “ t‚u
with dimension function ‚ ÞÑ 1, we we recover the theory of
untyped n-diagrams as a special case.

The full theory of associative n-categories [1, 2] has a no-
tion of type signature Σ, which defines a set of type labels |Σ|,
and for each label l P |Σ| a canonical neighbourhood. There is
then a type checking scheme, which takes as input a |Σ|-typed
n-diagram, and returns a boolean, indicating whether or not
it is well-typed with respect to Σ; that is, whether for every
instance of every type label in the diagram, its neighbourhood
in the diagram normalizes to its canonical neighbourhood.
We do not discuss this further, as our contraction procedure
operates just at the level of the categories Zn

L .

In the remainder of the paper, the n-diagrams we will draw
will be typed, and therefore objects of Zn

L for some label set
L, about which we will not give details. (It can be assumed
that L is sufficiently large to label all the distinct types of
regions, wires and vertices that appear in the diagram.) We will
generally use the more attractive “type notation” of Figure 3
for these diagrams, rather than the bare “untyped notation”
of Figure 6. In these n-diagrams, which we typically draw in
a 2-dimensional projection, vertices correspond to labels of
dimension n, wires correspond to labels of dimension n ´ 1,
and regions correspond to labels of dimension at most n ´ 2.

D. Further zigzag constructions

Here we collect some further technical results on zigzags and
zigzag maps, which will be used later.

There is an obvious way in which zigzags can be concate-
nated, by gluing their diagrams horizontally.

Definition 17 (Zigzag concatenation). In a category C, given
zigzags Z,Z 1 such that the last regular object of Z equals
the first regular object of Z 1, their concatenation is the zigzag
Z ˝ Z 1 of length nZ ` nZ1

, obtained by drawing Z to the left
of Z 1 such that their last and first regular level respectively
coincides. For any such Z,Z 1, given zigzag maps f : Z ÝÑ Y
and f 1 : Z 1 ÝÑ Y 1, we can also concatenate f and g in a
precisely analogous way, yielding f ˝ g : Z ˝ Z 1 ÝÑ Y ˝ Y 1.

These compositional properties are perhaps unsurprising, given
that we will use zigzags as the foundation of our approach to
associative n-categories. Also note that zigzag concatenation
is strictly associative, a property that is inherited by the theory
of associative n-categories for composition in all dimensions.

Functors on base categories extend to zigzag categories, and
the zigzag construction as a whole extends to Cat. We omit
the proofs, which are straightforward.

Lemma 18 (Zigzag functors). A functor F : C ÝÑ D extends
to a zigzag functor ZF : ZC ÝÑ ZD, acting on objects by
direct application to all objects and morphisms in the zigzag
diagram, and on morphisms by direct application to the entire
commutative diagram defining the zigzag map. Furthermore,
if F is fully faithful, so is ZF .

Lemma 19. The zigzag construction extends to a functor
Z : Cat ÝÑ Cat, mapping categories to zigzag categories,
and functors to zigzag functors.

The equalities in step (3) of Definition 7 give a strong
restriction on which zigzags can have maps between them.
In particular, if f : Z ÝÑ Z 1 is a zigzag map, then the first
and last regular objects of Z and Z 1 must be the same. This
yields a natural partition of ZC into a disjoint union of full
subcategories, as follows.

Definition 20 (Local zigzag category). Given a category C
with chosen objects A,B, the local zigzag category ZCpA,Bq
is the full subcategory of ZC containing zigzags whose first
regular object is A, and whose last regular object is B.

5



(a) An untyped 0-diagram. (b) An untyped 1-diagram. (c) An untyped 2-diagram.

Fig. 6: Examples of untyped diagrams.

Lemma 21 (Decomposition). ZC “
š

A,BPObpCq ZCpA,Bq.

Zigzag maps are defined in terms of the construction of a
commutative diagram. This construction is important, and we
emphasize it with the following definition.

Definition 22. Given a zigzag map f : Z ÝÑ Z 1, its zigzag
map diagram is the corresponding diagram (as presented in
Figure 5) with which it was defined.

This gives us a formal way to project diagrams in ZC to give
diagrams in C, which we illustrate in Figure 7.

Definition 23. For a diagram D : J ÝÑ ZC, its deconstruction
D˚ : J˚ ÝÑ C is the diagram obtained by taking the union of
the diagrams of the zigzag maps Dpfq for all f P MorpJq.

More precisely, the objects of the deconstructed diagram
category J˚ are given by a choice of j P ObpJq, and a
choice of a regular or singular height of Dpjq; we write such
an object as

`
j, r

Dpjq
i

˘
or

`
j, s

Dpjq
i

˘
, where r

Dpjq
i P Dpjqreg

and s
Dpjq
i P Dpjqsing. The morphisms of J˚ are given by

adding for all j P ObpJq and i P Dpjqsing morphisms

Z
Z2

Z 1

h

g  

r2

s1 r2
2

r1 s2
1

s0 r2
1

r0 s2
0

r2
0

r1
1

s1
0

r1
0

b1

g1

h1

b2
1

f1

b1

g0

h0

f2
1

b2
0

f0

f2
0

b1
0

f 1
0

Fig. 7: The deconstruction of a diagram in ZC, given as a
diagram in C.

pj, rDpjq
i q ÝÑ pj, sDpjq

i q ÐÝ pj, rDpjq
i`1 q, and for all f P MorpJq

with f : j ÝÑ j1, additional morphisms between singu-
lar heights

`
j, s

Dpjq
i

˘
ÝÑ

`
j1, s

Dpj1q
Dpfqsingpiq

˘
and regular heights`

j1, r
Dpj1q
i

˘
ÝÑ

`
j, r

Dpjq
Dpfqregpiq

˘
.

Given a zigzag map f : Z ÝÑ Z 1, we can restrict it to some
contiguous subset of Z 1

reg. We illustrate this idea in Figure 8,
and develop it formally as follows. Here and throughout, the
function freg : Z 1

reg ÝÑ Zreg is understood to act on pairs
a, b P Z 1

reg elementwise.

Definition 24 (Zigzag restriction). For a zigzag Z and a pair
a, b P Zreg with a ď b, the restricted zigzag Zpa,bq is that part
of the zigzag diagram for Z that includes the regular objects
ra and rb, and everything in between.

Definition 25 (Zigzag map restriction). For a zigzag map
f : Z ÝÑ Z 1 and a, b P Z 1

reg with a ă b, the restricted zigzag
map fpa,bq : Zfregpa,bq ÝÑ Z 1

pa,bq is that part of the zigzag map
diagram for f that includes the zigzag diagrams for Zfregpa,bq

and Z 1
pa,bq, and the morphisms going between these parts.

III. CONTRACTION

We define contraction as follows.

Definition 26. Given a zigzag in C, we define its contraction
to be the zigzag of length 1 arising from the colimit in C, if

r1
0 s1

0 r1
1 s1

1 r1
2 s1

2 r1
3 s1

3 r1
4

r0 s0 r1 s1 r2 s2 r3 s3 r4

Fig. 8: The restriction of a zigzag map f : Z ÝÑ Z 1 (the
entire diagram) to the regular heights 1, 2 P Z 1

reg, yielding
fp1,2q : Zp1,3q ÝÑ Z 1

p1,2q, (drawn in black.)
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it exists, of its zigzag diagram:

r0

s0

r1

s1

¨ ¨ ¨

sn´1

rn

f0 b0 f1 b1 fn´1 bn´1

C

c0 c1 cn´1¨ ¨ ¨

(2)

Given the structure of a zigzag diagram, we of course only
need to define the cocone maps for the singular objects. If
the colimit exists, then the contraction is defined to be the
following zigzag in C of length 1:

r0 rn

C
c0 ˝ f0 cn´1 ˝ bn´1

(3)

If the colimit does not exist, then the contraction is not
defined. For our intended application this will frequently be the
case, as the categories Zn

L that we will be working with lack
many colimits. We can interpret this as saying that contraction
is nontrivial, and not always possible for an n-diagram.

Remark 27. In such a zigzag colimit diagram, note that the
first and last regular objects r0 and rn, and their associated
morphisms f0 and bn´1, do not affect the colimit. When it
simplifies the narrative to do so, we will ignore them in our
formal developments below.

A. Constructing zigzag colimits

Given a connected diagram in ZC, we build its colimit, or
detect that such a colimit does not exist, by the following
scheme. This scheme, and its correctness proofs, are the main
mathematical contributions of this paper. Note that we do not
assume that C itself has any particular colimits; but if C has
few colimits, then the same will be true for ZC.

Definition 28 (Zigzag colimit). For a category C with
a terminal object, given a non-empty connected diagram
D : J ÝÑ ZC, we build its colimit, or fail, according to the
following scheme. To fix notation, we write C for the final
colimit zigzag that we are trying to construct, and for each
j P ObpJq, we write f j : SCDpjq ÝÑ C for the corresponding
cocone zigzag map.

(1) Build the diagram J DÝÑ ZC
SCÝÝÑ Δ, and obtain its

colimit. If no colimit exists, fail.
(2) Otherwise, we have a colimit object c P ObpΔq, and

cocone monotone functions cj : SCDpjq ÝÑ c for every
j P ObpJq.

(3) We choose the zigzag C to have length c, and we choose
the monotone functions pf jqsing “ cj .

(4) We now perform the following subconstruction for each
k P rcs, as follows.

(i) Restrict the diagram D : J ÝÑ ZC to a dia-
gram Dk : J ÝÑ ZC, by defining Dkpjq on an object

j P ObpJq as the restricted zigzag Dpjqc1
jpk,k`1q, and

similarly on morphisms.5

(ii) Build the deconstruction pDkq˚ : J˚ ÝÑ C,6 and obtain
its colimit. If no colimit exists, fail.

(iii) Otherwise, we have a colimit object p P ObpCq,
and for any j P ObpJq and i P Dpjqsing, a cocone
morphism of type pj

i : pDkq˚pj, sDpjq
i q ÝÑ p.

(iv) Build a zigzag Ck of height 1 as follows. Choose some
j P ObpJq with Dkpjqsing “ m ą 0.7 Define the
forward map as fCk

0 “ pj
0 ˝ f

Dkpjq
0 , and the backward

map as bCk
0 “ pj

m´1 ˝ b
Dkpjq
m´1 . Hence obtain rCk

0 and
rCk
1 as the sources of fCk

0 and bCk
0 respectively. We

set sPk
0 “ p.

(v) For a fixed j P ObpJq, build a zigzag map of type
f j,k : Dkpjq ÝÑ Ck by choosing the monotone map
as the unique one of type Dkpjqsing ÝÑ r1s, and by
choosing the singular morphisms at source singular
height i as pj

i .

(5) Build the colimit zigzag C as the concatenation of the
length-1 zigzags Ck.8

(6) For each value of j, build the cocone zigzag map f j as
the concatenation of the zigzag maps f j,k for k P rcs.

This completes the description of the colimit construction
scheme. The correctness proofs follow in Section III-C.

We illustrate this procedure in Figure 9, which shows the
computation of a pushout in ZC. The top-left, bottom-left
and top-right zigzags are given, as well as the maps between
them. The length of the bottom-right zigzag, and its incoming
monotone maps, are determined by taking a pushout in Δ.
The regular objects of the bottom-right zigzag are completely

5Recall Definition 5 of p´q1 : Δ ÝÑ Δop
“ .

6Recall Definition 23 of the deconstruction procedure.
7Such a j must exist, since a colimit in Δ of empty sets is empty.
8Recall Definition 17 of concatenation of zigzags and their maps.

r2

s2 r2

r1 s2
2

s1 r2

r0 s2
1

r0

r2 r2

s1
1 rs2

r0 r2

rs1

r0

Fig. 9: A pushout in ZC.
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determined by the incoming maps, and the singular objects
are computed as colimits over the ‘incoming diagrams’:

rs1 “ colim

¨

˚
˚
˚
˚
˚
˚
˚
˚
˚
˝

s2

r1

s1 s2
1

s1
1

˛

‹
‹
‹
‹
‹
‹
‹
‹
‹
‚

rs2 “ s2
2

The morphisms into the singular objects are given by the
obvious morphisms into the colimits.

In the implementation homotopy.io, this colimit construction
scheme provides the main recursive algorithm for performing
contractions of typed diagrams, as objects of Zn

L. While we do
not go into detail regarding the implementation, it is at least
worth noting that termination is clear, since colimits in the base
category L can be trivially computed, and for a finite diagram,
this colimit construction scheme involves only finitely many
loops, with all recursion being to strictly lower-dimensional
instances.

B. Examples

We already encountered some nontrivial examples of contrac-
tions, in Figures 1 and 2. We give some further examples
here. In the online versions of the proofs, you can view the
contraction yourself by changing the setting of the “Slice”
control in the top-right, or perform the contraction yourself
(where possible), using the mouse to drag one of the vertices
vertically towards the centre of the diagram.

Example 29 (Link to online proof). Here we perform a
contraction in Z2

L of a zigzag of length 2, containing 2 vertices.
In the contracted diagram, these vertices are at the same height.

 (4)

Example 30 (Link to online proof). In this non-example, again
in Z2

L, the colimit construction procedure fails at step (1), since
the diagram J DÝÑ ZC

SCÝÝÑ Δ has image r1s ÐÝ r0s ÝÑ r1s,
which does not have a colimit:

(5)

To understand why this contraction does not exist, consider
that, if it could be constructed, the resulting unique singular
height would have to contain 2 vertices, with one to the left
of the other, as follows:

(6)

However, the colimit construction algorithm has no way to
“break the symmetry”, and cannot proceed. The implementa-
tion homotopy.io uses some additional techniques which allow
us to break the symmetry here; in the online proof, we apply
these techniques by dragging the upper vertex of (5) in a south-
east or south-west direction, to produce the two images given
in (6).

Example 31 (Link to online proof). If we modify the previous
example by putting a wire in between the vertices, the diagram
will now contract successfully:

 (7)

This is because the colimit diagram in Δ now has the image
r2s 0 ÞÑ1ÐÝÝÝ r1s 0 ÞÑ0ÝÝÝÑ r2s, which does have a colimit.

Suppose that we are taking the contraction of a typed
n-diagram D—that is, an object of Zn

L—which is well-typed
with respect to some signature Σ (see Section II-C for a brief
discussion of type checking.) Even if the contraction of D
exists, yielding a new object D1 of Zn

L , it does not follow
that D1 will again be well-typed with respect to Σ; the entire
contraction D ÝÑ D1 must be passed through the type checker
to verify this. We show such an example here.

Example 32 (Link to online proof). In this example, again in
Z2

L, we contract a zigzag of length 2, as follows:

 (8)

Here we “fuse” two endomorphisms on a wire into a sin-
gle endomorphism, with the colimit construction procedure
successfully returning the right-hand diagram. Both of these
diagrams type check, but the contraction process as a whole
does not, because homotopies may only “move” parts of the
diagram around, not change the structure of individual labels.
As a result, in the online proof, clicking and dragging either
of the two vertices will have no effect, as the contraction
above will be silently blocked by the type checker. This shows
the way that contraction and type checking interact in the
implementation.

C. Correctness

Theorem 33. Let C be a category with a terminal object and
let D : J ÝÑ ZC be a non-empty connected diagram. Then,
D has a colimit if and only if the procedure in Definition 28
succeeds (that is, if the colimits in step (1) and (4.ii) exist),
and the procedure constructs it.

Remark 34. Since the category ZC is a disjoint union of
local zigzag categories ZCpa, bq for objects a, b in C (see

8
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http://www.cs.bham.ac.uk/~vicaryjo/homotopy.io/lics2019/contraction_example_2.html
http://www.cs.bham.ac.uk/~vicaryjo/homotopy.io/lics2019/contraction_example_1.html


Definition 20), and since Theorem 33 applies to connected
non-empty diagrams, it is also true as stated for the categories
ZCpa, bq replacing ZC. Moreover, note that if C is a category
with a terminal object ˚, then ZCpa, bq has a terminal object
(namely, the zigzag a ÝÑ ˚ ÐÝ b). Since all categories of
diagrams may be obtained as iterated local zigzag categories,
Theorem 33 holds for such categories.

We prove Theorem 33 in two steps. First, we show that if
the colimits in step (1) and (4.ii) exist, then the constructed
cocone is indeed colimiting. Then, we prove that if a colimit
of a diagram D : J ÝÑ ZC exist, then the colimits in step (1)
and (4.ii) must also exist.

D. The procedure correctly computes colimits

We prove the first part of Theorem 33: If the colimits in
step (1) and (4.ii) exist, then the constructed cocone is indeed
a colimiting cocone of the diagram D : J ÝÑ ZC.

The proof boils down to the following categorical fact: given
a (Grothendieck) opfibration F : A ÝÑ B, then colimits in A
can be computed in terms of colimits in B and in the fibre
categories F ´1pbq for objects b P B.

Opfibrations and colimits. We recall the following termi-
nology. Given a functor F : A ÝÑ B, a morphism φ : a ÝÑ a1

in A is called opcartesian if for any morphism ψ : a ÝÑ a2 in
A and g : F pa1q ÝÑ F pa2q in B such that g ˝ F pφq “ F pψq,
there exists a unique χ : a1 ÝÑ a2 such that χ ˝ φ “ ψ and
F pχq “ g. A functor F : A ÝÑ B is an opfibration if for
any a P A and h : F paq ÝÑ b in B, there is a opcartesian
morphism φ : a ÝÑ a1 with F pφq “ h. For an opfibration
F : A ÝÑ B and an object b P B, the fibre category F ´1pbq
is the subcategory of A with objects and morphisms mapping
to b and idb, respectively. Given a morphism σ : b ÝÑ b1 in
B, the base change functor σ˚ : F ´1pbq ÝÑ F ´1pb1q maps an
object a in the fibre over b to the codomain of the opcartesian
morphism lifting σ : Fa ÝÑ b1 and a morphism f : a ÝÑ a1 over
idb to the morphism σ˚a ÝÑ σ˚a1 obtained from opcartesianity
of the lift of σ : Fa ÝÑ b1.

We recall the following basic fact about opfibrations.

Proposition 35. Let F : A ÝÑ B be an opfibration and let
D : J ÝÑ A be a diagram such that FD has a colimit. If
all fibres have J-colimits and the base change functor σ˚ :
F ´1pbq ÝÑ F ´1pb1q preserves them for all σ : b ÝÑ b1 in B,
then D has a colimit and F preserves it.

This proposition is proven later as Proposition 42.
Explicitly, we can compute this colimit in terms of the

colimit of FD : J ÝÑ B as follows: Lift the universal cocone
morphisms λj : FDj ÝÑ colimFD to opcartesian morphisms

φj : Dj ÝÑ λj
˚pDjq, where F

´
λj

˚pDjq
ˉ

“ colimFD.

Opcartesianity of φj gives rise to morphisms λσ : λj
˚pDjq ÝÑ

λj1

˚ pDj1 q for σ : j ÝÑ j1 in J, making this into a diagram
J ÝÑ F ´1pcolimFDq. A colimiting cocone μj : λj

˚pDjq ÝÑ X
of this diagram J ÝÑ F ´1pcolimFDq induces a colimiting
cocone μj ˝ φj : Dj ÝÑ X of D.

SC is an opfibration for cocomplete C. Given a zigzag Z
(drawn on the left) with a chosen regular object (here labelled
r), we define a new zigzag rZ (drawn on the right) in which
the regular object is ‘expanded’ into two regular objects, and
a morphism of zigzags Z ÝÑ rZ as follows:

...

... s1

s1 r

r r

s2 r

... s2

...

ids1

idr

ids2

idr

If C is cocomplete, and Z is a zigzag with a chosen pair
of adjacent singular objects (here labelled s1 and s2 on the
left), we define a new zigzag rZ in which the singular objects
are ‘collapsed’ into a single singular object, given by the
pushout of s1 and s2 over the intermediate regular object,
and a morphism Z ÝÑ rZ:

...

r1

...

s1 r1

r s1 \r s2

s2 r2

r2

...

...

Given a zigzag Z and a monotone map h : Zsing ÝÑ I into
some finite totally ordered set I , we iterate these operations to
produce a zigzag rZ of length |I| and a morphism of zigzags
rh : Z ÝÑ rZ with underlying monotone map rhsing “ h
as illustrated in the following example lifting the constant
monotone map t1 ă 2 ă 3u ÝÑ t1 ă 2 ă 3u, x ÞÑ 1:

r0 r0

s1 s1 \r1 s2 \r2 s3

r1 r3

s2 r3

r2 r3

s3 r3

r3 r3

Here, the left zigzag and the underlying monotone map are
given; the right zigzag and the map of zigzags are produced
by ‘expanding’ and ‘collapsing’. This ability to ‘lift’ monotone
maps h : Zsing ÝÑ I to maps of zigzags leads to the following
proposition.

Proposition 36. If C is cocomplete, then the singular mono-
tone functor SC : ZC ÝÑ Δ is an opfibration.

Proof. Given a zigzag Z and a monotone map h : Zsing ÝÑ I
into some totally ordered set I , we lift h to a map of zigzags
rh : Z ÝÑ rZ obtained by ‘collapsing’ and ‘expanding’ Z, as
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described above. The fact that rh is opcartesian corresponds
precisely to the universal property of the colimits in the
collapse operation.

For a finite totally ordered set I , the fibre category S´1
C pIq is

the category of zigzags of length |I| with morphisms the maps
of zigzags whose underlying monotone map is the identity.
Explicitly, this category is the disjoint union

ğ

riPobC for iPI

ą

0ďiď|I|´1

pri, ri`1q{C,

where pa, bq{C denotes the over-category whose objects are
pairs of morphisms pa ÝÑ x, b ÝÑ xq and morphisms pa ÝÑ
x, b ÝÑ xq ÝÑ pa ÝÑ y, b ÝÑ yq are morphisms x ÝÑ y making
the obvious triangles commute.

Given a monotone map λ : I ÝÑ J , the induced base change
functor S´1

C pIq ÝÑ S´1
C pJq maps a zigzag of length |I| to a

zigzag of length |J | by expanding and collapsing according to
the monotone map λ.

Corollary 37. Let C be cocomplete and let D : J ÝÑ ZC be a
connected, non-empty diagram such that SCD has a colimit.
Then, D has a colimit C, which is preserved by SC, and which
can be explicitly constructed as follows:

1) Construct a colimit Csing of SCD with colimiting cocone
f j
sing : Dj

sing ÝÑ Csing.
2) For every j P J, ‘expand’ and ‘collapse’ the zigzag Dj to

a zigzag rDj of length |Csing| according to the monotone
map f j

sing : Dj
sing ÝÑ Csing. This gives rise to a diagram

rD : J ÝÑ ZC in which every zigzag has the same length
and every morphism of zigzags has underlying identity
monotone map.

3) For every singular height i P Csing, let si be the colimit in
C over the diagram rD|i : J ÝÑ C obtained by restricting
the diagram rD : J ÝÑ ZC to the singular objects at height
i and the morphisms between them (recall that all maps
of zigzags in the image of rD have underlying identity
monotone map).

4) For every regular height i P pCsingq1 “ Creg, define the
regular object ri to be equal to the regular object of rDj

at height i for some (and hence any) j P J.
5) Define the forward and backward morphisms of C and

the singular morphisms of f j : Dj ÝÑ C as the obvious
morphisms into the colimits si.

Proof. The fibre S´1
C pIq has all connected colimits since

connected colimits in over-categories can be constructed as
colimits in the original category C in the obvious way. The
base change functors can be factored into functors expanding
a single regular object or collapsing a pair of adjacent singular
objects. Explicitly, the corresponding base change functors are
of the form

¨ ¨ ¨ ˆ idpri´1,riq{C ˆ ri ˆ idpri,ri`1q{C ˆ ¨ ¨ ¨ ,

where ri : ˚ ÝÑ pri, riq{C picks out the object ri
idriÝÝÑ ri

idriÐÝÝ
ri, and

¨ ¨ ¨ ˆ idpri´2,ri´1q{C ˆ p´ \ri ´q ˆ idpri`1,ri`2q{C ˆ ¨ ¨ ¨ ,

where ´\ri ´ : pri´1, riq{Cˆpri, ri`1q{C ÝÑ pri´1, ri`1q{C
takes the pushout of the inner span. It is clear that both functors
preserve connected, non-empty colimits.

It therefore follows from Proposition 35 that D has a colimit
which is preserved by SC and is constructed as described.

Colimits in SC if C is not cocomplete. Categories of
typed or untyped diagrams—such as the category Δ “ Z1,
or iterated zigzag categories on Δ—are far from cocomplete.
In particular, Corollary 37 does not hold in this setting.

Recall that we have ‘collapsed’ singular objects by taking
a colimit in C, and have later again taken colimits in C to
compute the colimit of the diagram in the fiber. In other words,
we have computed the colimit of J ÝÑ ZC by first computing
the colimit Csing in Δ and then, for every i P Csing, taking
several consecutive colimits in C. If C is not cocomplete, it is
possible that some of these intermediate colimits do not exist,
even if the overall colimit does exist. We can avoid this issue
by only ‘formally’ taking intermediate colimits. This can be
formalized by passing to the free completion of C, as follows.

Let y : C ÝÑ pC :“ rC, Setsop denote the ‘dual’ Yoneda
embedding of C. The functor y has the convenient property
that it preserves and reflects all colimits; in particular, a
diagram D : J ÝÑ C has a colimit if and only if the colimit
of the diagram yD : J ÝÑ pC is representable (that is, is in the
essential image of y.) Moreover, y gives rise to a fully faithful
functor Zy : ZC ÝÑ Z pC.

Proposition 38. Let D : J ÝÑ ZC be a connected, non-empty
diagram such that the colimits in step (1) and (4.ii) of Defini-
tion 28 exist. Then the cocone constructed in Definition 28 is
colimiting.

Proof. It follows from the existence of the colimit in step (1)
and Corollary 37 that the composite J ÝÑ ZC ãÑ Z pC has
a colimiting cocone, constructed as in Corollary 37. The
existence of the colimits in step (4.ii) of Theorem 33 imply
that the singular objects of the constructed zigzag (constructed
in step 3 of Corollary 37) are representable. Hence, the
constructed cocone is in the image of the fully faithful
Zy : ZC ÝÑ Z pC, and is therefore a colimit of J ÝÑ ZC.

E. The procedure detects all colimits

We now prove the second part of Theorem 33: if a connected,
non-empty diagram D : J ÝÑ ZC has a colimit, then the
colimits in step (1) and (4.ii) of Definition 28 exist.

Proposition 39. Let C be a category with a terminal object.
The functor SC : ZC ÝÑ Δ preserves connected colimits.

Proof. Given a set X , we define Δ“pXq as the following
generalization of the category Δ“ from Definition 4: its
objects are pairs pO, fq of a non-empty totally ordered set
O and a function f : O ÝÑ X , and its morphisms pO, fq ÝÑ
pO1, f 1q are regular monotone maps ρ : O ÝÑ O1 such that
f 1 ˝ ρ “ f . Note that Δ“pXq is the comma category F {X ,
where F : Δ“ ÝÑ Set is the forgetful functor.

The regular monotone functor RC : ZC ÝÑ pΔ“qop factors
through a functor L : ZC ÝÑ pΔ“pobCqqop mapping a zigzag
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Z to its totally ordered set of regular objects Zreg together
with the function Zreg ÝÑ obC, i ÞÑ ri. We construct a right
adjoint R : pΔ“pobCqqop ÝÑ ZC as follows. The functor R
maps an object pO, fq to the zigzag of length |O| with regular
objects determined by f and with singular objects given by
the terminal object of C. It maps a morphism λ : pO, fq ÝÑ
pO1, f 1q to the unique morphism of zigzag with underlying
regular monotone map λ. The natural transformation

HomZCpZ,RpO, fqq ÝÑ HomΔ“pobCqppO, fq,LAq

mapping a map of zigzags Z ÝÑ RpO, fq to its underlying
regular map is a natural isomorphism. Hence, R is right adjoint
to L and in particular, L : ZC ÝÑ pΔ“pobCqqop preserves
colimits.

Therefore, to show that SC : ZC ÝÑ Δ preserves connected
colimits, it suffices to show that the composite functor

pΔ“pobCqqop ÝÑ pΔ“qop p´q1

ÝÝÝÑ Δ

preserves connected colimits. Since p´q1 is an equivalence, it
suffices to show that Δ“pobCq ÝÑ Δ“ preserves connected
limits. Since Δ“pobCq “ F {X is a comma category, this
follows from Proposition 43.

Corollary 40. Let C be a category with a terminal object. The
functor ZC ÝÑ Z pC preserves connected, non-empty colimits.

Proof. Let D : J ÝÑ ZC be a connected non-empty diagram,
and let aj : Dj ÝÑ C be a colimiting cocone. By Propo-
sition 39, the cocone cj

sing : Dj
sing ÝÑ Csing is colimiting

in Δ. By Corollary 37, the composite J ÝÑ ZC ÝÑ Z pC has
a colimiting cocone pcj : Dj ÝÑ pC. In particular, there is a
morphism of cocones μ : pC ÝÑ C in Z pC . In the following, we
show that μ is an isomorphism.

Since μsing : pCsing ÝÑ Csing is a morphism of cocones`
Dj

sing ÝÑ pCsing

˘
ÝÑ

`
Dj

sing ÝÑ Csing

˘
, and since both

cocones are colimiting, it follows that μsing is the identity
and that cj

sing “ pcj
sing. Denote the regular objects of C by

r0, . . . , rn. Since there is a morphism μ : pC ÝÑ C with
μsing “ id, it follows that the regular objects of pC are also
r0, . . . , rn. In particular, the morphism μ can be understood as
a morphism in the category pE :“

Ś
ipri, ri`1q{ pC. Denoting

E :“
Ś

ipri, ri`1q{C, we observe that the obvious functor
pE ÝÑ rE, Setsop is an equivalence.

Let E be an object of E—or equivalently, a zigzag with
regular objects r0, . . . , rn and singular objects in C—and
let λ : pC ÝÑ E be a morphism in pE. Then, the composite
λ ˝ pcj : Dj ÝÑ E is a cocone of J ÝÑ ZC. In particular, there
is a unique morphism φ : C ÝÑ E in ZC such that λ˝pcj “ φ˝
cj “ φ˝μ˝pcj , or equivalently such that λ “ φ˝μ. Applying the
singular monotone functor SC and using that λsing “ μsing “
id, it follows that φsing “ id. We can therefore summarize
the preceding paragraph as follows: given an object E of E
and a morphism λ : pC ÝÑ E in pE, there is a unique morphism
φ : C ÝÑ E in E such that λ “ φ ˝μ. Since pE is equivalent to
the free completion rE, Setsop of E, this means that pC is in
the essential image of E ÝÑ pE and hence isomorphic to C.

Corollary 41. Let C be a category with a terminal object and
let J ÝÑ ZC be a connected, non-empty diagram admitting a
colimit. Then, the colimits in step (1) and (4.ii). of Defini-
tion 28 exist.

Proof. The colimit in step (1) exists since the singular mono-
tone functor SC : ZC ÝÑ Δ preserves connected, non-empty
colimits (Proposition 39.) The existence of the colimit in
step (4.ii) is equivalent to the representability of the singular
objects in step 3 of Corollary 37. This follows since ZC ÝÑ Z pC
preserves connected, non-empty colimits (Corollary 40.)

We can now give a proof of Theorem 33.

Proof of Theorem 33. Proposition 38 asserts that if the pro-
cedure succeeds, then the cocone constructed in Definition 28
is colimiting. Conversely, Corollary 41 shows that if D : J ÝÑ
ZC has a colimit, then the procedure succeeds.

F. Additional results

Here we state without proof two technical results which we
rely on for the above development.

Here we prove two categorical results used in the main
paper, which we expect to be known to experts.

Proposition 42. Let F : A ÝÑ B be a Grothendieck
opfibration and let D : J ÝÑ A be a diagram such that
FD has a colimit. If all fibres have J-colimits and the base
change functor σ˚ : F ´1pbq ÝÑ F ´1pb1q preserves them for
all σ : b ÝÑ b1 in B, then D has a colimit and F preserves it.

Proposition 43. Let F : C ÝÑ D be a functor and let X be
an object of D. Then, the forgetful functor F {X ÝÑ C from
the comma category into C preserves connected limits.

IV. HOMOTOPY CONSTRUCTION

Here we show that contraction can be used as a general
technique to construct nontrivial homotopies. In particular,
we analyze the 4-dimensional “naturality” homotopy, and
the 5-dimensional “naturality of naturality” homotopy. We
first introduce some simple additional techniques, which are
used together with contraction in the tool to produce these
examples.

The examples come with direct links to the formalized
proofs in the online proof assistant homotopy.io, where the in-
terested reader can investigate them. To explore them, change
the parameters of the “Slice” control at the top-right. You
can also manipulate them directly; for example to execute a
homotopy, use the mouse to drag a vertex (or a crossing) up
or down, or drag a wire to the left or right. Further guidance
on using the tool is available on the nLab [7].

As well as contraction, the tool makes use of some simple
additional recursive methods for homotopy construction meth-
ods, which involve contraction or its opposite in a slice of the
diagram.
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A. Naturality (Link to online proof)

Here we build the following “naturality” homotopy, during
which a vertex moves through a braiding, as the following
zigzag of length 1 in Z3

L (or equivalently, as an object of Z4
L):

ÝÑ ÐÝ (9)

To construct this homotopy, we begin by following the steps
illustrated in Figure 10, yielding a proof which is a length-5
zigzag in Z3

L. Each of these steps is obtained by contracting, or
performing one of a limited range of related recursive methods
on some slice of the diagram; for example, in the arrow
labelled ˚ we contract the entire diagram, and in the arrow
labelled : we perform a contraction within the first regular
height of the diagram. By projecting out an extra dimension,
we can view the entire proof that we have constructed as a
2-dimensional graphic, giving information about the overall
structure of our proof, as shown in the first image here:

 (10)

We then contract this, and this entire proof collapses to a
zigzag of length 1, which performs the naturality move in a
single step, shown in projection as the second diagram above.
Viewing this as a “movie” gives back precisely the desired
homotopy (9) above.

B. Naturality of naturality (Link to online proof)

This homotopy has the following 4-dimensional diagrams as
its source and target respectively:

ÝÑ ÐÝ ÝÑ ÐÝ (11)

ÐÝ ÝÑ ÝÑ ÐÝ (12)

These diagrams feature a 3-cell drawn in blue, a crossing, and
a 4-cell drawn in yellow, which acts as an endomorphism of
the blue 3-cell. The source (11) describes a composite process
that applies the 4-cell to the 3-cell, then pulls the 3-cell through
the braiding; in the target (12), we instead first pull the 3-cell
through the braiding, and then apply the 4-cell. These source

and target 4-diagrams are not homotopies, since they involve
the yellow 4-cell, which is an algebraic move.

The “naturality of naturality” homotopy exhibits that the
composites (11) and (12) are homotopic. The proof is con-
structed in homotopy.io as a zigzag of length 14 in Z4

L

(or alternatively, an object in Z5
L.) We build it by starting

with the source 4-diagram (11), and manipulating it using
our contraction-based methods. We give it as a movie (in
which every frame shows a 4-dimensional diagram, viewed
in 2-dimensional projection) in Figure 11.

Note that the first frame of this movie is given by the
projection of the contracted naturality homotopy (the second
image in (10)), composed with the yellow 4-cell, and the last
frame has these same components composed a different way;
the yellow 4-cell is indeed “pulled through the naturality” over
the course of the proof, as we expect.

The proof as a whole has an interesting structure, which the
movie of Figure 11 makes clear: we create a bubble, enlarge
it, wrap it around the yellow 4-cell, and then contract the
remaining parts, with the result being that the yellow 4-cell has
moved to the other side of the naturality homotopy. Building
this proof required repeated use of contraction, not only on the
4-dimensional term being manipulated as the proof was being
developed, but also in 3-dimensional slices of those terms,
which then propagated recursively to the entire 4-diagram.

As before, the entire 5-dimensional proof can be viewed as
a single 2-dimensional projected image, by ignoring the lowest
3 dimensions. We represent it in the first image here:

 (13)

This entire proof contracts to a zigzag of length 1, and we
give this contraction as the second image.

To summarize, we have shown how contraction can be used
as the main workhorse for manipulating terms in an associative
n-category, including the tasks of building an initial diagram,
manipulating it (both at the top dimension and in lower
dimensions) to obtain a proof object, and then contracting
that proof object itself to yield a short witness for the logical
statement being established.
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