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ABSTRACT 

 

Introduction: Detecting early cardiac involvement in Fabry disease (FD) is important 

because therapy may alter disease progression. Cardiovascular magnetic resonance (CMR) 

can detect T1 lowering, representing myocardial sphingolipid storage. In many diseases, early 

mechanical dysfunction may be detected by abnormal global longitudinal strain (GLS). We 

explored the relationship of early mechanical dysfunction and sphingolipid deposition in FD. 

Methods: An observational study of 221 FD and 77 healthy volunteers (HV) who underwent 

CMR (LV volumes, mass, native T1, GLS, late gadolinium enhancement), ECG, and blood 

biomarkers, as part of the prospective multicenter Fabry400 study. 

Results: All FD had normal LV ejection fraction (EF 738%). Mean indexed LV mass 

(LVMi) was 89±39g/m2 in FD and 55.6±10g/m2 in HV. 102 (46%) FD participants had left 

ventricular hypertrophy (LVH). There was a negative correlation between GLS and native T1 

in FD patients (r=-0.515, p<0.001). In FD patients without LVH (early disease), as native T1 

reduced there was impairment in GLS (r=-0.285, p<0.002). In the total FD cohort ECG 

abnormalities were associated with a significant impairment in GLS compared to those 

without ECG abnormalities (abnormal: -16.7±3.5 vs. normal: -20.2±2.4, p<0.001).  

Conclusions: GLS in FD correlates with an increase in LVMi, storage, and the presence of 

ECG abnormalities. In LVH-negative FD (early disease), impairment in GLS is associated 

with a reduction in native T1, suggesting that mechanical dysfunction occurs before evidence 

of sphingolipid deposition (low T1).  

  



KEY QUESTIONS 

 

What is already known about the subject? 

Cardiac involvement in Fabry disease is characterized by progressive LVH, myocardial 

fibrosis and heart failure. Impairment of systolic strain measured using speckle-tracking 

echocardiography has previously been described in Fabry disease. CMR imaging with T1 

mapping can identify cardiac involvement earlier in the disease process, however, there is 

only limited data investigating the relationship between myocardial strain and sphingolipid 

deposition.  

 

What does this study add? 

This is the first study evaluating T1 mapping and myocardial systolic strain using CMR 

feature-tracking in a large cohort of patients with Fabry disease. It shows that there is 

impairment in myocardial strain as native T1 reduces, highlighting the functional 

consequences of sphingolipid storage.  

 

How might this impact on clinical practice? 

This study highlights that CMR feature-tracking is a sensitive imaging biomarker that is able 

to identify myocardial mechanical changes in the early stages of cardiac Fabry disease.  



INTRODUCTION 

 

Fabry disease (FD) is a X-linked lysosomal storage disorder caused by mutations in the gene 

(GLA) encoding for α-galactosidase A. The progressive accumulation of complex 

sphingolipids, predominantly globotriaosylceramide1 affects multiple organs, including the 

heart where it results in left ventricular hypertrophy (LVH), progressive cardiomyopathy, 

myocardial fibrosis and arrhythmias.2 Cardiac involvement is a major contributor to 

morbidity and mortality in FD.3 Evidence suggests that best outcomes may occur with early 

initiation of enzyme replacement therapy (ERT).4 Early cardiac involvement is difficult to 

detect and the identification of early phenotypic markers is required. Change in myocardial 

deformation – systolic strain – also offers potential of earlier disease detection. Impairment of 

global longitudinal strain (GLS) has been described in FD using speckle tracking 

echocardiography in those with and without LVH.5,6,7 Impaired GLS precedes any reduction 

in ejection fraction and is linked to worse functional status.8 

 

Cardiovascular magnetic resonance (CMR) with T1 mapping has provided important insights 

into Fabry disease. T1 mapping is based on the magnetic resonance rate constant T1 

(measured in milliseconds) that alters depending on changes in tissue characteristics – for 

example, fibrosis, edema and amyloid increase T1, and iron and fat decrease T1. Low native 

T1 values (prior to contrast administration) are postulated to indicate sphingolipid 

accumulation in FD, and occur in up to 59% of LVH negative FD patients.9 CMR imaging 

can also quantify myocardial strain using feature-tracking (FT-CMR) but there is a paucity of 

knowledge regarding its application in FD. We aimed to determine whether early storage 

(low T1 measured using T1 mapping) would alter myocardial contractility (measured using 

FT-CMR) before the development of LV hypertrophy. Additionally, we aimed to evaluate if 



electrical abnormalities (detected on the 12- lead ECG) alter with cardiac contractility during 

this earlier phase of the disease process.  

 

METHODS 

Study Population 

Participants were recruited from four Fabry clinics as part of the prospective, multicenter 

international observational Fabry400 study (NCT03199001) – United Kingdom (UK): Royal 

Free Hospital London, National Hospital for Neurology and Neurosurgery London, Queen 

Elizabeth Hospital Birmingham; Australia: Westmead Hospital Sydney. The study was 

approved by the relevant Research Ethics Committees and conformed to the principles of the 

Helsinki Declaration. Written informed consent was obtained from all participants. Inclusion 

criteria for the FD cohort included: gene-positive Fabry disease and adults ≥18 years. The 

healthy volunteer controls (HV) were prospectively recruited and had no history of 

cardiovascular disease (normal health questionnaire, no cardioactive medication unless for 

primary prevention). Exclusion criteria included standard contraindications to CMR. All 

participants underwent CMR, ECG, and blood samples during the same study visit. High-

sensitivity cardiac troponin T (UK) and I (Australia) (hs-TnT and hsTnI) was measured using 

an electrochemiluminescence- immunoassay (Roche, Basel, Switzerland; normal range 0-

14ng/l and 0-15ng/l respectively).  

 

CMR imaging 

All participants underwent CMR at 1.5 Tesla (Avanto (UK), Aera (Australia); Siemens 

Healthcare, Erlangen, Germany) using a standard protocol including LV cines in short axis 

(SAX), 4-chamber, 2-chamber and 3-chamber views. Native T1 mapping was performed pre-

contrast on basal and mid left ventricular SAX slices using a shortened modified Look-



Locker inversion recovery (ShMOLLI) sequence.10 The resulting pixel by-pixel T1 color 

maps were displayed using a customized 12-bit lookup table, where normal myocardium was 

green, increasing T1 was red, and decreasing T1 was blue. Late Gadolinium enhancement 

(LGE) imaging was performed using phase sensitive inversion recovery (bolus administration 

of gadolinium 0.1 mmol/kg body weight, Gadoterate meglumine, Dotarem, Guerbet S.A., 

France) 

 

CMR analysis 

All images were centralized and analyzed using CVI42 software (Circle Cardiovascular 

Imaging Inc., Calgary, Canada). Cardiac chamber volumes and LV mass (LVM) (papillary 

muscles included in mass) were quantified on all subjects from a pre-contrast breath-held 

SAX stack of balanced steady-state free precession cine images, using previously described 

manual contouring methodologies.11 Left ventricular hypertrophy (LVH) was defined as 

increased indexed LVM on CMR according to age and gender matched normal reference 

ranges.12 Maximum wall thickness (MWT) was evaluated using semi-automated 

measurement on CVI42 software and a value greater than 12 mm was classified as being 

LVH positive.  

 

Strain – Analysis of 2D global longitudinal strain (GLS) was obtained using CVI42, version 

5.3.4. Smooth epicardial and endocardial borders were manually drawn on the end-diastolic 

frame of all long axis images (4-chamber, 2-chamber and 3-chamber views), and then strain 

(peak GLS, the most negative value during systole) was obtained from the applied automatic 

FT algorithm (example, Figure 1a). FT evaluates myocardial strain by utilizing a deformable 

2D model and translating this onto all 2D cine slices selected over the entirety of the cardiac 

cycle. The extent of deformation is determined by motion of an imaginary line placed 



between endo- and epicardial boundaries, which are tracked throughout the cardiac cycle by a 

pre-determined algorithm as previously described.13,14 The accuracy of FT was confirmed 

manually for each case (by RV), and to ensure reproducibility a maximum of five operator 

corrections were performed.  

Intra-observer reproducibility was performed by observer 1 (RV) carrying out CMR 

reanalysis in random subset of 30 study patients. For inter-observer variability, observer 2 

(BL) independently analyzed a randomly determined subset of 20 CMR scans.  

 

Native T1 – visual inspection of T1 color maps has shown sphingolipid deposition to be 

variable within the myocardium, and consequently four regions of interest (ROI) were drawn 

in the septal and lateral LV wall at basal and mid cavity level, taking care to avoid the blood-

myocardial boundary15 (example, Figure 1b). Since T1 is known to vary between field 

strength, acquisition technique and site, and gender (females typically have higher T1 than 

males),15 the normal ranges of T1 values were defined as mean ± 2 standard deviations based 

on site-specific healthy controls from each individual center (London: males mean 

956±27ms, lower limit 902ms; females mean 978±34ms, lower limit 910ms. Birmingham: 

males mean 947±28ms, lower limit 890ms; females mean 958±30ms, lower limit 898ms. 

Sydney: males mean 947±24ms, lower limit 893ms; females mean 965ms±31ms, lower limit 

903ms).  

 

ECG  

Abnormal ECGs included the presence of any irregularities (prolonged or shortened PR 

interval, QRS duration >120ms, the presence of LVH by Cornell voltage criteria, T wave 

inversion in at least two contiguous leads, or the presence of ventricular ectopy).  

 



Statistical Analysis 

Statistical analyses were carried out using SPSS 22 (IBM, Armonk, NY). Continuous 

variables are expressed as mean  standard deviation, categorical as frequencies or 

percentages. Normality was checked using the Shapiro-Wilk test. Groups were compared 

using the independent-samples t-test (normally distributed variables) or the Mann-Whitney U 

test (non-normally distributed). Chi-squared testing was utilized when comparing proportions 

of a variable between two groups.  Troponin values were analyzed after log transformation 

using parametric testing. Linear regression analysis (stepwise backward method) was utilized 

to evaluate the relationship between multiple variables and the study outcome. Comparisons 

of GLS across groups of gender and T1 were assessed using an ANOVA model with post-hoc 

Tukey correction. A similar approach was used to assess the relationship between T1 and 

GLS in the LVH negative and LVH positive groups, which included three terms, namely the 

two factors and an interaction between them. Goodness of fit of ANOVA and regression 

models was assessed by visual inspection of the residuals of the model, to ensure normality.  

A p-value of <0.05 was considered statistically significant.  Intra- and inter-observer 

reproducibility was determined by calculating mean bias and 95% confidence intervals using 

Bland-Altman analyses and intra-class correlation coefficient (ICC) for absolute agreement.  

 

RESULTS 

Participant Characteristics  

There were 298 participants in total (221 FD and 77 HV). This included (155 from London, 

37 from Birmingham, and 29 from Sydney). Baseline demographics are demonstrated in 

Table 1. The mean FD age was 45±15 years with 85 males (38.5%) and 136 females (61.5%). 

The HV population was age-matched (± 2 years) with a mean age of 49.4±14 years (males 

51.9%). All FD had normal LVEF (738.0%). Mean indexed LV mass (LVMi) was 



89.0±39g/m2 in FD and 55.6±10g/m2 in HV. MWT was significantly higher in FD compared 

with HV (12±5.0mm vs. 9±1.6mm respectively, p<0.01). There was significant correlation 

between LVMi and MWT in both groups (FD: r=0.9 and HV: r=0.7, p<0.001). 70.8% of 

patients had a classical mutation and the remaining 29.2% non-classical. There were 102 

(46%) FD participants with LVH.  

 

Global Myocardial Strain 

Adequate tracking quality was obtained for all study participants. Left ventricular ejection 

fraction (LVEF) did not correlate with LVMi (r=0.004, p=0.9). However, GLS became 

increasingly impaired (values becoming less negative) as LVMi increased (r=0.728, p<0.001; 

Figure 2a and b). GLS was impaired in the LVH-positive FD group compared to LVH-

negatives and HV (table 2a, p<0.05). This was similar when split by sex; however the 

difference was greater in the male cohort (table 2a). Similar relationships were observed 

when correlating LVEF and GLS with MWT as a marker of myocardial hypertrophy 

(supplementary table 1).  

 

Myocardial Native T1 and Strain 

In the total FD cohort, 72% (n=159/221) had a low native T1 – 91% in the LVH positive 

subgroup (n=93/102) compared to 56% in the LVH negative subgroup (n=66/119). There was 

significant negative correlation between GLS and native T1 in the total FD cohort (r=-0.515, 

p<0.05) as shown in Figure 3a.  

 

LVH Negative FD Population 

There were 119 FD participants who were LVH negative when classified by LVMi (53.8% of 

total FD population). The mean age was 37±13.4 years, which was significantly lower than 



the LVH positive group (53±11.7 years, p<0.05). 81.5% of the LVH negative cohort were 

female and 68.6% had a classical mutation. Mean LVMi was higher in this group than in HV 

(62±10.4g/m2 vs. 55.6±10.1g/m2, p<0.05), but maximum wall thickness (MWT) was similar 

(8.8±1.7mm vs. 9.0±1.6mm, p=0.5). GLS in LVH negative FD was better (more negative) 

when compared to HV (-20.3±2.9 and -19.3±2.0, p<0.05). When split by sex however, no 

significant differences were seen compared to age-matched HV (table 2a).  

In the LVH-negative FD subgroup, as native T1 reduced there was also impairment in GLS 

(r=-0.285, p<0.002) as shown in Figure 3b. This gradient was not found to differ significantly 

between LVH negative and LVH positive FD (interaction term: p=0.137), with significant 

correlations between GLS and native T1 detected in both groups (r=-0.285 and -0.326 

respectively, p<0.002 for both). When split by sex, LVH negative males demonstrated a 

greater tendency towards impairment in GLS as native T1 reduced compared to those LVH 

negative with normal T1 (figure 4, table 2b), however, due to a low number of males who 

were LVH negative with a normal T1 (n=5) this was not significant. When classifying LVH 

using MWT similar significant trends were observed (supplementary figure 1 and table 2).  

Multivariable linear regression analysis demonstrated that LVMi and the presence of ECG 

abnormalities were both independent predictors of a reduction in GLS. Further regression 

analysis also demonstrated that LVMi and GLS were predictors of native T1. This was true in 

both the total population and the LVH negative cohort (supplementary table 3).  

 

ERT 

Of the total FD cohort 54.3% were on ERT and there was a significant difference in peak 

GLS in those taking ERT compared to those not on therapy (on ERT vs. ERT naïve: -

17.6±3.8 vs. -19.7±2.9, p<0.01). When split by sex this difference was only present in the 

female population (female: on ERT -19.2±3.5 vs. ERT naïve -20.4±2.5, p<0.05; male: on 



ERT -16.2±3.5 vs. ERT naïve -16.9±2.5, p=NS). Of the LVH negative cohort 36.1% were on 

ERT, however no significant differences in GLS were seen when compared to those not on 

ERT.  

 

LGE 

183 participants were given Gadolinium-based contrast agents (GBCA) and of these 77 

(34.8%) had LGE. There was a significant difference in mean GLS between FD with and 

without LGE (LGE: -17.1±3.7 vs. no LGE: -19.7±2.5, p<0.05; LGE: -17.1±3.7 vs. HV: 

19.3±2.0, p<0.05). In the LVH negative group, there were 14 out of 84 participants who had 

LGE (16.7%, all females) and there was no change in mean GLS measured (LGE: -20.4±2.2 

vs. no LGE: -20.1±2.2 vs. HV: 19.3±2.0, p=0.6).  

 

ECG 

An abnormal ECG was found in 45.1% of the FD cohort. The frequency of ECG 

abnormalities was greater in the LVH positive cohort compared to the LVH negative group 

(75.2% vs. 24.7% respectively). In the total Fabry cohort ECG abnormalities were associated 

with a significant impairment in GLS compared to those without ECG abnormalities 

(abnormal: -16.7±3.5 vs. normal: -20.2±2.4, p<0.001). When evaluating the LVH positive 

cohort, this same relationship was observed in both males and females. However, in the LVH 

negative cohort, only females and not males had a significant difference in GLS with ECG 

abnormalities (table 2c).  

 

Biomarkers 

Of the FD population 156 (70.6%) had high sensitivity troponin measured (hsTnT or hsTnI), 

with 27.6% having an elevated level above center-specific reference ranges. Median troponin 



in the total study population was 6.0µg/L (interquartile range: 1-31µg/L). An increasing level 

of troponin was associated with impairment in GLS in the total FD population (r=0.516, 

p<0.05). Of the LVH negative population 87 patients (73.1%) had hsTnT or hsTnI measured 

and only five had an elevated serum level with all others having a value <5ug/L. No 

significant relationship was demonstrated between strain and troponin in the LVH negative 

group (r=0.169, p=0.118).  

 

Reproducibility 

Intra-observer reproducibility analysis performed following repeat evaluation of 30 CMR 

scans by observer 1 (RV) demonstrated a mean absolute bias of 0.7±0.6 with an intra-class 

correlation (ICC) for single measures of 0.98 (95% CI: 0.96-0.99). Reproducibility biases 

were similar when assessing inter-observer reproducibility following analysis of a subset of 

20 CMR scans by observer 2 (BL) – mean absolute bias 0.6±0.5 and ICC for single measures 

of 0.99 (95%CI: 0.97-1.0).  

 

DISCUSSION 

The main findings of this study include: 

1. Impaired GLS occurs in FD in the absence of reduced LVEF. The impairment in 

deformation is proportionate to an increase in LVM and storage (as reflected by low T1) in 

the overall FD cohort, and correlates with myocardial damage as shown by both LGE and 

biomarker evidence of cell necrosis (troponin), and electrical abnormalities (on the ECG).  

2. In LVH-negative FD (early disease), impairment in GLS is associated with a reduction in 

native T1, suggesting that mechanical dysfunction occurs before the onset of LVH when 

there is evidence of sphingolipid deposition (low T1). There is a tendency towards a lower 



GLS in males with early cardiac disease, and females demonstrate no change in GLS until the 

onset of LVH.  

3. In LVH-positive FD, impaired GLS is associated with other signs of overt cardiac 

involvement namely increasing LVMi and the presence of LGE.  

 

Fabry disease affects the heart.  The obvious manifestations have been ECG abnormalities,  

hypertrophy, and, in late stage disease, impairment and thinning.16, 17 Biomarkers are also 

elevated18, 19, 20 and valve disease can be present, but the latter is rarely a clinically significant 

finding. CMR has also identified LGE in early disease, which characteristically affects the 

basal infero- lateral wall. This was initially thought to reflect only fibrosis; however, recent 

developments using advanced tissue characterization with CMR parametric mapping (T1 and 

T2 mapping) has provided further insights. Native T1 is low in FD, representing sphingolipid 

accumulation 21, 22 in 85% of FD with LVH, and in up to 59% of LVH-negative patients, 

suggesting storage occurs early before the establishment of hypertrophy.21, 23 When LGE is 

present without thinning, this has been shown to be associated with T2 elevation and hs-TnT 

release suggesting an inflammatory process.19 Thus, the order and processes of phenotype 

development are being pieced together.  ECG changes may precede echocardiographic LVH, 

and latest results suggest there is a pre-LVH phenotype with storage, ECG abnormalities, 

slight elevation of LV mass and LVEF clustering.9  

 

Here, we introduce a new biomarker of myocardial mechanical dysfunction that is more 

sensitive than the ejection fraction to early changes in myocardial performance - GLS. This 

study supports the echocardiographic literature about impaired GLS in overt cardiac 

involvement in FD (LVH-positive disease), but offers new insights into LVH-negative 

disease. We have previously shown impaired GLS by speckle tracking echocardiography in a 



small sample (n=25) of LVH-negative FD with low T1 compared to LVH-negative with 

normal T1.21, 24 This current study expands on these findings by using a much larger cohort 

and is the first study to assess myocardial strain by CMR in conjunction with T1 mapping to 

show possible sex differences. It is also the first study to show that ECG abnormalities are 

associated with impaired GLS – the mechanical and electrical signals are interacting. 

However, further studies are required in delineate this relationship more clearly.  

 

Sex dimorphism in the FD response to storage has been previously proposed by us in patients 

with overt disease.9 That is, in addition to apparent faster storage in hemizygous males, LVH 

positive males appear to have reduced T1 lowering with increasing LV mass in the LVH 

range – suggesting the dilution of the T1 lowering sphingolipid signal by the presence of 

triggered sarcomeric protein. A further example, found here is that LGE can be present in 

LVH negative females but rarely in males.25, 26 Here, there appears to be a trend in the way 

mechanical dysfunction appears also to have a sex dimorphism with female LVH-negative 

patients seemingly tolerating storage better than males – females tended to have preserved 

GLS until the presence of LVH, whereas males had impaired GLS with T1 lowering before 

the onset of LVH.  

 

The limitations of this study include that it is only a single time point study with no follow-up 

data, but it is multicenter with a relatively large number of participants for a rare disease. A 

further limitation is that this study is only evaluating 2D longitudinal strain and not 3D strain. 

Preliminary results included assessment of 3D circumferential and radial strain, both o f 

which demonstrated similar patterns to 2D GLS. However, when using LV short axis images 

to assess 3D strain parameters in FD patients with LVH and cavity obliteration, there was 

significant impairment in myocardial border tracking, thus excluding a large proportion of the 



study cohort. Consequently, this study only assessed 2D GLS. Histological validation of T1 

mapping for storage is lacking and it is likely that T1 mapping will miss the earliest storage 

due to the presence of a detection threshold in this technique. Further studies are also required 

to establish whether early institution of ERT based on a low T1 or impa ired GLS in the 

absence of LVH affects the development of cardiac involvement. 

 

CONCLUSIONS 

In FD with LVH, myocardial strain (measured by GLS) reduces with hypertrophy, storage 

(measured by a low T1), ECG abnormalities and scar (measured by LGE). In early disease 

(LVH negative), GLS impairs as native T1 reduces.  
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Table 1. Participant demographics and basic CMR findings 

 

 Healthy 

volunteers 

Fabry 

Total 

Fabry 

Males 

Fabry 

Females 
p* 

Sample size 
(n, %) 

77 (100) 221 (100) 85 (38.5) 136 (61.5) - 

Age (y) 49.414.4 4515.0 4514.8 4415.3 NS 

HR (bpm) 65±9 62±12 59±12 64±12 <0.05 

SBP (mmHg) 122±13 120±17 125±16 118±17 <0.05 
DBP (mmHg) 76±9 73±10 74±12 72±9 NS 

BSA (m
2
) 1.9±0.2 1.8±0.2 1.9±0.2 1.7±0.2 <0.05 

LVEF (%) 70.25.6 738.0 719.0 747.2 <0.05 

LVEDV (ml) 132.128.4 13131.7 14637.3 12122.7 <0.05 

LVESV (ml) 39.611.9 3617.1 4321.0 3212.6 <0.05 

GLS -19.3±2.0 -18.5±3.6 -16.3±3.3 -19.9±3.0 <0.05 

Native T1 
(ms) 

955.2±29.9 879±64.3 838.8±51.5 904.6±58.4 <0.05 

LGE (n, %) 0 (0) 77 (100) 36 (46.8) 41 (53.2) <0.05 

LVH-positive 
(n, %) 

0 (0) 102 (100) 63 (61.8) 39 (38.2) <0.05 

LVMi (g/m
2
) 55.610.1 8939.3 11642.6 7124.9 <0.05 

MWT (mm) 91.6 125.0 155.1 103.8 <0.05 

 
*p-value is for Fabry male-to-female comparisons.  

 
Table legend: HR – heart rate, SBP – systolic blood pressure, DBP – diastolic blood pressure, 

BMI – body mass index, LVEF – left ventricular ejection fraction, LVEDV – left ventricular 
end-diastolic volume, LVESV – left ventricular end-systolic volume, GLS – global 
longitudinal strain, LGE – late gadolinium enhancement, LVH – left ventricular hypertrophy, 

LVMi – indexed left ventricular mass, MWT – maximum wall thickness, NS – non-
significant.   



Table 2a. Mean global longitudinal strain values in various subcohorts of the total study 

population 

 

 

Healthy 

volunteers 
Fabry disease 

p-value 

 
N Mean ± SD N Mean ± SD 

Study population 

Total 77 -19.3 ± 2.0 221 -18.5 ± 3.6 0.02 

Male 40 -18.5 ± 1.8 85 -16.4 ± 3.3 0.001 
Female 37 -20.2 ± 1.9 136 -19.9 ± 3.0 0.46 

 

LVH positive 

Total 

  

102 -16.4 ± 3.6 0.001 

Male 

  

63 -15.5 ± 3.4 0.001 

Female 
  

39 -17.8 ± 3.5 0.001 
 

LVH negative 

Total 
  

119 -20.3 ± 2.6 0.001 

Male 
  

22 -18.3 ± 1.6 0.62 
Female 

  
97 -20.9 ± 2.5 0.19 

 

p-values are comparing Fabry to healthy volunteers in all groups.  
 

 
Table 2b. Mean global longitudinal strain values in the LVH negative Fabry population 

classified according to native T1 compared to healthy volunteers 

 

 Healthy 

volunteers 

Fabry disease 

 
Normal T1 Low T1 

 

N Mean ± SD 

N 

Mean ± 

SD N Mean ± SD 

Total 77 -19.3 ± 2.0 53 -20.5 ± 1.9 66 -20.2 ± 2.6 

Male 40 -18.5 ± 1.8 5 -20.0 ± 1.0 17 -18.3 ± 1.6 

Female 37 -20.2 ± 1.9 48 -20.6 ± 2.0 49 -20.9 ± 2.5 

p-values from ANOVA 

Male: p=0.152 Female: p=0.329 

 

This table shows mean ± SD values for GLS. p-values are from an ANOVA model with post-

hoc Tukey correction.  

 

 

 

 

 

 

 

 

 

 



Table 2c. Mean global longitudinal strain values in the LVH positive and LVH negative 

Fabry subgroups classified according to ECG abnormalities 

 

  

ECG normal ECG abnormal 

p-value 

 
N N 

Mean ± 

SD N Mean ± SD 

Total cohort 

Fabry total 204 112 -20.2±2.4 92 -16.7±3.5 <0.001 

Male 77 29 -18.4±2,0 48 -15.6±3.1 <0.001 

Female 127 83 -20.8±2.2 44 -18.0±3.6 <0.001 
       

LVH positive 

Fabry Total 93 23 -18.7±2.6 70 -15.9±3.4 <0.001 

 Male 56 13 -17.8±2.2 43 -15.2±3.1 0.006 
 Female 37 10 -19.9±2.7 27 -17.0±3.7 0.03 

 

LVH negative 

Fabry Total 111 89 -20.6 ± 2.2 22 -19.3 ± 2.6 0.02 

Male 21 16 -18.8 ± 1.8 5 -18.7 ± 0.5 0.80 
Female 90 73 -21.0 ± 2.1 17 -19.5 ± 3.0 0.02 

 
p-values are comparing ECG normal vs. ECG abnormal in all groups and are taken from an 

independent t-test evaluating the LVH positive and negative groups in separate t-test models.  
 
 

Figure 1 Examples of cardiovascular magnetic resonance analysis  techniques.  

 

 
(A) Assessment of myocardial strain using feature tracking. (B) Evaluation of native T1 with 
regions of interest (ROI). (A) Endocardial and epicardial borders manually drawn at end-
diastole on all long-axis images (four-chamber, two-chamber and three-chamber). These are 

used to calculate myocardial strain throughout the cardiac cycle (shown on the graph in A). 
Peak global longitudinal strain is the value obtained at end-systole (as shown by the arrow, –

26.0% in this example). (B) Four ROIs manually drawn when evaluating T1 time. They are 
taken from the septum and lateral wall at basal and mid-left ventricular cavity level. 
 

 



Figure 2 Scatter plots showing the relationship between indexed left ventricular (LV) 

mass and LV functional markers in the total Fabry cohort (males and females).  

 

 
 

(A) No correlation between left ventricular ejection fraction (LVEF) and indexed left 
ventricular mass (LVMi) and (B) significant positive correlation between LVMi and global 
longitudinal strain (GLS), suggesting this is a more sensitive functional marker. NS - non-

significant. 
 

 
Figure 3 Scatter plot showing the relationship between native T1 and global 

longitudinal strain in Fabry disease.  

 

 
An analysis of variance model found global longitudinal strain (GLS) to worsen significantly 

with a reduction in native T1, as shown by (A) (r=–0.515, p<0.001). The dashed lines 
represent 95% CIs. (B) Similar trends in the left ventricular hypertrophy (LVH)-positive 

(green line) and LVH-negative (blue line) groups (r=–0.326 and r=–0.285 respectively, 
p=0.001 for both). No significant interaction was detected between LVH and native T1 
(p=0.137).  



 
 

Figure 4 The relationship between global longitudinal strain and native T1 in left 

ventricular hypertrophy (LVH)-negative Fabry and healthy volunteers.  

 

 
The graph represents the mean peak global longitudinal strain (GLS) with SD error bars. This 
demonstrates a trend towards an impairment in GLS in LVH-negative males with a low T1 

(p=NS). NS - non-significant. 


