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ABSTRACT

We study the use of voting mechanisms in populations, and intro-
duce a new Voting algorithm which can solve OneMax and Jump
inO(n logn), even for gaps as large asO(n). More significantly, the
algorithm solves OneMax with added posterior noise inO(n logn),
when the variance of the noise distribution is σ 2 = O(n) and in
O(σ 2 logn)when the noise variance is greater than this. We assume
only that the noise distribution has finite mean and variance and
(for the larger noise case) that it is unimodal. We also examine
the performance on arbitrary linear and monotonic functions. The
Voting algorithm fails on LeadingOnes but we give a variant which
can solve the problem in O(n logn). We empirically study the use
of voting in population based algorithms (UMDA, PCEA and cGA)
and show that this can be effective for large population sizes.

CCS CONCEPTS

• Computing methodologies → Search methodologies; Ran-
domized search; Artificial intelligence;
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1 INTRODUCTION

In a recent paper, Whitley et al. [13] analysed the efficacy of em-
ploying voting crossover in optimising the Jump function, defined
(for bit strings of length n) as follows:

Jump(x) = n +m if |x |1 ≤ n −m or |x |1 = n
n − |x |1 otherwise

wherem is the size of the gap that must be jumped in order to find
the optimum, and |x |1 is the count of the number of ones in string
x .

Voting crossover is a form of crossover involving multiple par-
ents, in which the value of each bit in the offspring is determined by
a simple majority vote of each of the selected parents. Whitley et al.
show that their algorithm, which involves a phase of hill-climbing,
followed by a phase of voting crossover, solves the Jump problem,
whenm = O(logn), in linear time.

In this paper, we investigate this further, proving simpler and bet-
ter results (section 2), and then look at the use of other algorithms
based on voting. We examine an algorithm in which a population is
generated using tournament selection, followed by a round of vot-
ing, and show this is able to solve OneMax and Jump in O(n logn),

for gaps even as large as O(n) (section 3). More significantly, it can
solve the noisy OneMax problem, with posterior noise, in time
O(n logn), when the noise variance is less than a constant times n,
with any noise distribution having finite mean and variance. We
also show that for larger values of of the variance, σ 2, the runtime
isO(σ 2 logn), where we additionally assume the noise distribution
is unimodal. This is the best algorithm that we are aware of for this
problem (section 4). We then look at the behaviour of the algorithm
on monotone functions (section 5) where we see a deterioration in
perfroamnce, for which we provide a bound. A modification of the
voting algorithm is presented in section 6, which gives a variant
that solves LeadingOnes in O(n logn).

We then look at the idea of incorporating a voting mechanism
into the other algorithms, including UMDA, PCEA and cGA. We
study this approach empirically (section 7), and show that it leads
to significant speed-ups for OneMax (with and without noise) and
Jump, for large populations. For the noisy OneMax problem, the
performance beats the basic voting algorithm in our experiments.

2 VOTING CROSSOVER ON JUMP

The algorithm proposed by Whitley et al. [13] for the Jump problem
proceeds in two phases. In the first phase, a hill climber is used
to get to a string containing n −m ones and m zeros. They use
the next ascent bit climber [4]. This works by choosing a random
permutation of {1, . . . ,n}, and then mutating bits in that order,
keeping changes that lead to improvements. After one round of this
(which take n steps) we will have arrived at a string with n−m ones.
Wemention is passing, that this approachwould also solveOneMax
in n steps. This process is repeated three times, starting each time
from a fresh random string. The three resulting strings then perform
the voting crossover — the offspring takes bit values given by a
majority vote for each bit position. The whole process is repeated
until the optimum is found. Whitley et al. show that only a constant
number of repeats is needed if the gapm = O(logn). However, we
can improve on this (and simplify the proof) as follows. Since each
of the three strings has begun from a fresh random initial string,
the location of them zeros in the resulting strings are independent,
for each string. The vote will go wrong, in a single bit position, if
either all three strings contain a zero, or only one of them contains
a one at that position. The probability that this will happen is

(m
n

)3
+ 3

(m
n

)2 (
1 − m

n

)
≤ 3

(m
n

)2



Thus, by the union bound, the probability that the vote goes wrong
in at least one bit position, it less than 3m2/n. So if m < a

√
n,

where a < 1/
√
3 is a constant, then the vote fails with probability at

most 3a2, meaning that we need to repeat the process an expected
number of 1/(1 − 3a2) times before the solution is found. Thus, the
algorithm solves the Jump problem for gap sizesm <

√
n/3 in linear

time.
Amore typical evolutionary algorithm employing voting crossover

is analysed in [6], and shown to solve Jump in O(n logn).

3 THE VOTING ALGORITHM

We now introduce a new algorithm based on applying a bitwise vote
to a population that has been produced by selection. In this version
we use binary tournament selection. We generate two random
strings, choose the best of the two, and add it to the population.
When we have enough strings in the population, we take a bitwise
vote (see Algorithm 1).

Let p = (0, . . . , 0);
repeat

Let x ∈ {0, 1}n be a random string;
Let y ∈ {0, 1}n be a random string;
if f(x)>f(y) then

p = p+x;
else

p = p+y;
end

until µ times;
for 1 ≤ i ≤ n do

zi = [pi > µ/2];
end

Return z;
Algorithm 1: The Voting Algorithm

We first analyse the performance of this algorithm on OneMax.
OneMax(x) = |x |1

To do this, we need the following result

Lemma 3.1. Let x ,y ∈ {0, 1}n be random strings and let the tour-

nament winner, z, be decided according to the OneMax function. For

any k ∈ {1, . . .n},

Pr(zk = 1) ≥ 1
2 +

1
8
√
n

Proof. The probability that the winner of the tournament has a
one in position k is

Pr(zk = 1) = Pr(xk = 1 | x wins) Pr(x wins)+
Pr(yk = 1 |y wins) Pr(y wins)

and so by symmetry
Pr(zk = 1) = Pr(xk = 1 | x wins).

By Bayes’ Theorem

Pr(xk = 1 | x wins) = Pr(xk = 1)
Pr(x wins) Pr(x wins | xk = 1)

and so
Pr(xk = 1 | x wins) = Pr(x wins | xk = 1)

since Pr(xk = 1) = Pr(x wins) = 1/2. Then, by the law of total
probability,

Pr(xk = 1 | x wins)

=
1
2 Pr(x wins | xk = 1,yk = 1) + 1

2 Pr(x wins | xk = 1,yk = 0)

≥
1
4 +

1
2 Pr

(∑
i,k

xi + 1 >
∑
i,k

yi

)
=

1
4 +

1
2 Pr

(∑
i,k

yi − xi < 1
)

=
1
4 +

1
2

(
Pr

(∑
i,k

yi − xi < 0
)
+ Pr

(∑
i,k

yi − xi = 0
))

By symmetry, we have

Pr
(∑
i,k

yi − xi < 0
)
=

1
2

(
1 − Pr

(∑
i,k

yi − xi = 0
))

so that

Pr(xk = 1 | x wins)

=
1
2 +

1
4

(
Pr

(∑
i,k

yi − xi = 0
))

=
1
2 +

1
4

©«
n−1∑
j=0

Pr
(∑
i,k

yi = j

)
Pr

(∑
i,k

xi = j

)ª®¬
=

1
2 +

1
22n

n−1∑
j=0

(
n − 1
j

)2
=

1
2 +

1
22n

(
2n − 2
n − 1

)
≥

1
2 +

1
8
√
n

where the final inequality derives from [11]. □

We can now show that the voting algorithm solves OneMax
(with high probability) if µ = Ω(n logn).

Theorem 3.2. If µ = 32(c + 1)n logn, then the Voting algorithm

correctly solves OneMax with probability greater than 1 − 1/nc .

Proof. For any one bit position, k , the probability that the vote
is incorrect is

Pr(pk ≤ µ/2) ≤ exp(−2µ/64n) = 1
nc+1

by Hoeffding’s inequality. So by the union bound, the probability
that at least one bit gets the incorrect vote is at most 1/nc . □

It is clear that the Voting algorithm only samples strings which
have a number of ones close ton/2. Indeed byHoeffding’s inequality
it is exponentially unlikely to sample strings with greater than
n/2+ αn ones, for any constant 1/2 < α < 1. Thus we immediately
have:

2



Corollary 3.3. If µ = 32(c + 1)n logn, then the Voting algorithm

correctly solves Jump with probability greater than 1 − 1/nc , for any
gap sizem < (1−α)n where α is a constant in the range 1/2 < α < 1.

4 NOISY ONEMAX

For the noisy OneMax problem, the fitness, at each evaluation,
receives an addition of a random value drawn from some probability
distribution.

One approach to solving this problem is to simply resample the
fitness of each string enough times that the average gives a suffi-
ciently good estimate. A result from [1] shows that if the running
time of an algorithm on a problem with no noise is T , then the
running time for the algorithm, with suitable re-sampling, on the
same problem with added Gaussian noise isO(σ 2T logT ). The most
efficient algorithm forOneMax requiresT = Θ(n/logn) string eval-
uations [2]. Adopting this strategy, with resampling, would give
a runtime of O(σ 2n) on noisy OneMax with posterior Gaussian
noise.

There have been a number of evolutionary algorithms whose
performance on noisy OneMax has been analysed. The Paired
Crossover Evolutionary Algorithm [10], for example, finds the op-
timal string in O(n(logn)2) function evaluations, when the noise
distribution is Gaussian and σ 2 = n. This is already faster than the
resampling method described above. The same paper also shows
that the (1 + 1)EA is not able to solve noisy OneMax efficiently.

Dang and Lehre [3] show that a population-based algorithm,
with mutation but no crossover can solve noisy OneMax with
Gaussian noise in O(σ 7n logn log logn).

Friedrich et al. [7] prove that the compact Genetic Algorithm
(cGA) solves noisy OneMax with Gaussian noise, with the runtime
of O(Kσ 2√n log(Kn) where the parameter K must be considered
to be ω(σ 2√n logn). This gives an upper bound in an excess of
σ 4n(logσ 2)(logn).

We will show the voting algorithm has superior runtime on noisy
OneMax for arbitrary noise distributions. We will assume only that
the noise distribution has finite mean and variance σ 2.

In the proof above for OneMax with no noise, we used a bound
on the central binomial coefficient. We now need a similar bound
for binomial coefficients that are close to the centre.

Lemma 4.1. For any integersm > 0 and 0 ≤ k ≤
√
m we have

(
2m

m + k

)
≥

(
2
√
π

e4

)
22m
√
m

Proof. We use the following inequalities associated with Stir-
ling’s approximation:

√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n

to give(
2m

m + k

)
=

(2m)!
(m + k)!(m − k)!

≥

(√
2π
e2

)
22m+1/2m2m+1/2

(m + k)m+k+1/2(m − k)m−k+1/2

=

(
2
√
π

e2

) (
22m
√
m

)
1

(1 + k/m)m+k+1/2(1 − k/m)m−k+1/2

=

(
2
√
π

e2

) (
22m
√
m

)
1

(1 − k2/m2)m−k+1/2(1 + k/m)2k

≥

(
2
√
π

e2

) (
22m
√
m

)
1

(1 + k/m)2k

≥

(
2
√
π

e4

)
22m
√
m

□

We will also need the following.

Lemma 4.2. Given two random binary strings, a,b, of lengthm,

and any integer 0 ≤ s ≤ m, we have

Pr(|a |1 − |b |1 = s) =
1

22m

(
2m

m + s

)
Proof. To achieve a difference of s requires picking i ≥ s ones in

string a and then i −s ones in string b. The probability this happens
is

1
22m

m∑
i=s

(
m

i

) (
m

i − s

)
Now the number of ways of choosingm + s items from 2m items
can be described by the number of ways of choosing at least s items
from the firstm, and then the remainder from the otherm items.
That is (

2m
m + s

)
=

m∑
i=s

(
m

i

) (
m

m + s − i

)
=

m∑
i=s

(
m

i

) (
m

i − s

)
by the symmetry of binomial coefficients. The result follows. □

Theorem 4.3. The Voting algorithm correctly solves noisy One-

Max with high probability, when the noise distribution has finite

mean and variance σ 2 ≤ 3n/8, in O(n logn) function evaluations.

If, in addition, the noise distribution is unimodal, then in the case

σ 2 ≥ 3n/8, the algorithm requires O(σ 2 logn) function evaluations.

Proof. As with the analysis of OneMax without noise, the
probability that the winner of a tournament between two random
strings x and y has a one in position k is equal to

Pr(xk = 1 | x wins)

=
1
2 Pr(x wins | xk = 1,yk = 1) + 1

2 Pr(x wins | xk = 1,yk = 0)

≥
1
4 +

1
2 Pr

(∑
i,k

xi + 1 +U >
∑
i,k

yi +V

)
=

1
4 +

1
2 Pr

(∑
i,k

yi − xi < 1 +U −V
)

3



where U and V are independent random samples from the noise
distribution. We note that if U and V are two independent random
values drawn from the noise distribution, thenU −V comes from a
symmetric distribution with zero mean, and variance 2σ 2.

Now

Pr
(∑
i,k

yi − xi < 1 +U −V
)

=

n−1∑
s=−(n−1)

Pr
(∑
i,k

yi − xi = s

)
Pr(U −V > s − 1)

= Pr
(∑
i,k

yi − xi = 0
)
Pr(U −V > −1)

+

n−1∑
s=1

Pr
(∑
i,k

yi − xi = s

)
(Pr(s − 1 < U −V ) + Pr(U −V < s + 1))

(where we have used the fact thatU −V is symmetric)

= Pr
(∑
i,k

yi − xi = 0
)
Pr(U −V > −1)+

n−1∑
s=1

Pr
(∑
i,k

yi − xi = s

)
(1 + Pr(s − 1 < U −V < s + 1))

= Pr
(∑
i,k

yi − xi = 0
)
Pr(U −V > −1) + 1

2 −
1
2 Pr

(∑
i,k

yi − xi = 0
)

+

n−1∑
s=1

Pr
(∑
i,k

yi − xi = s

)
Pr(s − 1 < U −V < s + 1)

=
1
2 + Pr

(∑
i,k

yi − xi = 0
)
Pr(0 < U −V < 1)

+

n−1∑
s=1

Pr
(∑
i,k

yi − xi = s

)
Pr(s − 1 < U −V < s + 1)

≥
1
2 + Pr

(∑
i,k

yi − xi = 0
)
Pr(0 < U −V < 1)

+

⌊
√
n ⌋∑

s=1
Pr

(∑
i,k

yi − xi = s

)
Pr(s − 1 < U −V < s + 1)

≥
1
2 +

(
2
√
π

e4
√
n

)
Pr(|U −V | ≤ ⌊

√
n⌋ − 1)

where we have used the preceding lemmas. Thus, the probability
of a one appearing in bit position k in the tournament winner is at
least

1
2 +

( √
π

e4
√
n

)
Pr(|U −V | ≤ ⌊

√
n⌋ − 1)

In the case where σ 2 ≤ 3n/8, we can use Chebyshev’s inequality:

Pr(|U −V | ≤ ⌊
√
n⌋ − 1) ≥ 1 − 2σ 2

(⌊
√
n⌋ − 1)2

to show that the probability of a one appearing in position k is at
least

1
2 +

( √
π

100e4
√
n

)
for sufficiently large n. Following the same argument as in the non-
noisy case allows us to conclude that the runtime isO(n logn) with
high probability.

When σ 2 is larger, we additionally assume that the noise distri-
bution is unimodal, from which it follows that the distribution of
U −V is also unimodal [12]. We may then use the Camp-Meidell
inequality:

Pr(|U −V | ≤ ⌊
√
n⌋ − 1) ≥ ⌊

√
n⌋ − 1
√
6σ

which shows the probability of a one in position k to be at least:
1
2 +

√
π

4
√
3e4σ

for sufficiently large n. The inequality is valid for σ 2 > 3n/8. The
remainder of the proof follows as before. □

5 MONOTONE AND LINEAR FUNCTIONS

As the Voting algorithm samples strings with close to n/2 ones, it
is unlikely to efficiently solve all linear functions. In the case of
BinVal the selection will be dominated by the highest order bits,
and the voting on the low order bits will essentially be random.
Nevertheless, it is interesting to see for what linear functions the
algorithm remains efficient (in the sense of having a polynomial
runtime).We can do this by looking at the broader class ofmonotonic

functions which have the property that the fitness always increases
when a zero bit is changed to a one [5].

Denoting by ek the binary string with a one in position k and ze-
ros elsewhere, then we have for integer valuedmonotonic functions,
f :

xk = 1 =⇒ f (x) ≥ f (x ⊕ ek) + 1
for all strings x .

Theorem 5.1. Let f be a monotonic function. Then the Voting

algorithm optimises f in O(| Im f |2 logn) function evaluations.

Proof. As with the case of OneMax, we have the probability
that the winner of a tournament between two random strings x
and y has a one in position k is equal to
Pr(xk = 1 | x wins)

=
1
2 Pr(x wins | xk = 1,yk = 1) + 1

2 Pr(x wins | xk = 1,yk = 0)

≥
1
4 +

1
2 Pr(f (x) > f (y) | xk = 1,yk = 0)

≥
1
4 +

1
2 Pr(f (x ⊕ ek) + 1 > f (y) | xk = 1,yk = 0)

(where we consider a worst case scenario that the bit in question
gains only an increase of one in the fitness of x )

=
1
4 +

1
2 Pr(f (y) − f (x ⊕ ek) = 0 | xk = 1,yk = 0)

+
1
2 Pr(f (y) − f (x ⊕ ek) < 0 | xk = 1,yk = 0)

=
1
2 +

1
4 Pr(f (y) − f (x ⊕ ek) = 0 | xk = 1,yk = 0)
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Figure 1: Runtime of the Voting algorithm on linear

functions, with weights chosen randomly from the range

1, . . . ,m.

(by symmetry, since both y and x ⊕ ek are conditioned to have a
zero in bit k)

=
1
2 +

1
4 Pr(f (y) = f (x ⊕ ek) | xk = 1,yk = 0)

=
1
2 +

1
4

∑
ϕ∈Φ

Pr(f (y) = ϕ |yk = 0) Pr(f (x ⊕ ek) = ϕ | xk = 1)

(where by Φ we denote the set of all values f can take on, condi-
tioned on bit k of its argument having value zero)

=
1
2 +

1
4

∑
ϕ∈Φ

Pr(f (y) = ϕ |yk = 0)2

≥
1
2 +

1
4|Φ|

≥
1
2 +

1
4| Im f |

(using the Cauchy-Schwarz inequality). The result follows as before.
□

In the case of linear functions in which there is a set of positive
integer weightsW , and

f (x) =
n∑
i=1

wixi

we have | Im f | ≤ 1 +
∑n
i=1wi to give a runtime bound of

O((
n∑
i=1

wi )
2 logn) = O(w2n2 logn)

where w is the average of the weights. We see that the Voting
algorithm can solve linear functions in polynomial time, as long as
the average of the weights is polynomial.

We can see this is an over-estimate in the case of OneMax. This
is due to the use of the Cauchy-Schwarz inequality, which avoids
the need for detailed combinatorial analysis, but gives a weaker
bound.

To test how the runtime depends on the weights, we ran experi-
ments with n = 100, choosing weights uniformly at random from
the range 1, . . . ,m. The results, shown in figure 1, indicate that the
dependency on the average weight is closer to linear than quadratic.

6 LEADINGONES

The observation that the Voting algorithm always samples strings
with close to n/2 ones, makes it clear that it cannot efficiently solve
the LeadingOnes problem.

LeadingOnes(x) =
n∑
i=1

i∏
j=1

xi

However, we can still use the voting idea to create a reasonably
efficient algorithm. We do this by voting for one bit at a time, start-
ing from the most significant bit. We also make use of truncation
selection, rather than tournament selection. This variant is shown
as Algorithm 2. The vector z keeps track of which bits have been
determined. At each iteration, µ strings are generated using the
predetermined bits recorded in z, and generating the remainder
randomly. The best third of these are kept, and we determine which
bit (that has not already been set) has the largest vote. The value of
this one is then set by the vote and recorded in z.

Let z = (−1, . . . ,−1);
repeat

Let pop be the empty population;
repeat

for 1 ≤ i ≤ n do

if zi = −1 then
xi = 0 or 1 uniformly at random ;

else

xi = zi ;

end

end

Add x to pop;
until µ times;
Rank pop by fitness, and keep only the best µ/3 strings;
Let v be the sum of all strings in pop;
Let k be the index for which zk = −1 and |vk − µ/6| is
maximised;
Let zk = [vk > µ/6]

until n times;
Return z;
Algorithm 2: The Significant Bit Voting Algorithm

This algorithm runs in µn time, and works by determining the bit
values of the final solution one at a time. We will set µ = (c+2) logn.
When applied to LeadingOnes a number of things could go wrong.
Firstly, not enough strings in the top third of the population might
have the next correct bit value. However, since the probability of
generating the correct bit in the population is 1/2, the probability
that the top third does not contain only the correct next bit value is
O(1/nc+2). It might also happen by chance that one of the other bit
positions also gets only one value represented in the top third of the
population. Again, the probability that this happens is O(1/nc+2).
There are at most n things that could go wrong in each iteration,
which means the probability of getting an incorrect bit in an itera-
tion isO(1/nc+1). Therefore, by the union bound, the probability of
not returning the correct solution is O(1/nc ). We have thus shown:

5



Theorem 6.1. The Significant Bit Voting algorithm solves Leadin-

gOnes (with high probability) in O(n logn) function evaluations.

It should be noted that this result depends on the fine balance
between population size and selection pressure, which needs to en-
sure we get the leading bit right, but is very unlikely to accidentally
set an incorrect bit value.

7 EXPERIMENTS

We now consider the use of voting as a practical method to enhance
the performance of population based algorithms. The idea is that
the population may be “pointing” to the correct solution long before
it actually converges on it. For example, for UMDA, it is possible
that the bit frequencies are all in the correct direction before it
has produced a single copy of the optimum. To explore this idea,
we look at three different algorithms (UMDA, PCEA and cGA)
and empirically study the vote of the population at each iteration.
For the purposes of these experiments, the vote has no effect on
the running of the algorithm; we simply report the fitness of the
population vote at each iteration.

For each experiment, we fixed n = 200 and examined the run-
time (in terms of number o ffunction evaluations) of the algorithms
for different population sizes. For UMDA [9], we used truncation
selection to pick the best λ/2 strings at each iteration. For PCEA
we used tourmanent selection between each pair of generated off-
spring as described in [10]. For cGA, the parameter K represents
the population size, although only two individuals are created at
each iteration [8]. The vote is performed by looking at the bit prob-
abilities.

In each plot, we show error bars of one standard-deviation. Each
relevant comparison has been tested using the Mann-Whitney test,
and found to be significant at the 95% level.

(1) Set t ← 0.
(2) p(0) = (0.5, . . . , 0.5)
(3) Sample p(t) λ times to form population.
(4) Set t ← t + 1.
(5) Let q1,q2, . . . ,qλ be the population sorted according to

fitness.
(6) For each i = 1, . . . ,n do the following:
(7) Let Xi =

∑µ
j=1 q

j
i

(8) p(t)i = Xi
µ .

(9) If p(t)i < 1/n, set p(t)i = 1/n.
(10) If p(t)i > 1 − 1/n, set p(t)i = 1 − 1/n.
(11) If p(t)i = 0.5 then set vi to be 0 or 1 at random.
(12) If p(t)i , 0.5, then set vi = [p(t) > 0.5].
(13) Report vote v .
(14) Continue at 3.

Algorithm 3: Voting UMDA

7.1 Experiments on OneMax

The results on OneMax (without any added noise) for n = 200
are shown for UMDA in figure 2; for PCEA in figure 3; and for
cGA in figure 4. It can be seen in all cases, the vote improves

(1) Initialise a random population of λ strings.
(2) Choose parents Xα and X β uniformly from population.
(3) Generate a random vector a = {a1,a2, ...,an } ∈ {0, 1}n .
(4) Create complementary children X µ and X µ by uniform

crossover such that
X
µ
i = aiX

α
i + (1 − ai )X

β
i

X
µ
i = (1 − ai )X

α
i + aiX

β
i

(5) The better of the offspring goes to the next generation.
(6) Repeat steps 2 to 5 times to create all the members of the

next population q1, . . . ,qλ .
(7) Let Xi =

∑λ
j=1 q

j
i

(8) p(t)i = Xi
λ .

(9) If p(t)i = 0.5 then set vi to be 0 or 1 at random.
(10) If p(t)i , 0.5, then set vi = [p(t) > 0.5].
(11) Report vote v .
(12) Repeat from (2) until termination condition reached.

Algorithm 4: Voting PCEA

(1) Set t = 0.
(2) p(0) = (0.5, . . . , 0.5)
(3) For all i , set xi = 1 with probability p(t)i and xi = 0 with

probability 1 − p(t)i .
(4) For all i , set yi = 1 with probability p(t)i and yi = 0 with

probability 1 − p(t)i .
(5) If f (x) < f (y), swap x and y.
(6) For all i ∈ {1, 2, . . . ,n}
(a) If xi > yi , set p(t + 1)i = p(t)i + 1

K .
(b) If xi < yi , set p(t + 1)i = p(t)i − 1

K .
(c) If xi = yi , set p(t + 1)i = p(t)i .

(7) If p(t)i = 0.5 then set vi to be 0 or 1 at random.
(8) If p(t)i , 0.5, then set vi = [p(t) > 0.5].
(9) Report vote v .
(10) Set t = t + 1 and continue at 3.

Algorithm 5: Voting cGA

the performance for larger population sizes, with the effect being
significant for all the considered algorithms. This is because for
these algorithms, when the population is small, it often happens
that some of the bit probabilities will go the wrong value, where
they meet the lower margin (set to 1/n in all cases). By the time
these have recovered, the rest of the bit values are at the upper
margin (set to 1 − 1/n). When all except one or two bits are at the
upper margin, and the remaining bits just below 1/2, it is likely
that the optimum solution will be produced, even though the vote
will be incorrect. When the population sizes are larger, this does
not happen, and each bit probability quickly exceeds 1/2, giving
the correct vote.
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Figure 2: Comparison of UMDA and UMDA+voting while

solving the (non-noisy) OneMax function
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Figure 3: Comparison of PCEA and PCEA+voting while solv-

ing the (non-noisy) OneMax function
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Figure 4: Comparison of cGA and cGA+voting while solving

the (non-noisy) OneMax function

The runtime is analysed for UMDA and PCEA while population
size λ is varied. Similarly, the parameter K in cGA is varied to

analyse how it affects the runtime. The voting algorithm solves the
non-noisy OneMax problem on an average over 100 runs, in 13110
function evaluations.

7.2 Experiments on noisy OneMax

For the experiments with noisy OneMax for n = 200, we use
Gaussian noise with σ = 5. The results are shown for UMDA in
figure 5; for PCEA in figure 6; and for cGA in figure 7. Again, we
see that the voting improves the algorithms for large population
sizes. For UMDA with a small population, there is little difference
with and without voting.

The voting algorithm solves the noisy OneMax with σ = 5
problem on an average over 100 runs, in 17943 function evaluations.
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Figure 5: Comparison of UMDA and UMDA+voting while

solving the noisy OneMax function
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Figure 6: Comparison of PCEA and PCEA+voting while solv-

ing the noisy OneMax function
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Figure 7: Comparison of cGA and cGA+voting while solving

the noisy OneMax function

7.3 Experiments on non-noisy

WeightedLinear

For the non-noisy WeightedLinear problem for n = 200, the
results are illustrated in Figure 8 for UMDA; Figure 9 for cGA and
Figure 10 for PCEA. Random problem instances are chosen with
weights ranging from 1, . . . ,m withm varying from 1 to 20.

For UMDA, population sizes λ = 50 and 200 are chosen, rep-
resenting the regimes where voting does not and does help in
OneMax respectively. Similarly, for cGA the different regimes are
analysed by considering K = 50 and 200. The algorithms are able
to find the optimum in each cases.However, we see that the voting
mechanism does not help as the weights get larger, which is consis-
tent with our analysis of the Voting algorithm on such problems.

However, for such small values of population sizes, the PCEA can-
not solve theWeightedLinear problem. According to the theoreti-
cal result in [10], we choose the population size λ = 10×

√
n× logn.

Considering this choice of λ, both PCEA with and without voting
solves the problems.
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Figure 8: Comparison of UMDA and UMDA+voting while

solving the non-noisy WeightedLinear function
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Figure 9: Comparison of cGA and cGA+voting while solving

the non-noisy WeightedLinear function
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Figure 10: Comparison of PCEA and PCEA+voting while

solving the non-noisyWeightedLinear function

8 CONCLUSION

We have studied the use of voting as a heuristic method. It is par-
ticularly effective for the noisy OneMax problem, where we have
proved an upper bound on the runtime better than any other algo-
rithm we are aware of. A variant of the voting idea which works
one bit at a time is reasonably efficient for LeadingOnes. The ap-
proach works less well for general linear problems, and we have
investigated this effect, in fact showing an upper bound for gen-
eral monotonic functions. Finally, we have empirically studied the
idea of incorporating voting into a population-based algorithm and
conclude that this may be effective for large population sizes.
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