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Most research into natural spider web structures have considered only the small deformation theory 

based on small amplitude analysis. In reality, spider web structures, which are slender by nature, are 

more prone to large-amplitude load effects. This paper firstly presents a numerical study into large 

amplitude free vibrations of spider web structures. Highly coupled geometry and material nonline-

arities have been formulated to establish the finite element models of spider web structures. Valida-

tion of the model has been carried out using previous research studies into spider web vibrations. 

Excellent agreement has been obtained for linear and nonlinear perturbation results. The validated 

FEM has been further extended to investigate the large amplitude effect on natural frequencies and 

corresponding mode shapes of highly-slender spider webs. Interestingly, this is the world first to re-

port the dynamic softening and hardening phenomenon in the slender spider web structures. The in-

sight into nonlinear dynamics of slender thin membrane skeleton structures can be used not only for 

better understanding the nature, but also for improving functionalities of defense technology using 

ultra-thin plates and shells. 

 Keywords: Large amplitude, free vibrations, nonlinear dynamics, spider web, membrane 

structures, biomechanics 

 

1. Introduction 

The function of a spider web is to capture and hold a rapidly flying insect, which shows that the spi-

der web has excellent flexibility and resilience. Two aspects of the design of the web make this possi-

ble: the optimized spider silk and the design of the web. Spider silk is one of bio-inspired materials that 

have shown excellent performance exceeding artificial materials in their properties [1]. On a weight to 

strength ratio basis, its tensile strength is sometimes even stronger than steel and some silks are almost 

as elastic as rubber. On this ground, silks provide a two to three times toughness of synthetic fibres 

such as Nylon or Kevlar [1]. Unlike man-made polymers, spider silk can improve strength without 

compromising fracture toughness [2]. Besides the superior material properties of spider silk, spider web 
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structures themselves can be recognised as a pre-stressed system, it is the so called tensegrity (tensional 

integrity) structures [3].  

 

            

Figure 1: Schematic geometry and behaviour of spider web [4]. 

This type of structures shows a unique combination of geometry and mechanics, and as a result of 

the optimal distribution of structural mass, they are highly efficient structures. It is the nature of spider 

web structures to absorb quick energy as well as constrain drastic oscillations, which due to prey im-

pact. Moreover, a localized damage is a universal feature of spider webs. When spider web is subjected 

to local loading (see Fig. 1), failure is limited to the loading threads and the loaded thread becomes a 

sacrificial element to keep the majority of the web remains intact, and actually spider webs strength 

after slightly damaged [4]. In 2012, MIT researchers found that the reason why spider webs are so re-

silient is not only because the silk’s exceptional strength, it is the distinctive combination of strength 

and stretchiness and the geometrical arrangement in a web [4]. However, many researches focus on the 

outstanding properties of silk rather than the spider structure itself. Hence, this research will investigate 

large amplitude free vibration behaviour of the spider web structure and the corresponding mode 

shapes. This better insight in its engineering performance can unleash its applications in battle and de-

fence technology. The large-deformable finite element 3D model of spider web structures with and 

without geometric nonlinearities is developed by using ABAQUS. According to the virtual work-

energy principle, the model is formulated from the strain energy owe to axial deformation, kinetic en-

ergy owes to the spider web movement and the virtual work due to the self-weight per unit unstretched 

length, and the concept of large-strain, large-deformation principle has been used to evaluate natural 

frequencies and corresponding mode shapes with geometric nonlinearity. In this paper, critical review 

of the relevant published literature shows that large-amplitude vibrations of spider web are critical to 

impulsive responses and have not been evaluated. Therefore, we are the first to investigate this nonlin-

ear dynamic behavior of the spider web structural system.  

2. Nature of spider webs 

Spider silks, as protein polymers, show an excellent physical property. Several studies explored that 

the spider silk, as a natural material, exhibits exceptional strength (stronger than steel on a pound for 

pound basis), fineness, toughness, and extensibility. On a weight to strength ratio basis, its tensile 

strength is sometimes even stronger than and some silks are almost as elastic as rubber [1-4]. Under 

appropriate conditions, which are often associated with a reasonable balance of low stiffness, extreme 

extensibility and high strength, a spider web is rubbery and capable of large resistance energies to 
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break, and this balance makes silk ideal for web construction and its applications (e.g. cable roof struc-

tures, tensegrity structures, etc.).  

In nature, the spider web is the device that helps spiders to trap insects for food. Several different 

sorts of silk such as viscid, dragline, glue-like, minor, wrapping, attachment and cocoon silk can be 

used in web structure construction [5]. Several different types of spider webs can be found in the wild, 

including spiral orb webs, tangle webs or cobwebs, funnel webs, tubular webs, sheet webs, dome or 

tent webs, and orb web is the traditional type spider web which can be seen frequently around. The 

function of an orb web is to capture and hold a rapidly flying insect, which shows that the orb web has 

excellent flexibility and resilience [6]. Fig 2 shows the schematic geometry of spider web. The overall 

size of different orb webs can change from centimetres to meters. In the real word, spider webs actually 

are highly organized geometry structures. Different types of spider silks have different mechanical per-

formances and functions, and there are several factors, such as temperature, humidity, and extrusion 

rate, that have an effect on the strength and the load-deformation response of silks. This study will 

adopt the properties of dragline silk. 

                

Figure 2: Patterns of spider web in this study. 

3. Modelling 

Large-deformable finite element models of spider web structures with geometric nonlinearities have 

been developed using ABAQUS CAE. The spider web model has been developed on a 2-D plane (X 

and Y axis) in a 3D space where its free vibrations are often induced by out of plane excitations (Z ax-

is). For linearly elastic analysis, five different patterns of spider web models have been built to investi-

gate the change of natural frequencies. For geometric nonlinear model, the ratio of natural frequencies 

extracted from large amplitude free vibration over linear vibration, and corresponding mode shapes 

have been investigated. The orb web is the traditional type of spider web structures, which can be seen 

frequently around the nature; therefore, the pattern of the spider web built in this model is an orb web 

pattern, as shown in Figure 2. A spider web is a cable structure whose segments only sustain tension. 
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Therefore, the boundary condition of spider web structure is the same as that of cable structure, which 

are pin supports (or hinges) that permit rotation [7]. A gravity load in axial Z has been applied in the 

first step of nonlinear analysis. The initial magnitude is 1×10
−9𝑁 and each increment is 2×10

−10𝑁. The 

models have been validated and very good agreement can be found [8-9]. Considering the behaviours 

of spider silks (see Fig. 1), the assumption in this study is placed on the large strain formulation within 

the elastic behaviour region [10].  

Many researchers have investigated the mechanical properties of spider silks. In this model, radial 

and spiral are made of dragline silk of A.anrentia spider with a circular fiber diameter of 4 micron me-

ters. Generally, spiral threads are made of viscid silk, which has lower strength but higher extensibility 

than dragline silk, and this combination optimises the function of a spider web. In this research, the 

emphasis is placed on the structural vibration behaviors; therefore, identical material properties have 

been applied on both radial and spiral thread. The properties are listed in Table 1, which are obtained 

from the previous research work by Ko and Jovicic [3]. 

Table 1 Engineering properties of the dragline silk 

Material Density 

(kg/m
3
) 

Tensile modulus 

(GPa) 

Poisson’s ration Strength 

(GPa) 

Strain 

% 

Dragline 1098 34 0.49 1.75 26 

 

According to previous studies, a single spider silk thread can be considered as a cable segment. The 

cable is a type of one-dimensional continuum with perfectly flexible, homogeneous, linearly elastic 

with negligible torsional, bending and shear rigidities [10]. Therefore, for both a single spider silk 

thread and a cable, the strain energy is due only to stretching along the axis [11]. Under its own weight, 

the thread forms a catenary suspension at the initial unstretched state (𝑥, 𝑦), then it arrives at the equi-

librium position at  (𝑥0, 𝑦0), which is recognized as the initial configuration for dynamic movement 

due to axial elongation. Then, because of disturbances from external excitation, it moves to the dynam-

ic states by (𝑥0 + 𝑢, 𝑦0 + 𝑣, 𝑤), in which 𝑢, 𝑣, 𝑤 are the displacements calculated from the equilibrium 

position in the direction of X,Y and Z axis, respectively.  

At the equilibrium, the length 𝑑𝑠0 of the infinitesimal spider silk thread element can be expressed 

as: 

𝑑𝑠0 = √1 + 𝑦0
′2𝑑𝑥0,       (1) 

where 𝑦0
′ =

𝑑𝑦0

𝑑𝑥0
, 

Based on Lagrangian-strain definition, the silk at the unstretched state 𝑑𝑠 and dynamic states 𝑑�̅� are 

written, respectively, as 

𝑑𝑠 =
√1+𝑦0

′2

1+𝜀0
𝑑𝑥0,        (2) 

                                              𝑑�̅� = √(1 + 𝑢′)2 + (𝑦0
′ + 𝑣′)2 + 𝑤′2𝑑𝑥0,      (3) 

 

where the initial static strain 𝜀0 =
𝑑𝑠0−𝑑𝑠

𝑑𝑠
. Hence, the total strain at the dynamic state is 

 

                                 𝜀̅ =
𝑑�̅�−𝑑𝑠

𝑑𝑠
=

(1+𝜀0)

√1+𝑦0
′2

√(1 + 𝑢′)2 + (𝑦0
′ + 𝑣′)2 + 𝑤′2 − 1,     (4) 

 

In order to validate the spider web model whether it is built in appropriately and whether all the data 

is reliable, a comparison study of the results derived from previous studies is carried out. In addition, 

the effect of meshing (the number of elements in the solution) is evaluated to verify that the numerical 
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solutions are non-trivial and convergent. Figure 3 illustrates that the natural frequencies extracted from 

ABAQUS (in this study) are in very good agreement with the results from a previous study [12]. The 

maximum discrepancy between numerical results is less than 5%, which is reasonably acceptable. 

 
Figure 3: Comparison of linear frequencies between this study (using ABAQUS) and Zhang’s ANSYS data 

[12] 

4. Results and discussion 

Figures 4 and 5 show the shifting trend of natural frequencies and corresponding mode shapes of 

spider web structures under different amplitudes of pretension loads. It can be seen that, as the preten-

tion load increasing, the natural frequencies increase gently as well. This is because the stiffness of the 

whole structure is improved along with the growth of pretension load, as a result of geometric nonline-

arity. Surprisingly, mode shapes 8 and 9 have a crossover at the preload amplitude between 1.5625×10-

7 N and 7.8125×10-7 N (which cannot be seen clearly due to the natural frequencies of mode 8 and 9 

are quite close). This occurrence is attributed to that the hardening phenomenon can influence the per-

formance of spider web structure.  

 
 

Figure 4: Effects of pretension on nonlinear frequencies. 
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ANSYS data 9 10.25 13.5 14.9 16.5
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Figure 5: Corresponding mode shapes of spider web structure. 
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Figure 6: Hardening effect in nonlinear frequencies. 

 

Figure 6 demonstrates the nonlinear frequency ratios (ωN/ωL)
2
 of the spider web and it exhibits that 

the nonlinear vibrational behavior of the spider web is categorized into hardening type. For mode shape 

1 (the lowest mode of vibration), the hardening phenomenon is the most obvious one (which is similar 

to beam [13-15] but quite different to plate problems [16-17]). 

5. Conclusion 

Nonlinear geometric finite element models of spider web structures have been developed and vali-

dated with previous research. The numerical results in this study show an excellent agreement in fre-

quency predictions with others. The model incorporates the geometric nonlinearity of the thin web 

structures by applying initial large pretensions (to create an initial excitation from large amplitude dis-

placement of spider web structure). By using the FEMs, nonlinear strain-displacement relationship of 

spider webs has also been adopted. By increasing the pretension load, the nonlinear vibration behaviour 

is categorized into hardening type when natural frequencies increase with the amplitude of free vibra-

tion, demonstrating as the dynamics of hardening structures. It should be noted also what the amplitude 

of vibration can signify the crossover behaviour of the spider web structures. 
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