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In recent years, composites and plastics have been developed for some applications in railway in-

dustry. Clear examples are 'fibre-reinforced foamed urethane (FFU)', 'geopolymer concrete', 'recy-

cled polymer', and 'CarbonLoc composite'. The development fundamentally takes advantage of tim-

ber-like dynamic properties with which the sleepers can sustain realistic track dynamic loading 

conditions and last much longer than concrete counterparts. Railway sleepers and bearers are criti-

cal for safe and reliable operations of railway switches and crossings. The deterioration process of 

sleepers depends largely on the materials of which they are made. The adoption of composite mate-

rial as turnout bearers in railway switches and crossings has raised several concerns if they can cope 

with the exposure to aggressive environments. Importantly the dynamic properties of bearers influ-

ence the functional constraints and serviceability of the switches and crossings. Excessive turnout 

vibrations at switches can cause malfunction of crawlock or signalling gear systems. Although such 

the understanding into dynamics aspect is well-known, the actual effect of environmental variance 

on the dynamic properties of the bearers has yet been pointed out clearly. Inexperienced practition-

ers are still confused about what properties they should use for analysis and design. The aim of this 

study is to identify the damping characteristics used for the design and practical selection of full-

scale composite materials in railway turnout systems. The alternative composite material, 'fibre-

reinforced foamed urethane (FFU)', is investigated since FFU has been used in several railway 

switches and crossings around the world. The dynamic damping of the FFU materials will be de-

termined using the instrumented impact hammer testing method. The dynamic damping and natural 

frequencies of the full-scale specimens are determined from the FRF and vibration data in the fre-

quency range between 0 and 1,600 Hz. These component-based dynamic properties are critical for 

mitigating track serviceability exposed to dynamic problems from wheel-rail irregularities and 

crossing impacts. 
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1. Introduction 

It is well-known that track loading conditions are rather dynamic than simple static (or quasi-static). 

The dynamic loading conditions are attributable to complex wheel/rail interaction and the complexity 

of railway track structures where rails are supported by crossties and the train loads are further redis-

tributed to formation and foundation. Experienced engineers are well aware that railway track support 

components such as sleepers, bearers and transoms are safety-critical and structural elements in ballast-

ed railway track systems. Their main functions are not only to withstand static and dynamic loads im-

posed by the wheels and transfer them to the ballast and underlying formation, but also to secure the 

rail gauge to allow trains to travel safely [1-3]. The behaviours of sleepers and bearers in track systems 

are correlated to the loading and support conditions. Many evidences revealed that their structural fail-

ure, cracks, and poor serviceability (high deformation and rotation) are due to the resonances generated 

by the components excited by the dynamic train loads [4-7]. Therefore, the dynamic resistance (derived 

from dynamic properties of materials and structural component) is critical to enhance durability and 

endure service life of railway sleepers and bearers in track systems. However, many practitioners still 

neglect the dynamic testing due to the lack of understanding into the realistic track performance. A 

clear example is the non-existence of realistic dynamic testing in design standards (e.g. European 

Standard EN 13230). On the other hands, a few countries have already developed dynamic resistance 

testing for sleepers and bearers (e.g. Australian Standard AS1085.14 and AS1085.19 – Impact attenua-

tion tests; German DIN delivery guideline for Impact test for derailment resistance, etc.). These evi-

dences show the inconsistency and different level of maturity of practices internationally. 

In general, the structural performance of sleepers and bearers must be instigated and assured at all 

time through inspection (safety-related assessment functions), monitoring (surveillance functions) and 

maintenance [8-10]. Another important function of the track components in a ballasted railway track 

system is to help provide lateral track resistance to improve the stability and stiffness of the track struc-

ture. Any structural damage to or poor conditions of the components could influence the safety, relia-

bility and quality of the railway track, resulting in impaired rail services. For example, if the sleepers 

cracked severely they would deform highly under the dynamic loads imposed by wheel–rail interaction. 

This large differential settlement accelerates the damage to other railway components, which in turn 

shortens the maintenance period of the railway track. On the other hand, if the sleepers are too flexible 

(low elasticity, low stiffness), the track can significantly deform and result in a large differential local 

track surface (top smoothness) [11-12]. These induce higher dynamic loads, poor ride comfort and ex-

cessive train energy consumption [13-15]. In addition, if the lateral resistance of the track is insufficient 

to support lateral forces (i.e. because of loosened ballast or abraded sleepers), rail buckling may occur 

[16]. If the track gauge is widened excessively, the train can derail either on curved tracks or at switch-

es and crossings. As such, the performance of sleepers and bearers are vital for public safety and opera-

tional reliability. 

At present, the scarcity of high quality timber, the environmental concerns, recyclability and sus-

tainability of critical materials are among the incentives for researchers around the world to develop 

new materials capable of satisfying the functional requirements (i.e. dynamic performance) as well as 

improving their recyclability. One practical problem in the railway industry nowadays is the replace-

ment of ageing, damaged and deteriorated railway (timber) sleepers in existing tracks [17-18]. Espe-

cially in special locations such as railway switches and crossings, railway bridges, transition zones, the 

need for alternative materials to replace old timber components is unquestionably significant [19-20]. 

Railway switches and crossings are a special track system or called ‘turnout system’, which is used to 

divert a train from a particular direction or a particular track onto other directions or other tracks [21-

23]. A turnout system is a structural grillage system that consists of steel rails, points (or called 

‘switches’), crossings (special track components), steel plates, rubber pads, insulators, fasteners, screw 

spikes, beam bearers (either timber, polymer, steel or concrete), ballast and formation.  It is well known 
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that traditional turnout generally imparts high impact forces on to structural members because of its 

blunt geometry and mechanical connections between closure rails and switch rails. This has raised the 

importance of dynamic performance and vibration modes of the components used in railway systems, 

whether resonance effects can be mitigated. Figure 1 demonstrates a dynamic resonance problem in 

turnout systems where low-damping materials tend to crack, break and damage under dynamic loading 

conditions coupled with dynamic resonances. 

 

 

Figure 1: Dynamic problems in track and turnout systems [24]. 

It is important to note that fibre reinforced foamed urethane (FFU) composites have been used in the 

construction of railway track systems for over 35 years. Sekisui Chemical & Co [25] is the main pro-

ducer of this material. Various studies using Japanese testing standards are carried out for this material 

in order to define it limits of use or validated them in specific and particular cases [25]. However, based 

on the critical review for composites [26], it is found that there is no previous work to evaluate the 

damping characteristics of the full-scale FFU composites. In this study, the aim is to highlight the dy-

namic properties of the composite bearers used in railway switches and crossings. Since the use of such 

composite sleepers is relatively new in railway industry globally, this paper offers new useful infor-

mation for the industry. There is a misconception that standard testing procedures (or laboratory type 

testing for manufacturing quality) could replace a design method. It is therefore important to highlight 

the necessity of reliable design methods to ensure that future track maintenance does not suffer from 
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the lack of design information so that the service life of the structural and safety-critical component 

could be determined at a given time in adverse rail environments and realistic dynamic load conditions. 

Commercially, plastic and composite sleepers are often manufactured and fabricated by small and me-

dium-sized enterprises whose product line may not last as long as railway lines do (i.e. the average 

lifespan of a start-up company is about 5–8 years, whereas a railway line is normally built to last 50+ 

years). Knowledge of the fundamental dynamic characteristics is therefore crucial for mitigating dy-

namic track serviceability. In this paper, the modal experimental analyses of composite sleepers are 

presented.   

2. Modal analysis 

Measurements of vibration responses in structures result in the modal parameter identification to ob-

tain the dynamic characteristics of the structures. There are a number of methods to extract the dynamic 

characteristics, depending on the format of data obtained.  

In a dynamic system, the equation of motion of the system can usually be represented by  

          M x C x K x f                                                     (1) 

where   M  is the mass matrix,  C  is the damping matrix, and  K  is the stiffness matrix. The 

harmonic force applied to the system with magnitude F  and loading frequency   is given by  

  sin j tf F t Fe                                                                                                                      (2) 

The analytical solution can be contrived by Fourier Transform and can be found in [27, 28]. 

3. Modal testing 

The basic feature of the measurement phase in modal test is that a certain stimulus or compression 

must be applied, and the obtained response must be measured at as many "points" as possible when 

necessary. Subsequent measurement data will be presented in the form of a response function, which is 

a series of ratios between response and excitation, or may also describe a function characterization of 

the response to any harmonic excitation (FRF) or impulse excitation (IRF). The properties of Fourier 

transform enable us to convert the original data from any of these excitation modes into the required 

FRF or IRF format through appropriate signal processing. The other parameter, damping, the actual 

physical mechanism of damping in the structure is many and complicated. Meaningful damping 

amount can be extracted from the measured FRF data. Although the characteristics that affect damping 

include surface smoothness, temperature, wear and other variable factors such as itself, even with these 

influences, damping is still an important factor for structural dynamic behavior reference. It directly 

affects the vibration level experienced by structures subjected to forced and free vibration. Therefore, 

we must continue our efforts to better characterize it and ensure that its effect is more repeatable and 

predictable in structure. In the modal testing of sleepers, an impact hammer excitation technique is 

adopted at a target frequency range of 0-1600 Hz. The frequency response function (FRF) is measured 

using the PROSIG modal test system. FRF is processed using the PROSIG modal analysis suite to 

identify the natural frequency and corresponding modal shape of the sleepers.  

4. Materials 

Nine full-scale beams (160 mm depth x 260 mm width x 3300 mm length) using fibre reinforced 

foamed urethane composites (designed for railway track components) have been supplied by an indus-

try partner, Sekisui. The sleepers have been placed on the very soft spring support to generate free-free 
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condition as shown in Figure 2. 34 uniform points are marked on the sleeper surface as the excitation 

point of the impact hammer. An accelerometer has been installed at the edge as a fixed position to max-

imise vibration acquisition. An instrumented impact hammer has been used to excite the impulse to 20 

positions around the bearer, to create dynamic frequency response functions (FRFs). The FRFs have 

been used to form and identify the natural frequencies and corresponding mode shapes of the full-scale 

bearers. 

 

              
 

                   
 

Figure 2: Test setup. 

5. Results and discussion 

Data extracted by hammer test are in Table 1. The sleeper has been tested at healthy stage. Then, the sleepers 

are subjected to static loading until they reach its static failure in accordance with EN 13230. The modal testing 

has been applied again to the damaged sleepers. Generally, for healthy sleeper, first mode is first bending, sec-

ond mode is first torsion, third mode is second bending, fourth mode is second torsion, fifth mode is third bend-

ing. Variation of dynamic properties of healthy and damaged sleepers shows that internal property of sleeper has 

been changed. 

It is clear that the natural frequencies of the composite sleepers have reduced after damage. This frequency 

reduction incurs across all frequency span and all modes of vibration of the sleepers. The reduction in natural 

frequencies can be varied from 12% in the low-frequency range to 25% in higher modes of vibration. It can be 

found that the higher the frequency, the more the reduction can be observed. On the other hand, it is found that 

damping characteristics tend to increase in the low frequency range due to the frictional damping of fibre dam-

ages. Such effect does not happen at high frequency range. It is found that the damping is likely to reduce at high 

frequencies. This could be because the damage mode of sleepers tends to be brittle and the high frequency prop-

erties rather correlate with global behaviour of the sleepers. It is clear that the damping characteristics are de-

pendent to the fracture and damage on the bearers, which can influence in the dynamic behaviours. Longitudinal 

damage of composite fibres could affect both low and high frequency range damping characteristics. 
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Table 1: Dynamic properties and corresponding mode shapes for full-scale composite sleepers 

 

Mode      Healthy condition After damage 
  

Frequency (Hz) Damping (%) Frequency (Hz) Damping (%) 

 

1 

                                                 

68.23 (1
st
 bending) 3.96 56.92 (1

st
 bending) 5.9 

2 

                                                                                                                                                                                                                                                              

85.78 (1
st
 twisting) 2.98 75.94 (1

st
 twisting) 3.83 

                                                                                                                                                                                    

143.61(2
nd

 bending) 3.37 121.87 (2
nd

 bending) 2.8 

4 

                                                                

180.14  (2
nd

 twisting) 3.85 139.68 (2
nd

 twisting) 3.99 

5 

                                                                

247.96  (3
rd

 bending) 4.96 185.28 (3
rd

 bending)                             2.53 
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6. Conclusion 

In this study, fibre-reinforced foamed urethane (FFU) composite sleepers have been tested under full scale 

condition. Modal testing of the components under free-free condition has been carried out in order to identify the 

dynamic damping and vibration characteristics of the FFU materials. The modal parameters are determined us-

ing the instrumented impact hammer testing method. The dynamic damping and natural frequencies of the full-

scale specimens are determined from the FRF and vibration data in the frequency range between 0 and 1,600 Hz.  

The full-scale composite sleepers are tested before and after damage. The damage has been artificially carried 

out using static load tests in accordance with European Standard EN 13230. The dynamic properties and corre-

sponding mode shapes have been identified for both healthy and damage conditions. The results exhibit that the 

natural frequencies tend to reduce when damage occurs. However, it is shown that the low frequency damping 

tends to increase from frictions of broken fibres. These component-based dynamic properties are critical for mit-

igating track serviceability exposed to dynamic problems from wheel-rail irregularities and crossing impacts. 
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