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EFFICIENT ADAPTIVE MULTILEVEL STOCHASTIC GALERKIN
APPROXIMATION USING IMPLICIT A POSTERIORI ERROR

ESTIMATION\ast 

ADAM J. CROWDER\dagger , CATHERINE E. POWELL\dagger , AND ALEX BESPALOV\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Partial differential equations (PDEs) with inputs that depend on infinitely many pa-
rameters pose serious theoretical and computational challenges. Sophisticated numerical algorithms
that automatically determine which parameters need to be activated in the approximation space
in order to estimate a quantity of interest to a prescribed error tolerance are needed. For elliptic
PDEs with parameter-dependent coefficients, stochastic Galerkin finite element methods (SGFEMs)
have been well studied. Under certain assumptions, it can be shown that there exists a sequence of
SGFEM approximation spaces for which the energy norm of the error decays to zero at a rate that is
independent of the number of input parameters. However, it is not clear how to adaptively construct
these spaces in a practical and computationally efficient way. We present a new adaptive SGFEM al-
gorithm that tackles elliptic PDEs with parameter-dependent coefficients quickly and efficiently. We
consider approximation spaces with a multilevel structure---where each solution mode is associated
with a finite element space on a potentially different mesh---and use an implicit a posteriori error
estimation strategy to steer the adaptive enrichment of the space. At each step, the components of
the error estimator are used to assess the potential benefits of a variety of enrichment strategies, in-
cluding whether or not to activate more parameters. No marking or tuning parameters are required.
Numerical experiments for a selection of test problems demonstrate that the new method performs
optimally in that it generates a sequence of approximations for which the estimated energy error
decays to zero at the same rate as the error for the underlying finite element method applied to the
associated parameter-free problem.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . adaptivity, finite element methods, stochastic Galerkin approximation, multilevel
methods, a posteriori error estimation

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35R60, 60H35, 65N30, 65F10

\bfD \bfO \bfI . 10.1137/18M1194420

1. Introduction. In many engineering and other real-world applications, we fre-
quently encounter models consisting of partial differential equations (PDEs), which
have uncertain or parameter-dependent inputs. When the solutions are sufficiently
smooth with respect to these parameters, it is known that stochastic Galerkin finite
element methods (SGFEMs) [21, 15, 2], also known as intrusive polynomial chaos
methods in the statistics and engineering communities, offer a powerful alternative
to brute force sampling methods for propagating uncertainty to the model outputs.
When the number of input parameters in the PDE model is countably infinite (which
may arise, for example, if we represent an uncertain spatially varying coefficient as
a Karhunen--Lo\`eve expansion), then we encounter significant theoretical and numer-
ical challenges. In general, it is not known a priori which parameters need to be
incorporated into discretizations of the model in order to estimate specific quantities
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of interest to a prescribed error tolerance. Ad hoc selection of a finite subset of pa-
rameters prior to applying a standard SGFEM is computationally convenient but may
lead to inaccurate results with no guaranteed error bounds. In this work we consider
the steady-state diffusion problem with a spatially varying coefficient that depends
on infinitely many parameters, and we develop a computationally efficient multilevel
SGFEM that uses an a posteriori error estimator to adaptively construct appropriate
approximation spaces.

Let the spatial domain D \subset \BbbR 2 be bounded with a Lipschitz polygonal boundary
\partial D, and let y1, y2, . . . be a countable sequence of parameters with ym \in \Gamma m = [ - 1, 1]
for m \in \BbbN . We consider the following parametric diffusion problem: find u(x,y) :
D \times \Gamma \rightarrow \BbbR that satisfies

 - \nabla \cdot (a(x,y)\nabla u(x,y)) = f(x), x \in D, y \in \Gamma ,(1.1)

u(x,y) = 0, x \in \partial D, y \in \Gamma ,(1.2)

where \nabla denotes the gradient operator with respect to x. We consider zero boundary
conditions for simplicity, but this is not a restriction for the methodology described
herein. Here, y = [y1, y2, . . . ]

\top \in \Gamma , where \Gamma = \Pi \infty 
m=1\Gamma m is the parameter domain.

The coefficient a(x,y) should be positive and bounded on D \times \Gamma . We also make the
following important assumption.

Assumption 1.1. The coefficient a(x,y) admits the decomposition

a(x,y) = a0(x) +

\infty \sum 
m=1

am(x)ym,(1.3)

with a0(x), am(x) \in L\infty (D), and | | am| | L\infty (D) \rightarrow 0 sufficiently quickly as m\rightarrow \infty so
that

\infty \sum 
m=1

| | am| | L\infty (D) < ess inf
\bfx \in D

a0(x).(1.4)

Note that (1.4) helps to ensure the well-posedness of the weak formulation of
(1.1)--(1.2). This will be made more rigorous in the next section.

Standard SGFEMs seek approximations to u(x,y) in (1.1)--(1.2) in a tensor prod-
uct space X of the form

X := H1 \otimes P, H1 := span\{ \phi i(x)\} ni=1, P := span\{ \psi j(y)\} sj=1,(1.5)

where H1 is a finite element space associated with a mesh \scrT h on the spatial domain
D, and P is a set of polynomials on the parameter domain \Gamma in a finite number (say,
M) of the parameters ym. In this case, uX \in X admits the decomposition

uX(x,y) =

s\sum 
j=1

uj(x)\psi j(y), uj \in H1.

We use the term ``single-level"" approximation to mean that X is defined as in (1.5).
Here, each coefficient uj is associated with the same finite element space H1. In
contrast, we will work with spaces X which have a ``multilevel"" structure, by which
we mean that each of the coefficients uj may reside in a different finite element space.
These finite element spaces will be associated with a sequence of meshes, where each
mesh has a different ``level"" number.

D
ow

nl
oa

de
d 

07
/1

8/
19

 to
 1

47
.1

88
.1

08
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ADAPTIVE MULTILEVEL SGFEM APPROXIMATION A1683

Handling inputs of the form (1.3) is a nontrivial task. Suppose we truncate a(x,y)
in (1.3) after M terms (assuming that | | am| | \infty \geq | | am+1| | \infty ) and define X as in (1.5),
where y = [y1, . . . , yM ]\top . A priori error estimates provided in [2] reveal that the rate
of convergence of standard SGFEMs deteriorates as M \rightarrow \infty . This phenomenon is
referred to as the curse of dimensionality. Many recent works provide a priori error
analysis for more sophisticated SGFEMs in the case where we have infinitely many
parameters; see, e.g., [30, 8, 7, 12, 13, 23, 10]. In each of these works, the decay rate
or, equivalently, the summability of the sequence \{ \| am\| \infty \} \infty m=1, plays an important
role. Various theoretical results have been established proving the existence of a
sequence of SGFEM approximation spaces X0, X1, . . ., such that the energy norm of
the error decays to zero at a rate that is independent of the number of parameters,
as Ndof = dim(X)\rightarrow \infty . These results assume that X has a more complex structure
than that in (1.5) but demonstrate that SGFEMs can be immune to the curse of
dimensionality if implemented in the right way.

In [12, 13, 23] a multilevel structure is imposed on X. Theoretical results show
that if \| am\| \infty \rightarrow 0 fast enough, then there exists a sequence of multilevel spaces
for which the error decays to zero at the rate afforded to the chosen finite element
method for the parameter-free analogue of (1.1)--(1.2). Given a sequence of finite
element spaces (with different level numbers), we use an implicit a posteriori error
estimation scheme to design an appropriate sequence of multilevel SGFEM spaces. By
``implicit"" we mean that the approach uses the residual associated with the SGFEM
solution indirectly and requires the solution of additional problems. Starting with
an initial low-dimensional space X0, the resulting energy error is estimated. The
components of the error estimator are then examined to steer the enrichment of X0.
Adaptive schemes have also been proposed in [17, 22, 18, 19], but these use an explicit
error estimation strategy, which uses the residual directly. Explicit error estimators
often lead to less favorable effectivity indices than implicit schemes. Moreover, the
algorithms presented in [17, 22, 18, 19] rely on a D\"orfler-like marking strategy [16] and
require the selection of multiple tuning or marking parameters. The optimal selection
of these is unclear, however, and is problem-dependent. The authors of [4, 6, 28, 5]
consider single-level approximation spaces and implement an implicit error estimation
strategy. We revisit [4, 6], extend the error estimation strategy considered there to
the more complex multilevel setting, and use this to design an accurate and efficient
adaptive multilevel SGFEM algorithm.

1.1. Outline. In section 2 we introduce the weak formulation of (1.1)--(1.2)
and review conditions for well-posedness. In section 3 we describe the multilevel
construction of SGFEM approximation spaces and give practical information about
how to assemble the matrices associated with the discrete problem in a computa-
tionally efficient way. In section 4 we extend the implicit energy norm a posteriori
error estimation strategy developed in [4, 6] for SGFEM approximation spaces X of
the form (1.5) to the multilevel setting. In section 5 we introduce a new adaptive
algorithm that uses the error estimation strategy from section 4 to design problem-
dependent multilevel SGFEM approximation spaces. Numerical results are presented
in section 6.

2. Weak formulation of the parametric diffusion problem. We assume
that ym \in \Gamma m := [ - 1, 1] for each m \in \BbbN and that \pi m is a measure on (\Gamma m,\scrB (\Gamma m)),
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A1684 A. J. CROWDER, C. E. POWELL, AND A. BESPALOV

where \scrB (\Gamma m) denotes the Borel \sigma -algebra on \Gamma m. We also assume that\int 
\Gamma m

ym d\pi m(ym) = 0, m \in \BbbN .(2.1)

For instance, this is true when ym is the image of a mean zero random variable and
\pi m is the associated probability measure. We assume that ym is the image of a
uniform random variable \xi m \sim U([ - 1, 1]), and so the associated probability measure
\pi m has density \rho m = 1/2 with respect to Lebesgue measure. Other types of bounded
random variables could also be considered. We now define the parameter domain
\Gamma = \Pi \infty 

m=1\Gamma m and the product measure

\pi (y) :=

\infty \prod 
m=1

\pi m(ym).

If the parameters ym are images of independent random variables, then the associated
probability measure has this separable form.

We are interested in Galerkin approximations of u satisfying (1.1)--(1.2) and thus
start by considering the following variational formulation:

find u \in V := L2
\pi (\Gamma , H

1
0 (D)) : B(u, v) = F (v) for all v \in V.(2.2)

Here, H1
0 (D) is the usual Hilbert space of functions that vanish on \partial D in the sense

of trace, and L2
\pi (\Gamma ) is the space of functions that are square integrable with respect

to \pi (y) on \Gamma , that is,

L2
\pi (\Gamma ) :=

\biggl\{ 
v(y) | \langle v, v\rangle L2

\pi (\Gamma )
=

\int 
\Gamma 

v(y)2 d\pi (y) <\infty 
\biggr\} 
.

The space V is equipped with the norm | | \cdot | | V , where

| | v| | V =

\biggl( \int 
\Gamma 

| | v(\cdot ,y)| | 2H1
0 (D) d\pi (y)

\biggr) 1
2

,

and | | v| | H1
0 (D) = | | \nabla v| | L2(D) for all v \in H1

0 (D). The bilinear form B : V \times V \rightarrow \BbbR 
and the linear functional F : V \rightarrow \BbbR are defined by

B(u, v) =

\int 
\Gamma 

\int 
D

a(x,y)\nabla u(x,y) \cdot \nabla v(x,y) dx d\pi (y),(2.3)

F (v) =

\int 
\Gamma 

\int 
D

f(x)v(x,y) dx d\pi (y).(2.4)

To ensure that (2.2) is well-posed, B(\cdot , \cdot ) must be bounded and coercive over V . This
is ensured by the following assumption.

Assumption 2.1. There exist real positive constants amin and amax such that

0 < amin \leq a(x,y) \leq amax <\infty a.e. in D \times \Gamma .

If Assumption 2.1 holds, the bilinear form (2.3) induces a norm (the so-called
energy norm),

| | v| | B = B(v, v)1/2 for all v \in V.
In addition, to ensure that F (\cdot ) is bounded on V we assume f(x) \in L2(D). We will
also make the following assumption.
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ADAPTIVE MULTILEVEL SGFEM APPROXIMATION A1685

Assumption 2.2. There exist real positive constants a0min and a0max such that

0 < a0min \leq a0(x) \leq a0max <\infty a.e. in D.

Note that (1.4), along with Assumption 2.2, ensures that Assumption 2.1 is sat-
isfied.

Due to (1.3) and (1.4), we have the decomposition

B(u, v) = B0(u, v) +

\infty \sum 
m=1

Bm(u, v) for all u, v \in V,(2.5)

where the component bilinear forms are given by

B0(u, v) =

\int 
\Gamma 

\int 
D

a0(x)\nabla u(x,y) \cdot \nabla v(x,y) dx d\pi (y),(2.6)

Bm(u, v) =

\int 
\Gamma 

\int 
D

am(x)ym\nabla u(x,y) \cdot \nabla v(x,y) dx d\pi (y).(2.7)

If Assumption 2.2 holds, the bilinear form (2.6) also induces the norm | | v| | B0
=

B0(v, v)
1/2 on V , associated with the coefficient a0. It is then straightforward to

show that

\lambda | | v| | 2B \leq | | v| | 2B0
\leq \Lambda | | v| | 2B for all v \in V,

where 0 < \lambda < 1 < \Lambda <\infty and

\lambda := a0mina
 - 1
max, \Lambda := a0maxa

 - 1
min,(2.8)

and so the norms | | \cdot | | B and | | \cdot | | B0
are equivalent.

3. Multilevel SGFEM approximation. We can compute a Galerkin approx-
imation to u \in V by projecting (2.2) onto a finite-dimensional subspace X \subset V . The
best known rates of convergence with respect to Ndof = dim(X) (see [10, 12, 13, 23])
are achieved for approximation spaces that have a multilevel structure, which we now
describe. As usual, we exploit the fact that V \sim = H1

0 (D)\otimes L2
\pi (\Gamma ) and construct X by

tensorizing separate subspaces of H1
0 (D) and L2

\pi (\Gamma ).
For the parameter domain, we first introduce families of univariate polynomials

\{ \psi n(ym)\} n\in \BbbN 0
on \Gamma m for each m = 1, 2, . . . that are orthonormal with respect to the

inner product

\langle v, w\rangle L2
\pi m

(\Gamma m) =

\int 
\Gamma m

v(ym)w(ym)d\pi m(ym).

Here, n denotes the polynomial degree, and \psi 0(ym) = 1. Now we define the set of
finitely supported multi-indices J := \{ \mu = (\mu 1, \mu 2, . . . ) \in \BbbN \BbbN 

0 ; \#supp(\mu ) <\infty \} , where
supp(\mu ) := \{ m \in \BbbN ; \mu m \not = 0\} , and consider multivariate tensor product polynomials
of the form

\psi \mu (y) =

\infty \prod 
m=1

\psi \mu m(ym) =
\prod 

m\in supp(\mu )

\psi \mu m(ym), \mu \in J.(3.1)

The countable set \{ \psi \mu (y)\} \mu \in J is an orthonormal basis of L2
\pi (\Gamma ) with respect to the

inner product \langle \cdot , \cdot \rangle L2
\pi (\Gamma )

. Orthonormality comes from the separability of \pi (y) and the
construction (3.1) since

\langle \psi \mu (y), \psi \nu (y)\rangle L2
\pi (\Gamma )

=

\infty \prod 
m=1

\langle \psi \mu m
(ym), \psi \nu m

(ym)\rangle L2
\pi m

(\Gamma m) =

\infty \prod 
m=1

\delta \mu m\nu m
= \delta \mu \nu (3.2)
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for all \mu , \nu \in J . Now, given any finite set JP \subset J (which we assume always
contains the multi-index \mu = (0, 0, . . . )), we can construct a finite-dimensional set
P := \{ \psi \mu (y), \mu \in JP \} \subset L2

\pi (\Gamma ) of multivariate polynomials on \Gamma . Note that we can
also write

P =
\bigoplus 
\mu \in JP

P\mu , P\mu = span\{ \psi \mu (y)\} , \mu \in JP .

Given a set of multi-indices JP , we will construct approximation spaces of the
form

X :=
\bigoplus 
\mu \in JP

X\mu :=
\bigoplus 
\mu \in JP

H\mu 
1 \otimes P\mu \subset V,(3.3)

where each H\mu 
1 \subset H1

0 (D) is a finite element space associated with the spatial domain
D and

H\mu 
1 := span

\biggl\{ 
\phi \mu i (x); i = 1, 2, . . . , N\mu 

1

\biggr\} 
, for all \mu \in JP .

For each \mu \in JP we may use a potentially different space H\mu 
1 . Compare X in (3.3) to

X in (1.5) (and note that X in (1.5) can be written as X := \oplus \mu \in JP
H1\otimes P\mu ). To work

with spaces of the form (3.3), we need to select an appropriate set H1 := \{ H\mu 
1 \} \mu \in JP

of
finite element spaces. To this end, we assume that we can construct a nested sequence
of meshes \scrT i, i = 0, 1, . . . (of rectangular or triangular elements), that give rise to a
sequence of conforming finite element spaces H(0) \subset H(1) \subset \cdot \cdot \cdot H(i) \cdot \cdot \cdot \subset H1

0 (D). In
this setting, the index i denotes the mesh ``level number."" We will assume that the
degree of the polynomials used in the definition of the finite element spaces H1 on D
is fixed, and that only the mesh changes as we change the level. If j > i, then \scrT j can
be obtained from \scrT i by one or more mesh refinements.

For notational convenience, we collect the meshes into a set

\bfscrT :=
\bigl\{ 
\scrT i; i = 0, 1, 2, . . .

\bigr\} 
.(3.4)

For each \mu \in JP , the space H\mu 
1 is constructed using one of the meshes from \bfscrT . That

is, to each \mu \in JP we assign a mesh level number \ell \mu = i (for some i \in \BbbN 0) and set
H\mu 

1 = H(i). If \ell \mu = \ell \nu for some \mu , \nu \in JP , then H\mu 
1 = H\nu 

1 . We collect the chosen levels
\ell \mu in the set \ell := \{ \ell \mu \} \mu \in JP

. Now, any space X of the form (3.3) is determined by
choosing a finite set JP of multi-indices and a set \ell of associated mesh level numbers.
Clearly, card(\ell ) = card(JP ) <\infty .

Once JP and \ell have been chosen, our SGFEM approximation uX \in X to u \in V
is found by solving the following discrete problem:

find uX \in X : B(uX , v) = F (v) for all v \in X.(3.5)

For uX to be computable, it is essential that the sum in (2.5) has a finite number of
nonzero terms. Let M \in \BbbN be the smallest integer such that \mu m = 0 for all m > M
and for all \mu \in JP . That is, let M be the number of parameters ym that are ``active""
in the definition of JP . Then, provided (2.1) holds, Bm(uX , v) = 0 for uX , v \in X
for all m > M (see, e.g., [4]). In other words, the choice of JP implicitly truncates
the sum after M terms; we do not have to truncate a(x,y) a priori. Expanding the
Galerkin approximation as

uX(x,y) =
\sum 
\mu \in JP

u\mu X(x)\psi \mu (y), u\mu X(x) =

N\mu 
1\sum 

i=1

u\mu i \phi 
\mu 
i (x), u\mu i \in \BbbR ,(3.6)D
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ADAPTIVE MULTILEVEL SGFEM APPROXIMATION A1687

and taking test functions v = \psi \nu (y)\phi 
\nu 
j (x) for all \nu \in JP and j = 1, 2, . . . , N\nu 

1 yields
a system of Ndof equations Au = b for the unknown coefficients u\mu i that define uX ,
where

Ndof =
\sum 
\mu \in JP

dim(X\mu ) =
\sum 
\mu \in JP

N\mu 
1 .

If multilevel SGFEMs are to be useful in practice, we have to be able to assemble the
components of this linear system and solve it efficiently. We discuss this next.

3.1. Multilevel SGFEM matrices. The matrix A and the vectors b and u
have a block structure, with the blocks indexed by the elements (multi-indices) of JP ,
namely,

[A\mu \nu ]ij = [A\nu \mu ]ji = B
\bigl( 
\psi \mu \phi 

\mu 
i , \psi \nu \phi 

\nu 
j

\bigr) 
(A is symmetric),

[b\nu ]j = F
\bigl( 
\psi \nu \phi 

\nu 
j

\bigr) 
,

[u\mu ]i = u\mu i

for i = 1, 2, . . . , N\mu 
1 and j = 1, 2, . . . , N\nu 

1 . For single-level methods, the
resulting system matrix admits the Kronecker product structure (see, e.g., [27])

K0 \otimes G0 +
\sum M

m=1Km \otimes Gm, where \{ Km\} Mm=0 are stiffness matrices associated with
the same finite element space and

[G0]\mu \nu =[G0]\nu \mu =\delta \nu \mu , [Gm]\mu \nu =[Gm]\nu \mu =

\int 
\Gamma 

ym\psi \mu (y)\psi \nu (y) d\pi (y), m=1,2,...,M.

In the multilevel approach, there is no such Kronecker structure. The \nu \mu th block of
A is given by

A\nu \mu =

M\sum 
m=0

[Gm]\nu \mu K
m
\nu \mu , [Km

\nu \mu ]ji =

\int 
D

am(x)\nabla \phi \mu i (x) \cdot \nabla \phi 
\nu 
j (x) dx(3.7)

for i = 1, 2, . . . , N\mu 
1 and j = 1, 2, . . . , N\nu 

1 . The entries of the stiffness matrix Km
\nu \mu in

(3.7) depend on basis functions associated with a pair of meshes \scrT \ell \mu and \scrT \ell \nu , which
may be different. Consequently, Km

\nu \mu is nonsquare if \ell \mu \not = \ell \nu for any \mu , \nu \in JP .
The key to a fast and efficient multilevel SGFEM algorithm is to first determine

what does and does not need computing. If we use iterative solvers, then we need
only compute the action of A on vectors. Here, v = Ax can be computed blockwise
via

[v]\nu = [Ax]\nu =
\sum 
\mu \in JP

A\nu \mu [x]\mu =
\sum 
\mu \in JP

M\sum 
m=0

[Gm]\nu \mu K
m
\nu \mu [x]\mu , \nu \in JP .(3.8)

We need only computeKm
\nu \mu for all distinct triplets (m, \ell \nu , \ell \mu ), where the corresponding

entry [Gm]\nu \mu is nonzero. Due to the orthonormality of the polynomials \{ \psi \mu (y)\} \mu \in JP
,

the matrices \{ Gm\} Mm=0 are very sparse (in fact, G0 = I). Indeed, if the density
\rho m associated with \pi m on \Gamma m is an even function (symmetric about zero), then the
matrices \{ Gm\} Mm=1 have at most two nonzero entries per row; see [27, 20]. Hence, a
naive upper bound for the number of required stiffness matrices is (1+2M)card(JP ).
This takes into account the sparsity of Gm but does not exploit the fact that the same
mesh may be assigned to several multi-indices \mu \in JP . An adaptive algorithm for
automatically selecting JP and the associated set of mesh level numbers \ell is developed
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Table 3.1
Naive upper bound for the number of matrices Km

\nu \mu that need computing for the test problems
(TP.1--TP.4) outlined in section 6, and the actual number required. The set JP and the mesh level
numbers \ell are selected automatically using Algorithm 1 in section 5. See sections 6.1 and 6.2 for
more details.

Test problem card(JP ) M (1 + 2M)card(JP ) Actual
TP.1 169 93 31,603 616
TP.2 36 13 972 96
TP.3 17 3 119 35
TP.4 21 8 357 54

in section 5. In Table 3.1 we record card(JP ) and the number of matrices Km
\nu \mu that

are required at the final step of that algorithm (when the error tolerance is set to
\epsilon = 2 \times 10 - 3) for the test problems outlined in section 6 (see also Table 6.2). Since
the same mesh level number is assigned to many multi-indices in JP , the number of
matrices computed is significantly lower than the bound.

Adaptive multilevel SGFEMs have been considered in [22, 17]. Those works
use an explicit a posteriori error estimation strategy to drive the enrichment of the
approximation space. In [17], all stiffness matrices Km

\nu \mu that are nonsquare (\ell \nu \not = \ell \mu )
are approximated using a projection technique involving only the square matrices
Km

\mu \mu that feature in the diagonal blocks A\mu \mu of A. Even with this approximation, the
multilevel approach considered in [17] is reported to be computationally expensive.
In the next section, we describe how the matrices Km

\nu \mu can be computed quickly and
efficiently, without the need for the approximation used in [17].

3.2. Assembly of stiffness matrices. We describe the construction of Km
\nu \mu 

for two multi-indices \mu , \nu \in JP , with \ell \mu \not = \ell \nu for a simple example. The method
of construction is the same for each m, so we assume it is fixed here. For clarity of
presentation, we consider uniform meshes of square elements. However, the procedure
is applicable to any conforming FEM spaces H\mu 

1 and H\nu 
1 for which \scrT \ell \nu is nested in

\scrT \ell \mu or, equivalently, when \scrT \ell \nu is obtained from a conforming (without introducing
hanging nodes) refinement of \scrT \ell \mu . Although nonnested meshes could also be used,
the construction of the stiffness matrices would be more complicated in that case.

Example 3.1. For simplicity, assume that D \subset \BbbR 2 is a square and H\mu 
1 and H\nu 

1 are
spaces of continuous piecewise bilinear functions associated with two uniform meshes
of square elements (\BbbQ 1 elements). In particular, let \scrT \ell \mu denote a uniform 2\times 2 square
partition of D with mesh level number \ell \mu , and let \scrT \ell \nu be a uniform 4 \times 4 square
partition of D with \ell \nu := \ell \mu + 1 (representing, in this case, a uniform refinement
of \scrT \ell \mu ). For now, we retain the boundary nodes so that N\mu 

1 := dim(H\mu 
1 ) = 9 and

N\nu 
1 := dim(H\nu 

1 ) = 25. See Figures 3.1(a) and 3.1(b). To construct Km
\nu \mu \in \BbbR 25\times 9,

we compute a coarse-element matrix for each element \square coarse in \scrT \ell \mu and concatenate
(summate the appropriate entries from) them. In Figure 3.1(c) we highlight one such
element and the four (fine) elements \square fine in \scrT \ell \nu that are embedded within it. The
associated coarse-element matrix Km

\nu \mu ,c \in \BbbR 9\times 4 has entries

[Km
\nu \mu ,c]ji =

\int 
\square coarse

am(x)\nabla \phi \mu ,ci (x) \cdot \nabla \phi \nu ,cj (x) dx, i = 1, 2, 3, 4, j = 1, 2, . . . , 9,

where \{ \phi \mu ,ci \} 4i=1 and \{ \phi \nu ,cj \} 9j=1 are basis functions associated with the round and cross
markers, with support on \square coarse and patches of \square coarse, respectively. To construct
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(a) \scrT \ell \mu . (b) \scrT \ell \nu . (c) \square coarse and its embed-
ded elements.

Fig. 3.1. Example meshes with (a) N\mu 
1 = 9 and level number \ell \mu and (b) N\nu 

1 = 25 and level
number \ell \nu = \ell \mu + 1.

Fig. 3.2. The four embedded elements in Figure 3.1(c) on which we construct four 4\times 4 local
matrices.

Km
\nu \mu ,c, we concatenate four fine-element matrices Km

\nu \mu ,f \in \BbbR 4\times 4 defined by

[Km
\nu \mu ,f ]ji =

\int 
\square fine

am(x)\nabla \phi \mu ,ci (x) \cdot \nabla \phi \nu ,fj (x) dx, i, j = 1, 2, 3, 4,

where \square fine is one of the four elements embedded in \square coarse. Here, \{ \phi \nu ,fj \} 4j=1 are the
basis functions defined with respect to the crosses in Figure 3.2 that are supported
only on \square fine (shaded region).

For \BbbQ 1 elements, constructing Km
\nu \mu boils down to the assembly of 4 \times 4 fine-

element matrices Km
\nu \mu ,f . Similarly, for \BbbQ 2 elements (continuous piecewise biquadratic

approximation), the procedure requires the assembly of 9 \times 9 fine-element matrices
Km

\nu \mu ,f . If Km
\nu \mu is square (\ell \mu = \ell \nu ), we can use the traditional element construction.

In either case, we need only perform quadrature on elements in the fine mesh.

Remark 3.1. When the meshes \scrT \ell \mu and \scrT \ell \nu are uniform, as in Example 3.1, the
computation of the fine-element matrices can be vectorized over all the coarse ele-
ments.

4. Energy norm a posteriori error estimation. Given an approximation
space X of the form (3.3) and an SGFEM approximation uX \in X satisfying (3.5), we
want to estimate the energy error | | u  - uX | | B . We now extend the implicit strategy
developed in [4, 6].

Computing the error e = u - uX \in V is a nontrivial task. Due to the bilinearity
of B(\cdot , \cdot ), it is clear that e satisfies

B(e, v) = B(u, v) - B(uX , v) = F (v) - B(uX , v) for all v \in V.

We look for an approximation to e in an SGFEM space W \subset V that is richer than
X, i.e., W \supset X. The quality of the resulting approximation is closely related to the
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quality of the Galerkin approximation uW \in W satisfying

find uW \in W : B(uW , v) = F (v) for all v \in W.(4.1)

By letting eW = uW  - uX , we see that

B(eW , v) = B(uW , v) - B(uX , v) = F (v) - B(uX , v) for all v \in W,(4.2)

and thus eW \in W satisfying (4.2) estimates the true error e \in V . Clearly, since eW
estimates e, SGFEM spaces W that contain significantly improved approximations
uW to u (compared to uX) also contain good estimates eW to e. To analyze the
quality of the error estimate | | eW | | B for a given choice of W , we require the following
assumption.

Assumption 4.1. Let the functions u, uX , and uW satisfy (2.2), (3.5), and (4.1),
respectively. There exists a constant \beta \in [0, 1) (the saturation constant) such that

| | u - uW | | B \leq \beta | | u - uX | | B .(4.3)

We will also assume that W := X \oplus Y for some ``detail"" space Y \subset V, and hence
X \cap Y = \{ 0\} . Since computing eW \in W satisfying (4.2) is usually too expensive, we
instead exploit the decomposition of W and solve

find eY \in Y : B0(eY , v) = F (v) - B(uX , v) for all v \in Y.(4.4)

Notice the use of the parameter-free B0(\cdot , \cdot ) bilinear form from (2.6) on the left-hand
side of (4.4). To analyze the quality of the approximation | | eY | | B0

\approx | | eW | | B , we
require the following result. Since X and Y are disjoint and B0(\cdot , \cdot ) induces a norm
on the Hilbert space V in (2.2), there exists a constant \gamma \in [0, 1) such that

| B0(u, v)| \leq \gamma | | u| | B0
| | v| | B0

for all u \in X, for all v \in Y ;(4.5)

see [1, Theorem 5.4]. Utilizing (4.3) and (4.5) yields the following result [14, 6].

Theorem 4.1. Let u \in V = H1
0 (D)\otimes L2

\pi (\Gamma ) satisfy the variational problem (2.2)
associated with the parametric diffusion problem (1.1)--(1.2), and let uX \in X satisfy
(3.5) for X in (3.3). Choose Y \subset V such that X \cap Y = \{ 0\} , and let eY \in Y
satisfy (4.4). If Assumption 4.1 holds and Assumptions 2.1 and 2.2 hold as well, then
\eta := | | eY | | B0

satisfies

\surd 
\lambda \eta \leq | | u - uX | | B \leq 

\surd 
\Lambda \sqrt{} 

1 - \gamma 2
\sqrt{} 
1 - \beta 2

\eta ,(4.6)

where \lambda and \Lambda are defined in (2.8), \gamma \in [0, 1) satisfies (4.5), and \beta \in [0, 1) satisfies
(4.3).

The quality of the error estimate \eta \approx | | e| | B depends on our choice of Y because
the constants \gamma and \beta in (4.6) depend on Y . In the next section we describe a suitable
structure for Y when X has the multilevel structure in (3.3).

4.1. Choice of detail space \bfitY . In order to compute \eta = | | eY | | B0 by solving
(4.4), we need to choose the space Y . Note that in an adaptive SGFEM algorithm, Y
must vary with X, which is enriched at each step as we reduce | | u - uX | | B . Suppose
that X has the form (3.3), where JP and the set of finite element spaces H1 are given.
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As stated in [6, Remark 4.3], one possibility is to choose a second set of multi-indices
JQ \subset J that satisfy JQ \cap JP = \emptyset and to construct

Y :=

\biggl( \bigoplus 
\mu \in JP

H\mu 
2 \otimes P\mu 

\biggr) 
\oplus 
\biggl( \bigoplus 

\nu \in JQ

H \otimes P \nu 

\biggr) 
,(4.7)

where H\mu 
2 \subset H1

0 (D) are FEM spaces satisfying H\mu 
1 \cap H

\mu 
2 = \{ 0\} for all \mu \in JP , and

H \subset H1
0 (D) is some other finite element space (to be defined in section 4.3). Clearly,

we have

Y := Y1 \oplus Y2 :=

\biggl( \bigoplus 
\mu \in JP

Y \mu 
1

\biggr) 
\oplus 
\biggl( \bigoplus 

\nu \in JQ

Y \nu 
2

\biggr) 
, Y \mu 

1 := H\mu 
2 \otimes P\mu , Y \nu 

2 := H \otimes P \nu ,

(4.8)

which in turn leads to the following decomposition of eY \in Y :

eY = eY1
+ eY2

=
\sum 
\mu \in JP

e\mu Y1
+

\sum 
\nu \in JQ

e\nu Y2
, e\mu Y1

\in Y \mu 
1 , e\nu Y2

\in Y \nu 
2 .

Since B0(\cdot , \cdot ) is parameter-free and JP \cap JQ = \emptyset , then as a consequence of
the orthogonality property (3.2), problem (4.4) decouples into the following
card(JP \cup JQ) = card(JP ) + card(JQ) smaller problems:

find e\mu Y1
\in Y \mu 

1 : B0(e
\mu 
Y1
, v) = F (v) - B(uX , v) for all v \in Y \mu 

1 , \mu \in JP ,(4.9)

find e\nu Y2
\in Y \nu 

2 : B0(e
\nu 
Y2
, v) = F (v) - B(uX , v) for all v \in Y \nu 

2 , \nu \in JQ.(4.10)

In addition, the error estimate \eta in (4.6) admits the decomposition

\eta = | | eY | | B0 =
\bigl( 
| | eY1 | | 2B0

+ | | eY2 | | 2B0

\bigr) 1
2 =

\biggl( \sum 
\mu \in JP

| | e\mu Y1
| | 2B0

+
\sum 
\nu \in JQ

| | e\nu Y2
| | 2B0

\biggr) 1
2

.(4.11)

For each \mu \in JP in (4.9), we solve a problem of size N\mu 
Y1

:= dim(H\mu 
2 \otimes P\mu ) = dim(H\mu 

2 ).
For each \nu \in JQ in (4.10), we solve a problem of size N\nu 

Y2
:= dim(H \otimes P \nu ) = dim(H).

For the adaptive algorithm in section 5, it will be beneficial to define the set H2 =
\{ H\mu 

2 \} \mu \in JP
as well as the sets

NY1
= \{ N\mu 

Y1
\} \mu \in JP

, NY2
= \{ N\nu 

Y2
\} \nu \in JQ

.

The quality of the error estimate \eta depends on our choices of JQ and H2 as well
as the finite element space H appearing in the definition of Y2, since they affect the
constants \gamma and \beta appearing in (4.6). The error bound is sharp when \beta and \gamma are
close to zero.

Remark 4.1. We will refer to | | eY1 | | B0 as the spatial error estimate and to | | eY2 | | B0

as the parametric error estimate. While Y2 depends on H \subset H1
0 (D), | | eY2 | | B0 esti-

mates the energy of the solution modes associated with J\setminus JP that are neglected in
the SGFEM approximation uX \in X.

If Assumption 2.2 holds, then H1
0 (D) is a Hilbert space with respect to the inner

product

\langle a0u, v\rangle =
\int 
D

a0(x)\nabla u(x) \cdot \nabla v(x) dx, u, v \in H1
0 (D).
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Fig. 4.1. The nodes associated with H\mu 
1 (left) and H\mu 

2 (right), when H\mu 
1 is chosen to be a \BbbQ 1

space and H\mu 
2 is chosen to be a so-called reduced \BbbQ 2 space associated with the same mesh \scrT \ell \mu as

H\mu 
1 .

Furthermore, since H\mu 
1 \cap H

\mu 
2 = \{ 0\} for all \mu \in JP , there exists a constant \gamma \mu \in [0, 1)

such that

| \langle a0u, v\rangle | \leq \gamma \mu \langle a0u, u\rangle 1/2\langle a0v, v\rangle 1/2 for all u \in H\mu 
1 , for all v \in H\mu 

2 ,(4.12)

for all \mu \in JP (again, see [1, Theorem 5.4]). We denote the smallest such constant
(known as the Cauchy--Buniakowskii--Schwarz or CBS constant) by \gamma \mu min. Note that
this constant depends only on the chosen finite element spaces H\mu 

1 and H\mu 
2 and is

known explicitly in many cases; see [14]. It is then straightforward to prove, using the
mutual orthogonality of the sets \{ \psi \mu (y)\} \mu \in JP

and \{ \psi \nu (y)\} \nu \in JQ
and the definition of

B0(\cdot , \cdot ), that with Y chosen as in (4.7) the bound (4.5) holds with

\gamma := max\mu \in JP
\{ \gamma \mu min\} .(4.13)

See also [6, Remark 4.3].

Remark 4.2. Since H in (4.7) does not depend on \nu \in JQ, the matrix that char-
acterizes the linear systems associated with (4.10) is the same for all \nu \in JQ. Only the
right-hand side changes. Consequently, we can vectorize the system solves associated
with (4.10) over the multi-indices JQ.

Remark 4.3. For two FEM spaces H\mu 
1 and H\mu 

2 , there often exists a sharp upper
bound for the associated CBS constant \gamma \mu min that is independent of the mesh level
number \ell \mu ; see [14].

4.2. The spatial error estimator. We now briefly discuss possible choices of
the FEM spaces H2 = \{ H\mu 

2 \} \mu \in JP
that define the tensor spaces Y1 := \{ Y \mu 

1 \} \mu \in JP
in

(4.8). Recall that each FEM space H\mu 
1 is associated with a mesh \scrT \ell \mu = \scrT i for some

i \in \BbbN 0. One option is to construct a basis for H\mu 
2 with respect to the same mesh \scrT \ell \mu 

but using polynomials of a higher degree. In order to ensure that H\mu 
1 \cap H

\mu 
2 = \{ 0\} , we

exclude basis functions associated with nodes associated with H\mu 
1 . For example, if the

spaces H1 are \BbbQ 1 FEM spaces, we may choose the spaces H2 to be so-called reduced
\BbbQ 2 FEM spaces (see Figure 4.1 (right)), that is, where the usual \BbbQ 2 basis functions
associated with the vertices are removed. Another option is to use polynomials of the
same degree but introduce basis functions associated with the new nodes that would
be introduced by performing the mesh refinement \scrT \ell \mu \rightarrow \scrT i+1 (i.e., by increasing the
level number by one).

4.3. The parametric error estimator. It remains to explain how to choose
the multi-indices JQ and the space H \subset H1

0 (D) that define the tensor spaces Y2 :=
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\{ Y \mu 
2 \} \mu \in JQ

in (4.8). It was proven in [6] that | | e\nu Y2
| | B0

= 0 for considerably many multi-
indices \nu \in J\setminus JP . In order to avoid unnecessary computations, it is essential that
we first identify the set of multi-indices J\ast \subset J that result in nonzero contributions.
Indeed, this set is given by

J\ast =
\bigl\{ 
\mu \in J\setminus JP ; \mu = \nu \pm \epsilon m for all \nu \in JP , for all m \in \BbbN 

\bigr\} 
,

where \epsilon m := (\epsilon m1 , \epsilon 
m
2 , . . . ) is the Kronecker delta sequence such that \epsilon mj = \delta mj for all

j \in \BbbN . Since J\ast is an infinite set, we need to choose a finite subset JQ \subset J\ast . We call
J\ast the set of ``neighboring indices"" to JP and choose

JQ =
\bigl\{ 
\nu \in J\ast ; max\{ supp(\nu )\} \leq M +\Delta M

\bigr\} 
,(4.14)

where \Delta M \in \BbbN is the number of additional parameters we wish to activate.
We now turn our attention to H \subset H1

0 (D) used in (4.7). Recall that W = X \oplus Y
in (4.1). The space Y (and hence Y \nu 

2 = H\otimes P \nu ) should be chosen so that W contains
functions that would result in an improved approximation uW \in W to u. We clearly
want to choose Y so that we have an accurate energy error estimate \eta for the current
approximation uX . However, since we want to perform adaptivity, the functions in
Y serve as candidates to be added to X at the next approximation step. Since X
may be augmented with H \otimes P \nu for some \nu \in JQ, we should choose H such that
the structure of Y in (4.7) is maintained and the error estimator is straightforward to
compute at each step. For this reason, we choose H = H \=\mu 

1 for some \=\mu \in JP ; that is,
we choose H to be one of the FEM spaces already used in the construction of X.

When choosing \=\mu \in JP we must consider the fact that through our choice of Y
in (4.7), \beta in (4.6) depends on \=\mu . We have to balance the accuracy of the estimate
\eta against the cost to compute it. If we choose \=\mu such that \ell \=\mu = max\mu \in JP

\ell (i.e.,
choose the richest FEM space used so far), then dim(X) will grow too quickly when
we augment X with functions in Y2. Similarly, if \ell \=\mu = min\mu \in JP

\ell , the error reduction
may be negligible if X is augmented with functions from Y2. To strike a balance,
we will choose \=\mu to correspond to the FEM space H\mu 

1 with the smallest mesh level
number \ell \mu such that the number of spaces with level number \ell \mu or less is greater than
or equal to \lceil 12card(JP )\rceil . We denote this choice by \=\mu = arg avg\mu \in JP

\ell .

Example 4.1. Suppose card(JP ) = 5 and \ell = \{ 2, 3, 3, 2, 1\} ; then \ell \=\mu = 2. Similarly,
if card(JP ) = 3 and \ell = \{ 4, 3, 2\} , then \ell \=\mu = 3.

The heuristic choice \=\mu = arg avg\mu \in JP
\ell ensures that the dimensions of the spaces

in Y2 are always modest in comparison to those of the spaces in X = \{ X\mu \} \mu \in JP
in

(3.3).

5. Adaptive multilevel SGFEM. Suppose that X and Y in (3.3) and (4.7)
have been chosen (and so the sets of multi-indices JP , JQ \subset J have also been chosen)
and that the corresponding approximations uX \in X and eY \in Y satisfying (3.5) and
(4.4) have been computed. If \eta = | | eY | | B0 is too large, we want to augment X with
some of the functions in Y and compute a (hopefully) improved approximation to
u \in V satisfying (2.2). Of course, we could augment X with the full space Y to
ensure it is sufficiently rich. However, we must also ensure that the total number of
additional degrees of freedom (DOFs) introduced is balanced against the reduction
in the energy error that is achieved. We should only augment X with functions that
result in significant error reductions. Below, we demonstrate that by using the sets
of component estimates

EY1
:= \{ | | e\mu Y1

| | B0
\} \mu \in JP

, EY2
:= \{ | | e\mu Y2

| | B0
\} \mu \in JQ

(5.1)
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A1694 A. J. CROWDER, C. E. POWELL, AND A. BESPALOV

(which are computed to determine \eta ), we can estimate the error reduction that would
be achieved by performing certain enrichment strategies at the next approximation
step.

5.1. Estimated error reductions. Consider the discrete problems

find uW1
\in W1 : B(uW1

, v) = F (v) for all v \in W1,(5.2)

find uW2
\in W2 : B(uW2

, v) = F (v) for all v \in W2,(5.3)

where W1 and W2 are ``enhanced"" SGFEM approximation spaces given by

(5.4)

W1 := X \oplus YW1 := X \oplus 
\biggl( \bigoplus 

\mu \in \=JP

Y \mu 
1

\biggr) 
, \=JP \subseteq JP ,

W2 := X \oplus YW2
:= X \oplus 

\biggl( \bigoplus 
\nu \in \=JQ

Y \nu 
2

\biggr) 
, \=JQ \subseteq JQ;

that is, uW1
and uW2

are SGFEM approximations to u \in V computed in W1 and W2,
respectively. Note that if \=JP = JP , then YW1

= Y1, and if \=JQ = JQ, then YW2
= Y2.

However, we want to consider enrichment strategies associated with only important
subsets of the multi-indices. The space W1 corresponds to refining the finite element
meshes associated with a subset of the multi-indices \mu \in JP used in the definition
of X, whereas W2 corresponds to adding new basis polynomials on the parameter
domain. We want to estimate the potential pay-offs of these two strategies.

Let eW1
= u - uW1

denote the error corresponding to the enhanced approximation
uW1

. Due to the orthogonality of eW1
with functions in W1 ((uW1

 - uX) \in W1 in
particular) with respect toB(\cdot , \cdot ) (Galerkin orthogonality) and the symmetry ofB(\cdot , \cdot ),
we find that

| | eW1
| | 2B = | | u - uX | | 2B  - | | uW1

 - uX | | 2B .

Hence, | | uW1
 - uX | | 2B characterizes the reduction in | | u  - uX | | 2B (the square of the

energy error) that would be achieved by augmenting X with YW1
, for a suitably

chosen set \=JP \subseteq JP , and computing an enhanced approximation uW1
\in W1 satisfying

(5.2). Similarly, | | uW2  - uX | | 2B characterizes the reduction in | | u - uX | | 2B that would
be achieved by augmenting X with YW2 for a suitably chosen set \=JQ \subseteq JQ and
computing uW2

\in W2 satisfying (5.3). The following result provides estimates for
these quantities. This is a simple extension of a result proved in [4, 6]; the proof is
very similar.

Theorem 5.1. Let uX \in X be the SGFEM approximation satisfying (3.5), and
let uW1

\in W1 and uW2
\in W2 satisfy problems (5.2) and (5.3). Define the quantities

\zeta W1
:=

\sum 
\mu \in \=JP

| | e\mu Y1
| | 2B0

, \zeta W2
:=

\sum 
\nu \in \=JQ

| | e\nu Y2
| | 2B0

for some \=JP \subseteq JP and \=JQ \subseteq JQ. Then the following estimates hold:

\lambda \zeta W1
\leq | | uW1

 - uX | | 2B \leq 
\Lambda 

1 - \gamma 2
\zeta W1 ,(5.5)

\lambda \zeta W2 \leq | | uW2  - uX | | 2B \leq \Lambda \zeta W2 ,(5.6)

where \lambda and \Lambda are the constants in (2.8), and \gamma \in [0, 1) is the constant satisfying
(4.13).
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ADAPTIVE MULTILEVEL SGFEM APPROXIMATION A1695

Given two sets of multi-indices \=JP and \=JQ, we now determine an appropriate
enrichment strategy for X by considering the bounds (5.5)--(5.6). One option would
be to perform the enrichment strategy that corresponds to max\{ \zeta W1

, \zeta W2
\} . While this

may lead to a large reduction of | | u  - uX | | 2B (and hence of | | u  - uX | | B), it does not
take into account the computational cost incurred. We want to construct sequences
of SGFEM spaces X for which the energy error converges to zero at the best possible
rate with respect to Ndof = dim(X) for the chosen set of finite element spaces. Hence,
the number of DOFs should be taken into account. Recall the definitions

N\mu 
Y1

:= dim(Y \mu 
1 ), \mu \in JP , N\nu 

Y2
:= dim(Y \nu 

2 ), \nu \in JQ.(5.7)

The number of additional DOFs (compared to the current space X) associated with
the spaces W1 and W2 in (5.4) is given by

NW1
:=

\sum 
\mu \in \=JP

N\mu 
Y1
, NW2

:=
\sum 
\nu \in \=JQ

N\nu 
Y2
,

respectively. Due to Theorem 5.1, the ratios

RW1
:=

\zeta W1

NW1

, RW2 :=
\zeta W2

NW2

(5.8)

provide approximations to | | uW1  - uX | | 2B/NW1 and | | uW2  - uX | | 2B/NW2 , respectively.
Once we have chosen \=JP and \=JQ, we augment X with the space YW1

or YW2
, that

corresponds to max\{ RW1
, RW2

\} . In the next section we propose an adaptive multilevel
SGFEM algorithm for the numerical solution of (1.1)--(1.2) and introduce two methods
for the selection of the sets of multi-indices \=JP and \=JQ.

5.2. An adaptive algorithm. Using the a posteriori error estimation strategy
discussed in section 4.1 and the estimated error reductions described in section 5.1, we
now propose an adaptive algorithm that generates a sequence of multilevel SGFEM
spaces,

X0 \subset X1 \cdot \cdot \cdot \subset Xk \cdot \cdot \cdot \subset XK \subset V,

and terminates at step k = K when the SGFEM approximation uKX \in XK to u satisfies
a prescribed error tolerance \epsilon . We start by selecting an initial low-dimensional SGFEM
space X0 of the form (3.3) and compute an initial approximation u0X \in X0 to u \in V
satisfying (3.5). Assuming that the polynomial degree of the FEM approximation on
D has been fixed, we only need to supply an initial set of multi-indices J0

P as well
as a set of mesh level numbers \ell 0 = \{ \ell \mu 0\} \mu \in J0

P
. We then consider two enrichment

strategies. The first option is to refine certain meshes associated with the spaces H0
1

and produce a new set \ell 1. If \ell \mu 0 = i for some \mu \in JP , and we want to perform a
refinement, we set \ell \mu 1 = i + 1 or, equivalently, replace \scrT \ell \mu 0 with the next mesh in the
sequence \bfscrT in (3.4). In our adaptive algorithm we write

\ell \mu 0 \rightarrow \ell \mu +0 =: \ell \mu 1 .(5.9)

The second option is to add multi-indices to J0
P to give a new set J1

P . In this case,
we must also update \ell 0 with new mesh parameters to maintain the relationship
card(JP ) = card(\ell ). Specifically, we add a copy of \ell \=\mu 0 to \ell 0 for every multi-index
added to J0

P (see section 4.3 for the definition of \=\mu ). Once J1
P and \ell 1 are defined and

u1X \in X1 is computed, the process is repeated.
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Algorithm 1 Adaptive multilevel SGFEM.

Input : Problem data a(x,y), f(x); initial index set J0
P and mesh level numbers \ell 0;

energy error tolerance \epsilon .
Output: Final SGFEM approximation uKX and energy error estimate \eta K .

\bfone Choose version (1 or 2)
for k = 0, 1, 2, . . . do

\bftwo ukX \leftarrow SOLVE
\bigl[ 
a, f, Jk

P , \ell 
k
\bigr] 

Jk
Q \leftarrow PARAMETRIC INDICES

\bigl[ 
Jk
P

\bigr] 
see: (4.14)

Ek
Y1
\leftarrow COMPONENT SPATIAL ERRORS

\bigl[ 
ukX , J

k
P , \ell 

k
\bigr] 

(5.1)

Ek
Y2
\leftarrow COMPONENT PARAMETRIC ERRORS

\bigl[ 
ukX , J

k
Q, \ell 

k
\bigr] 

\eta k =
\bigl[ \sum 

\mu \in Jk
P
| | e\mu ,kY1

| | 2B0
+
\sum 

\nu \in Jk
Q
| | e\nu ,kY2

| | 2B0

\bigr] 1
2 (4.11)

if \eta k < \epsilon then
\bfthree return ukX , \eta 

k

\bffour else
\bffive [refinement type, \=Jk]\leftarrow ENRICHMENT INDICES

\bigl[ 
version,Ek

Y1
,Ek

Y2
, Jk

P , J
k
Q

\bigr] 
if refinement type = spatial then

\bfsix Jk+1
P = Jk

P

\ell k+1 =
\bigl\{ 
\ell \mu +k ; \mu \in \=Jk

\bigr\} 
\cup 
\bigl\{ 
\ell \mu k ; \mu \in Jk

P \setminus \=Jk
\bigr\} 

(5.9)

\bfseven else

\bfeight Jk+1
P = Jk

P \cup \=Jk

\ell k+1 = \ell k \cup 
\bigl\{ 
\ell \=\mu k ; \nu \in \=Jk

\bigr\} 
\bfnine end

\bfone \bfzero end

\bfone \bfone end

The general process is outlined in Algorithm 1. At a given step k,
\bullet SOLVE computes an SGFEM approximation uX \in X to u \in V satisfying (3.5).
\bullet PARAMETRIC INDICES uses (4.14) to determine a subset JQ of the neighboring
indices to JP for a prescribed choice of \Delta M .

\bullet COMPONENT SPATIAL ERRORS and COMPONENT PARAMETRIC ERRORS compute the
sets of error estimates EY1

and EY2
in (5.1), respectively, by solving (4.9) and

(4.10).
\bullet ENRICHMENT INDICES analyzes the sets EY1

and EY2
in conjunction with the

formulae in (5.8) to determine how to enrich the current SGFEM space X.
A key part of ENRICHMENT INDICES is the determination of suitable sets \=JP \subseteq JP
and \=JQ \subseteq JQ, which we describe in the next section. Algorithm 1 subsequently
performs either a spatial or parametric refinement associated with the set of multi-
indices \=J := \=JP or \=J := \=JQ, respectively.

5.3. Selection of the enrichment multi-indices. We introduce two versions
of the module ENRICHMENT INDICES, which are outlined in Algorithm 2. To begin,
define the sets

RY1
:=

\bigl\{ 
R\mu 

Y1

\bigr\} 
\mu \in JP

:=

\biggl\{ | | e\mu Y1
| | 2B0

N\mu 
Y1

\biggr\} 
\mu \in JP

, RY2
:=

\bigl\{ 
R\nu 

Y2

\bigr\} 
\nu \in JQ

:=

\biggl\{ | | e\nu Y2
| | 2B0

N\nu 
Y2

\biggr\} 
\nu \in JQ
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ADAPTIVE MULTILEVEL SGFEM APPROXIMATION A1697

Algorithm 2 ENRICHMENT INDICES versions 1 and 2.

Input : version; Ek
Y1
; Ek

Y2
; Jk

P ; J
k
Q.

Output: refinement type, \=Jk.

\bfone \bftwo \delta kY1
= max\mu \in Jk

P
Rk

Y1
, \delta kY2

= max\nu \in Jk
Q
Rk

Y2

if \delta kY1
> \delta kY2

then

\bfone \bfthree \=Jk
Q = \{ \nu \in Jk

Q; R
\nu ,k
Y2

= \delta kY2
\} 

if version = 1 then

\bfone \bffour \=Jk
P = \{ \mu \in Jk

P ; R
\mu ,k
Y1

> \delta kY2
\} 

\bfone \bffive else
\bfone \bfsix \=Jk

P \leftarrow MARK[Ek
Y1
,Nk

Y1
, \delta kY2

]

\bfone \bfseven end

\bfone \bfeight else

\bfone \bfnine \=Jk
P = \{ \mu \in Jk

P ; R
\mu ,k
Y1

= \delta kY1
\} 

if version = 1 then

\bftwo \bfzero \=Jk
Q = \{ \nu \in Jk

Q; R
\nu ,k
Y2

> \delta kY1
\} 

\bftwo \bfone else
\bftwo \bftwo \=Jk

Q \leftarrow MARK[Ek
Y2
,Nk

Y2
, \delta kY1

]

\bftwo \bfthree end

\bftwo \bffour end

\bftwo \bffive if Rk
W1

> Rk
W2

then
\bftwo \bfsix refinement type = spatial, \=Jk = \=Jk

P

\bftwo \bfseven else
\bftwo \bfeight refinement type = parametric, \=Jk = \=Jk

Q

\bftwo \bfnine end

\bfthree \bfzero return [refinement type, \=Jk]

of estimated error reduction ratios and consider the quantities

\delta Y1
:= max

\mu \in JP

RY1
, \delta Y2

:= max
\nu \in JQ

RY2
.

Version 1 of Algorithm 2 is simple. If \delta Y1 > \delta Y2 , we define \=JP to be the set of
multi-indices \mu \in JP such that R\mu 

Y1
> \delta Y2

, and we define \=JQ to be the set of multi-

indices \nu \in JQ such that R\nu 
Y2

= \delta Y2
. Similarly, if \delta Y2

> \delta Y1
, we define \=JQ to be the

set of multi-indices in JQ such that R\nu 
Y2
> \delta Y1 , and

\=JP is the set of multi-indices in
JP such that R\mu 

Y1
= \delta Y1 . The refinement type is then determined by computing RW1

and RW2
in (5.8). If RW1

> RW2
, we perform spatial refinement and set \=J = \=JP .

Otherwise, we enrich the parametric part and set \=J = \=JQ.
Version 2 is similar. However, if \delta Y1

> \delta Y2
, we choose \=JP to be the largest subset

of JP such that RW1 > \delta Y2 (recall that RW1 depends on \=JP ). Similarly, if \delta Y2 > \delta Y1 ,
we choose \=JQ to be the largest subset of JQ such that RW2 > \delta Y1 . As before, the
refinement type chosen is the one associated with max\{ RW1

, RW2
\} . Version 2 is

reminiscent of a D\"orfler marking strategy [16], and so the module that generates \=JP
(if \delta Y1

> \delta Y2
) and \=JQ (if \delta Y2

> \delta Y1
) is called MARK.

Remark 5.1. A key feature of both versions of ENRICHMENT INDICES is that no
marking or tuning parameters are required. The user need only choose \Delta M in the
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definition of JQ in (4.14). This fixes an upper bound on the number of new parameters
ym that may be activated.

6. Numerical experiments. We now investigate the performance of Algo-
rithms 1 and 2 in computing approximate solutions to (1.1)--(1.2). First, we describe
four test problems. These differ, in particular, in the choice of a(x,y), and give rise
to sequences of coefficients \{ \| am\| \infty \} \infty m=1 that decay at different rates. Recall that
ym \in \Gamma m = [ - 1, 1] is the image of a uniform random variable, and \pi m(ym) is the
associated probability measure for m \in \BbbN .

Test Problem 1 (TP.1). First, we consider a problem from [4, 14]. Let f(x) =
1
8 (2 - x

2
1  - x22) for x = (x1, x2)

\top \in D := [ - 1, 1]2 and assume that

a(x,y) = 1 + \sigma 
\surd 
3

\infty \sum 
m=1

\sqrt{} 
\lambda m\phi m(x)ym,(6.1)

where (\lambda m, \phi m) are the eigenpairs of the operator associated with the covariance
function

C[a](x,x\prime ) = exp

\biggl( 
 - | x1  - x

\prime 
1| 

l1
 - | x2  - x

\prime 
2| 

l2

\biggr) 
, x,x\prime \in D.

As in [14], we choose \sigma = 0.15 (the standard deviation) and l1 = l2 = 2 (the correlation
lengths). It can be shown that asymptotically (as m\rightarrow \infty ), \lambda m is \scrO (m - 2); see [26].

Test Problem 2 (TP.2). Next, we consider a problem from [17, 6]. Let f(x) = 1
for x = (x1, x2)

\top \in D := [0, 1]2, and assume that

a(x,y) = 1 +

\infty \sum 
m=1

\alpha m cos(2\pi \beta 1
mx1) cos(2\pi \beta 

2
mx2)ym

with \beta 1
m = m - km(km +1)/2, \beta 2

m = km  - \beta 1
m, and km = \lfloor  - 1/2+ (1/4+ 2m)1/2\rfloor for

m \in \BbbN . In this test problem, we select the amplitude coefficients \alpha m = 0.547m - 2.

Test Problem 3 (TP.3). This is the same as TP.2, but we now choose \alpha m =
0.832m - 4 so that the terms in the expansion of a(x,y) decay more quickly.

Test Problem 4 (TP.4). Finally, we consider a problem from [26]. Let f(x)
and D be as in TP.2, and assume that

a(x,y) = 2 +
\surd 
3

\infty \sum 
i=0

\infty \sum 
j=0

\surd 
\nu ij\phi ij(x)yij , yij \in [ - 1, 1],(6.2)

where \phi 00 = 1, \nu 00 = 1
4 , and

\phi ij = 2 cos(i\pi x1) cos(j\pi x2), \nu ij =
1

4
exp( - \pi (i2 + j2)l - 2).

We choose the correlation length l = 0.65 and rewrite the sum (6.2) in terms of a single
index m to mimic the form (1.3), with the sequence \{ \nu m\} \infty m=1 ordered descendingly.
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Table 6.1
Reference energies | | uref| | B for the four test problems TP.1--TP.4 presented in section 6.

Test problem Reference energy | | uref| | B
TP.1 1.50342524\times 10 - 1

TP.2 1.90117000\times 10 - 1

TP.3 1.94142000\times 10 - 1

TP.4 1.34570405\times 10 - 1

6.1. Experimental setup. To begin, we select an appropriate set of finite ele-
ment spaces H1. Since D is square in all cases, we choose a sequence \bfscrT of uniform
meshes of square elements, with \scrT i representing a 2i \times 2i grid over D (thus \scrT i+1

represents a uniform refinement of \scrT i) with element width h(i) = 21 - i for TP.1 and
h(i) = 2 - i for TP.2--TP.4. We then choose H1 to be the set of \BbbQ 1 finite element
spaces associated with \bfscrT . We initialize Algorithm 1 with

J0
P = \{ (0, 0, . . . ), (1, 0, . . . )\} , \ell 0 = \{ 4, 4\} (16\times 16 grids).

To compute the error estimator \eta defined in section 4.1, the FEM spaces H2 =
\{ H\mu 

2 \} \mu \in JP
are chosen to be reduced \BbbQ 2 spaces (see Figure 4.1) defined with respect

to the same meshes as the spaces H1, as described in section 4.2. Note that for this
setup, if a0 in (1.3) is a constant, we have \gamma \leq 

\sqrt{} 
5/11 in (4.5); cf. Remark 4.3, and see

[14] for a proof. We also fix \Delta M = 5 in the definition of JQ in (4.14). Due to Galerkin
orthogonality, the exact energy error | | u - ukX | | B at step k admits the representation

| | u - ukX | | B =
\bigl( 
| | u| | 2B  - | | ukX | | 2B

\bigr) 1
2 .(6.3)

To examine the effectivity index \theta k = \eta k/| | u - uk| | B we approximate u in (6.3) with
an accurate ``reference"" solution uref \in Xref. The space Xref is generated by applying
Algorithm 1 with a much smaller error tolerance \epsilon than the one used to generate \eta k,
k = 1, . . . ,K. The reference energies | | uref| | B required for the approximation of (6.3)
are provided in Table 6.1.

6.2. Experiment 1 (convergence rates). In our first experiment we solve test
problems TP.1--TP.4 using Algorithms 1 and 2 (version 1) with tolerance \epsilon = 2\times 10 - 3.
In Figure 6.1 we plot the evolution of the estimated error \eta k against dim(Xk) (left
plots) over each step of the iteration and plot the estimates of the effectivity indices \theta k

(right plots). For test problems TP.2--TP.4, we observe that the estimated error be-
haves like N - 0.5

dof . Note that this is an improvement on the convergence rates obtained
in [6, 5] for the same test problems, where single-level SGFEM spaces of the form (1.5)
are employed. Due to our choice of FEM spaces H1 (bilinear approximation) and the
spatial regularity of the solution, this is the optimal rate of convergence. That is, we
achieve the rate afforded to the analogous parameter-free problem when employing \BbbQ 1

approximation over uniform square meshes and performing uniform mesh refinements.
As proven in [12, 13, 23], the optimal achievable rate is a consequence of the fact that
the sequence \{ | | am| | \infty \} \infty m=1 decays sufficiently quickly, and the error attributed to
the choice of spatial discretization dominates. Conversely, for test problem TP.1 the
associated sequence \{ | | am| | \infty \} \infty m=1 decays too slowly, and the error attributed to the
parametric part of the approximation dominates. For this reason, test problem TP.1
is particularly challenging. Nevertheless, for moderate error tolerances, our adaptive
algorithm can tackle it efficiently. For all test problems considered, the effectivity
indices are close to one, meaning that the error estimate is highly accurate.
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Fig. 6.1. Plots of the estimated errors \eta k versus number of DOFs Ndof (left) at steps
k = 0, 1, . . . and effectivity indices \theta k (right) when solving TP.1--TP.4 (from top to bottom) us-
ing Algorithms 1 and 2 (version 1).

Table 6.2
Number of solution modes assigned the same element width h(\ell \mu K) (corresponding to a mesh

level number \ell \mu K in \ell K) for test problems TP.1--TP.4.

Test problem 2 - 3 2 - 4 2 - 5 2 - 6 2 - 7 2 - 8 card(JK
P ) M

TP.1 118 49 1 0 1 0 169 93
TP.2 -- 25 6 3 1 1 36 13
TP.3 -- 5 7 2 2 1 17 3
TP.4 -- 17 3 0 1 0 21 8

Figure 6.1 provides no information about the structure of the multilevel SGFEM
spaces XK constructed. To illustrate the qualitative differences between the four
cases, in Table 6.2 we record the number of activated parameters M , the cardinality
of the final set JK

P , and the number of multi-indices within that set that are assigned
the same finite element space (i.e., the same mesh level number from the set \ell K).
In each case, we observe that fine meshes are required to estimate very few solution
modes (polynomial coefficients), whereas higher numbers of modes are assigned coarse
meshes. This is reminiscent of multilevel sampling methods. While multilevel Monte
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Table 6.3
A subset of 12 multi-indices from the set JK

P generated by Algorithm 1 and the associated
element widths h(\ell \mu K) assigned to those multi-indices at the final step for test problems TP.1--TP.4.

TP.1 TP.2 TP.3 TP.4

\mu h(\ell \mu K) \mu h(\ell \mu K) \mu h(\ell \mu K) \mu h(\ell \mu K)

(0 0 0 0 0 0 0 0 0 0) 2 - 7 (0 0 0 0 0 0) 2 - 8 (0 0 0) 2 - 8 (0 0 0 0 0 0) 2 - 7

(\bfone 0 0 0 0 0 0 0 0 0) 2 - 5 (\bfone 0 0 0 0 0) 2 - 7 (\bfone 0 0) 2 - 7 (\bfone 0 0 0 0 0) 2 - 5

(0 0 \bfone 0 0 0 0 0 0 0) 2 - 4 (0 0 \bfone 0 0 0) 2 - 6 (\bftwo 0 0) 2 - 7 (0 0 \bfone 0 0 0) 2 - 5

(0 \bfone 0 0 0 0 0 0 0 0) 2 - 4 (0 \bfone 0 0 0 0) 2 - 6 (\bfthree 0 0) 2 - 6 (0 \bfone 0 0 0 0) 2 - 5

(0 0 0 0 0 \bfone 0 0 0 0) 2 - 4 (\bftwo 0 0 0 0 0) 2 - 6 (0 \bfone 0) 2 - 5 (0 0 0 \bfone 0 0) 2 - 4

(0 0 0 0 \bfone 0 0 0 0 0) 2 - 4 (\bfone \bfone 0 0 0 0) 2 - 5 (\bffour 0 0) 2 - 6 (\bfone 0 \bfone 0 0 0) 2 - 4

(0 0 0 \bfone 0 0 0 0 0 0) 2 - 4 (0 0 0 0 0 \bfone ) 2 - 5 (\bfone \bfone 0) 2 - 5 (\bfone \bfone 0 0 0 0) 2 - 4

(\bftwo 0 0 0 0 0 0 0 0 0) 2 - 3 (0 0 0 0 \bfone 0) 2 - 5 (\bffive 0 0) 2 - 5 (\bftwo 0 0 0 0 0) 2 - 4

(0 0 0 0 0 0 0 \bfone 0 0) 2 - 4 (0 0 0 \bfone 0 0) 2 - 5 (\bftwo \bfone 0) 2 - 5 (0 0 0 0 0 \bfone ) 2 - 4

(0 0 0 0 0 0 \bfone 0 0 0) 2 - 4 (\bfone 0 \bfone 0 0 0) 2 - 5 (0 0 \bfone ) 2 - 5 (0 0 0 0 \bfone 0) 2 - 4

(0 0 0 0 0 0 0 0 0 \bfone ) 2 - 4 (\bftwo \bfone 0 0 0 0) 2 - 4 (\bfthree \bfone 0) 2 - 5 (\bfone 0 0 \bfone 0 0) 2 - 4

(0 0 0 0 0 0 0 0 \bfone 0) 2 - 4 (\bfthree 0 0 0 0 0) 2 - 5 (\bfsix 0 0) 2 - 5 (0 \bfone \bfone 0 0 0) 2 - 4

Carlo and multilevel and multi-index stochastic collocation methods [11, 9, 29, 25, 24]
also typically require few deterministic PDE solves using fine finite element meshes and
larger numbers using coarser meshes, there are some differences. Multilevel sampling
methods typically require the number of parameters to be fixed a priori. We stress that
our algorithm requires no sampling and learns which are the important parameters to
activate as part of the solution process itself. The decision about which meshes to use
is based on a rigorous a posteriori error estimate. For TP.1, we observe that many
more parameters are activated (M = 93), and the number of polynomials required
(card(JK

P ) = 169) is much higher than in test problems TP.2--TP.4. This is due to
the slow decay of the eigenvalues \lambda m in (6.1). Although many more polynomials are
needed in TP.1, the majority of the corresponding meshes are coarse. Conversely, test
problem TP.3 has the lowest number of activated parameters (M = 3) and requires
the smallest number of polynomials (card(JK

P ) = 17). Compared to TP.1, however,
a larger proportion of the meshes associated with the selected multi-indices are finer.
For TP.2, the number of activated parameters is higher than in TP.3, as expected.

In Table 6.3 we display 12 of the multi-indices in the set JK
P that are selected by

Algorithm 1 for each test problem, as well as the associated element widths h(\ell \mu K)
assigned to those multi-indices at the final step. Note that it is not possible to list all
the multi-indices generated for all four test problems. The 12 shown in each case are
selected in the first few iterations. For TP.1, these mostly correspond to univariate
polynomials of degree one. In the early stages, Algorithm 1 selects multi-indices that
activate more terms in the expansion (6.1), rather than multi-indices that correspond
to polynomials of higher degree in the currently active parameters. Again, this is
due to the slow decay of the \lambda m in (6.1). In contrast, when solving TP.3, Algorithm
1 first selects multi-indices that correspond to polynomials of higher degree in the
currently active parameters before activating new parameters. For all test problems,
the multi-indices that are selected in the early stages (corresponding to the most
important solution modes with respect to the energy error) are assigned the finest
meshes. In particular, the mean solution mode (the coefficient of the polynomial
associated with \mu = (0, 0, . . . )) is always allocated the finest mesh (i.e., is assigned
the smallest element width h(\ell \mu K)) when compared with the other modes.
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Table 6.4
Solution times T (in seconds) and adaptive step counts K required to solve test problems TP.1--

TP.4 using Algorithms 1 and 2 (versions 1 and 2) with various choices of the error tolerances \epsilon .
The symbol -- denotes that the estimated error in the previous step is already below the tolerance,
and the preceding T and K are applicable.

-
TP.1 TP.2 TP.3 TP.4

ver. 1 ver. 2 ver. 1 ver. 2 ver. 1 ver. 2 ver. 1 ver. 2
\epsilon T K T K T K T K T K T K T K T K

4.5 \cdot 10 - 3 2 6 2 6 1 7 5 6 1 10 1 7 1 5 2 5
3.0 \cdot 10 - 3 13 14 3 8 4 9 -- -- 3 12 3 9 2 10 -- --
1.5 \cdot 10 - 3 311 83 325 34 27 26 29 10 16 20 11 11 7 19 5 7
9.0 \cdot 10 - 4 236 70 167 13 87 36 62 15 23 29 22 8
7.5 \cdot 10 - 4

out of memory
-- -- -- -- 100 38 -- -- 36 38 -- --

6.0 \cdot 10 - 4 881 147 -- -- 147 44 92 18 110 48 80 9
4.5 \cdot 10 - 4 2197 177 1306 19 484 61 340 22 158 59 95 10

6.3. Experiment 2 (timings). We now investigate the computational effi-
ciency of the new method. All computations were performed in MATLAB using
new software developed from components of the S-IFISS toolbox [3] on an Intel Core
i7 4770k 3.50GHz CPU with 24GB of RAM. In Table 6.4 we record timings (T ) in
seconds and the number of adaptive steps (K) taken by Algorithm 1 (now using both
versions of Algorithm 2) as we decrease the error tolerance \epsilon . We observe that in
TP.2--TP.4, for smaller error tolerances, using version 2 of Algorithm 2 results in a
quicker solution time and a lower adaptive step count. The lower step count is due to
the fact that the sets of multi-indices \=Jk that are produced by version 2 are usually
richer than the ones produced by version 1. Note that because of this, a single step
of version 2 is more expensive than a single step of version 1. Time savings are only
made when enough steps are saved. We use the preconditioned conjugate gradient
method with a mean-based preconditioner [27] to solve (3.5). Fewer adaptive steps
means that fewer SGFEM linear systems have to be solved, and hence fewer matrix-
vector products (3.8) are required. For TP.1 with \epsilon = 1.5\times 10 - 3, the difference in step
count between version 1 and 2 is not large enough for time savings to be made. We
note also that asymptotically, both versions of Algorithm 2 result in the same rates
of convergence (illustrated by the blue (solid) lines in Figure 6.1). However, due to
the larger associated sets \=Jk, version 2 requires more adaptive steps before this rate is
realized. We note that elements in the sets EY1

and EY2
in (5.1) may be computed in

parallel to improve timings. However, this was not necessary here. For the smallest
tolerance considered, experiments with version 2 took between 95 seconds (for TP.4)
and 22 minutes (for TP.2) on a standard desktop computer.

In Figure 6.2 we plot the total computational time (T ) against the the number of
DOFs (Ndof) when employing version 2 of Algorithm 2. The total number of markers,
each reflecting a single step of Algorithm 1, is equal to the value of K corresponding
to the smallest value of \epsilon in Table 6.4. We observe that for all four test problems,
the computational time behaves at most like N1.35

dof . For TP.3 and TP.4, where M
is smaller, T behaves almost linearly with respect to Ndof. We also plot the ratio r
of the cumulative time taken to estimate the energy error (by executing the modules
COMPONENT SPATIAL ERRORS and COMPONENT PARAMETRIC ERRORS in Algorithm 1) to
the time taken to compute the SGFEM approximation uX (by executing the SOLVE

module in Algorithm 1). We observe that r does not grow with Ndof (indeed, 1.2 <
r < 2.5 at the final step for all four problems). Hence, the cost of estimating the error
is proportional to the cost of computing the SGFEM approximation itself.
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Fig. 6.2. Plots of the total computational time T (round markers) in seconds accumulated
over all refinement steps and the error estimation--solve time ratio r (triangular markers) versus
the number of DOFS Ndof when solving TP.1--TP.4 (from left to right and top to bottom) using
Algorithm 1 with version 2 of Algorithm 2.

7. Summary. We presented a novel adaptive multilevel SGFEM algorithm for
the numerical solution of elliptic PDEs with coefficients that depend on countably
many parameters ym in an affine way. A key feature is the use of an implicit a poste-
riori error estimation strategy to drive the adaptive enrichment of the approximation
space. We demonstrated how to extend the error estimation strategy used in [4, 6] to
the new multilevel setting and described new ways to utilize the distinct components
of the error estimator to determine how to best enrich the spaces associated with the
spatial and parameter domains. Through numerical experiments we demonstrated
that the error estimate is accurate and that the resulting adaptive algorithm achieves
the optimal rate of convergence with respect to the dimension of the approximation
space. That is, we achieve the convergence rate associated with the chosen finite
element method for the associated parameter-free problems. Unlike other methods,
our numerical scheme uses no marking or tuning parameters. Finally, we demon-
strated that our multilevel algorithm is computationally efficient. Indeed, for some
test problems (where the number M of parameters that need to be activated is not
too high), the solution time scales almost linearly with respect to the dimension of
the approximation space.
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