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Abstract: Polysaccharides and proteins are frequently conjugated through electrostatic attraction,
enzymatic cross-linking, and heat treatment (Maillard reaction) to obtain food structuring ingredients,
mostly for their application as emulsifiers. The conjugate partners and their interaction type affect
performance at acidic or neutral pH and during thermal processing, thus requiring careful selection.
Here, the aggregate properties (particle size, conjugate charge, shear viscosity) of three types of sugar
beet pectin (SBP)-sodium caseinate (SC) 1:1 conjugates, at acidic and neutral pH (4.5; 7), as well
as their thermal processing stability (80 ◦C), were investigated. The enzymatically cross-linked
SBP:SC was more acid tolerant than the electrostatically interacting conjugates. Maillard cross-linked
conjugates aggregated at pH 4.5, suggesting poor emulsifier performance in acidic conditions. At pH 7,
the three conjugate types showed similar aggregate properties. The results are discussed in terms of
structural re-arrangement.

Keywords: sodium caseinate; sugar beet pectin; electrostatic interaction; enzymatic cross-linking;
Maillard reaction; polysaccharide-protein complex; acidic pH and thermal processing

1. Introduction

The quality of a food product is characterised by its texture, structure, and stability as imparted by
the intrinsic functional properties of the ingredients and their interactions during the manufacturing
process. Polysaccharides and proteins both improve the microstructure and stability of multiphase
food systems because of their physicochemical functional properties at interfaces [1]. The structural
functionality of a polysaccharide and protein concomitantly present in a formulation may be the
result of the interaction with each other, prompting an improvement in individual biopolymers’
functional properties [2]. Indeed, polysaccharide-protein complexes are widely applied in the field of
encapsulation, protection and delivery of functional food ingredients, such as bioactive lipids, minerals,
enzymes, peptides and so forth [3,4]. Moreover, the application of polysaccharide-protein complexes as
fat replacer has been reported. Examples include, complexes prepared from milk protein and xanthan
gum [5], milk protein and carrageenan [6], soy protein and xanthan gum [7], as well as casein and
pectin [8]. Milk proteins, such as casein, are aggregated with lowering pH conditions. To improve the
solubility of casein under acidic conditions, some polysaccharides have been introduced, for instance,
pectin [9,10].

Casein presence is essential for the structural integrity of dairy products, such as cream, cheese and
butter, and also provides essential amino acids. In addition, the use of casein micelles has been suggested
as an ideal encapsulation vehicle for nutraceuticals, such as fat-soluble vitamins [11,12]. There are four
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types of casein: αs1-casein, αs2-casein, β-casein, and κ-casein, all of which possess different structures
and functionality. All four caseins in milk aggregate into casein micelles spontaneously as a result of
the interaction with calcium phosphate [11,13–15]. Both αs1-casein and β-casein are major caseins,
which have the tendency to self-associate because of their amphiphilic nature. However, β-casein
forms spherical micelles, whereas αs1-casein is characterised by chain-like aggregates, due to the
presence of a stronger net negative charge, as both proteins are at neutral pH [13]. In contrast, κ-casein
is a glycoprotein, which can sterically stabilise casein micelles formed by αs1-casein, αs2-casein and
β-casein [13,15]. Pectin is a heteropolysaccharide, which is extensively used in food production, due to
its gelling and stabilising properties [16]. The structure of pectin consists of a backbone of 1-4-linked
d-galacturonic acid (GalA) units interrupted by some rhamnogalacturonan segments, which combine
galacturonic acid residues and a-l-rhamnopyranose. Side chains are glycosidically linked to O-4 and/or
O-3 of l-rhamnopyranose, and O-2 or O-3 of some of the galacturonosyl residues. In addition, there
are sugar constituents attached as side chains, such as d-galactose and l-arabinose. These sugars are
present in galactan, arabinogalactan and arabinan. In addition, ferulic acid, which has a phenolic acid
structure, ester-links to either, arabinose or galactose [16–19]. Generally, pectin is extracted from plant
cell walls, such as citrus peels, apple pomace and sugar beet pulp. Sugar beet pectin can be obtained
from sugar beet pulp during the extraction of sugar [17].

The study, presented here, was dedicated to evaluating the physicochemical properties of
polysaccharide-protein conjugates, that were prepared from sugar beet pectin (SBP) and sodium
caseinate (SC), for the future application of these conjugates as emulsifiers. In principle, there are three
methods applicable for the preparation of food-grade polysaccharide-protein conjugates: Electrostatic
interaction, enzymatic methods and Maillard reaction. The most popular method for the formation of
polysaccharide-protein conjugates is electrostatic interaction between opposing charges on the two
biopolymers [20]. Polysaccharides are characterised by anionic, cationic or non-ionic charges, which
correlate with the nature of functional groups, but are also influenced by pH conditions, based on the
pKa value of the ionisable side groups [21]. SBP possesses only carboxylates (-CO2−, pKa about 2.5 to
4.5) as ionisable group and is net-negatively charge [22]. SC is a protein that possesses both positive
and negative charges, because of protonated amino side groups (-NH3+) at a pH of below 10 and
deprotonated carboxylate side groups (-CO2−), at a pH higher than two, respectively. The isoelectric
point (pI), the pH at which the net-charge is zero, is ~4.6 [21].

Unlike the electrostatic interaction method, an enzymatic method is based on chemical cross-linking.
Laccase is a multi-copper, polyphenol oxidase obtained from bacteria, fungi and plants [23,24].
It generates free radicals by oxidising various compounds, such as amines, thiols and iodine [25],
typically phenoxy radicals with a loss of single electrons to form radicals, including quinones
and/or phenoxy radicals [24,26]. In addition, laccase is capable of catalysing ferulic acid, which is
a phenol structure esterified to the arabinose side-chain at the backbone of the rhamongalacturonan
I side chains in SBP. In the presence of oxygen these side chains are enzymatically oxidised into FA
dihydrodimers (diFAs) [27]. It has previously been reported that the emulsification properties of SBP
improved following inter-molecular cross-linking via laccase catalysis [26]. Furthermore, SBP has
been shown to improve the stabilisation of emulsion systems prepared by using whey protein [27–29],
fish gelatine [30,31] and β-lactoglobulin [32,33] via cross-linking of SBP through the addition of laccase.
In addition, laccase has the ability to oxidise tyrosine and tyrosine-containing peptides, as ferulic acid
can become covalently cross-linked into the polymer structure through an ether bond [23]. Laccase
can also oxidise amino acids, such as cysteine and phenol-based tryptophan [25,29,34]. It has also
been reported that laccase can catalyse SC and can form inter-molecular bonds between the caseinate
molecules [35]. Therefore, it can be inferred that three structures may be involved in SBP-SC conjugates
via laccase catalysis, namely SBP-SC, SBP-SBP and SC-SC conjugates.

Finally, the Maillard reaction is a non-enzymatic browning reaction that occurs during
heating, roasting, baking and frying in the presence of both carbohydrates and proteins in food
products [36]. The Maillard reaction has favourable effects, such as colour and flavour formation during
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roasting, baking or frying, whereas it is unfavourable in processes, such as drying, pasteurisation
and sterilisation [37]. The Maillard reaction is a chemical reaction, cross-linking aldehydes and
amines, through a well-established oxidation-reduction pathway [21]. For common proteins and
polysaccharides, the Maillard reaction occurs between amino compounds and reducing sugars as
reactants [37]. The major variables, that impact upon the Maillard reaction, are not only temperature,
time and relative humidity, but also the nature and proportion of each polymer [38]. Generally,
the Maillard reaction involves three stages, and the first stage may be enough for improving the
emulsification properties of conjugates [39]. This stage naturally occurs between the carbonyl group of
polysaccharides and amino acids of proteins, in order to isomerise the Amadori product, which is the
product of the condensation process, via the formation of a Schiff base with the release of water and
the Amadori rearrangement [20,36,39].

All three types of conjugates were created from SBP and SC and their aggregation properties
evaluated by particle size, Zeta (ζ)-potential and dynamic viscosity. Relevant to application in foods,
the effect of environmental stress factors, including pH conditions, pH 4.5 and pH 7, and thermal
treatment at 80 ◦C for 10 min, on the aggregation properties was also assessed. Finally, SBP-SC
interaction models are proposed.

2. Materials and Methods

2.1. Materials

The main materials used to prepare the polysaccharide-protein conjugate emulsifiers,
and appropriate reference samples, were sugar beet pectin (Herbstreith & Fox KG, Neuenbürg,
Germany) sodium caseinate, citric acid monohydrate and sodium citrate dihydrate for the preparation
of citrate buffers (pH 4 and pH 5), hydrochloric acid and sodium hydroxide to adjust the pH with 1 M
solutions, sodium azide as antimicrobial (purchased from Fisher Scientific, Loughborough, UK), ferulic
acid, potassium bromide, syringe filters (0.45 µm, ø 15mm, Whatman GE Healthcare) and laccase
enzyme (purchased from Sigma-Aldrich, Gillingham, UK). The laccase activity was reported by the
supplier as 0.87 units per mg (AU) of the enzyme. Deionized water (electrical conductivity < 2 µS cm−1)
produced on-site was used throughout.

2.2. Dispersion Preperation

A 0.1 M Citrate buffer (pH 5) was prepared by mixing 20.5 mL of 0.1 M citric acid and 29.5 mL
of 0.1 M sodium citrate with 50 mL of water on a magnetic stirrer at 500 rpm and 25 ◦C for 30 min.
The solution was then diluted with water to obtain 50 mM citrate buffer at pH 5 to use as solvent.
Dispersions of different ferulic acid concentrations (0.1–1.5 mg/100 g) were prepared in 50 mM citrate
buffer (pH 5) by dissolving ferulic acid powder in the appropriate amount of water on a magnetic
stirrer at 500 rpm and 25 ◦C for 2 h to ensure full dissociation.

An amount of 0.1 or 1 w/w % SBP dispersion was prepared by dissolving 1 g of SBP powder in the
appropriate amount of water and citrate buffer (50 mM), followed by mixing on a magnetic stirrer at
500 rpm and 25 ◦C overnight. SC dispersion, at a total polymer concentration of 1 w/w %, at pH 7,
was prepared by dissolving 1 g of SC powder in the appropriate amount of water on a magnetic stirrer
at 500 rpm and 25 ◦C for one hour to ensure full hydration. A 1:1 SBP:SC dispersion was prepared by
mixing 1 w/w % SC and SBP dispersions, with the appropriate amount of deionized water, containing
0.02 w/w % sodium azide.

Different laccase/sugar beet pectin ratios were prepared at pH 5, namely: 1.15 mg/4 mg (1 AU);
5.75 mg/4 mg (5AU); 11.5 mg/4 mg (10AU); and 23 mg/4 mg (20 AU). Thus, 2.3 w/w % enzyme was
prepared by dispersing 2.3 g of laccase in the appropriate amount of water and 50 mM citrate buffer,
followed by 1 h of stirring for complete hydration. Then, 50 g laccase/SBP mixture dispersion was
prepared by mixing 2.3 w/w % laccase and 0.1 w/w % SBP dispersion with the appropriate amount of
citrate buffer (50 mM) at 25 ◦C.
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2.3. Analysis of Ferulic Acid Concentration and Selection of Experimental Conditions for Laccase-Catalysed
Cross-Linking of Sugar Beet Pectin and Sodium Caseinate

The proportion of ferulic acid in the SBP, obtained for this study, needed to be quantified to
select the appropriate experimental conditions for the laccase-catalysed cross-linking of SBP and SC.
A previously published method, based on UV visible spectroscopy [30], was applied. The maximum
absorbance for SBP is at 325 nm wavelength, which is attributed to the presence of ferulic acid groups
in this material [30]. The absorbance of the different concentrations of ferulic acid dispersions was
determined at 325 nm, by using a UV-visible light spectrophotometer (HP 8453 Agilent, Agilent
Technologies, Waldbronn, Germany) at 25 ◦C. A total of 50 mM citrate buffer (pH 5) was used as a blank.
Based on the standard curve reported in Figure S1a (Supplementary Materials) and absorbance of a 0.1%
w/w SBP dispersion, it was established that the SBP contained 1.33% ferulic acid. Then, a standard
curve of the calibration dispersions was plotted as a function of the ferulic acid concentration from
0.1–1.5 mg/100 g. To calibrate the absorbance signal.

Having established the proportion of ferulic acid in the SBP, it was assessed whether laccase
would cross-link the SBP molecules following previously published protocol for laccase activity
assessment [30,33]. Laccase/SBP mixture dispersions were gently shaken and then immediately
sampled into the spectrophotometer and absorbance at 325 nm followed for 60 min. 1, 5 and 10 AU
laccase activity were tested and since the absorbance data overlapped, see Figure S1b (Supplementary
Materials), the intermediate of 5AU was chosen to carry forward.

2.4. Preparation of Conjugate Dispersions

Electrostatically, enzymatic and through Maillard cross-linked SBP-SC conjugate dispersions were
prepared at a 1:1 by weight mixing ratio as described in the following.

2.4.1. Laccase-Catalysed SBP Dispersions

SBP dispersions were prepared as reference samples. A 0.4 w/w % laccase-catalysed SBP dispersion
was prepared by dissolving 1 w/w % SBP dispersion in the appropriate amount of water, containing
0.02 w/w % sodium azide and 10 g 5 AU laccase dispersion on a magnetic stirrer at 500 rpm and 25 ◦C for
2 h to ensure complete catalysis. The completion of the enzymatic catalysis was determined by visual
observation of the colour of the SBP dispersion, changing from turbid to clear brown. The dispersion
was stored at 25 ◦C until further use.

2.4.2. Electrostatically-Stabilised SBP-SC Conjugate Dispersions

To cross-link SBP and SC, the pH of the 1:1 SBP:SC dispersion with a total polymer content of
0.4 w/w % was adjusted to 4.5 by the addition of either 1 M HCl or 1 M NaOH, as appropriate. This was
stirred at 500 rpm and 25 ◦C for at least 6 h on a magnetic stirrer to ensure complete formation of
SBP-SC conjugates. Observation of the completion of the conjugate formation process was possible
visually as the SC dispersion was clear, whereas the SBP dispersion was turbid brown; upon conjugate
formation the appearance changed from turbid brown to turbid white. The conjugate dispersion was
labelled SBP:SC P (P to denote physical cross-linking by electrostatic interaction).

2.4.3. Laccase-Catalysed SBP-SC Conjugates Dispersions

A 1:1 SBP:SC dispersion with a total polymer content of 0.4 w/w % was prepared by mixing the
appropriate amounts of stock dispersions with deionized water containing 5 AU laccase enzyme. After
that, the SBP-SC mixture was placed in a magnetic stirrer at 500 rpm and 25 ◦C for 2 h to ensure
complete enzymatic reaction. The initially turbid white and finally turbid light brown appearing
dispersion was labelled SBP:SC E (E to denote enzymatic cross-linking by laccase catalysis).
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2.4.4. SBP-SC Maillard Conjugates Dispersions

For the preparation of the SBP-SC Maillard conjugates a previously published protocol was
followed [36]. SBP and SC were dissolved in deionized water (solid/liquid ratio 1:25) at a ratio of 1:1
while stirring at 700 rpm and 25 ◦C for 2 h on a magnetic stirrer. After that, the mixture was stored in
a freezer at −80 ◦C for at least 24 h and followed by dehydration in a freeze-drier (Super Modulyo,
Edwards, Burgess Hill, UK) at −40 ◦C and pressure between 7 × 10−2 bar and 2 × 10−2 bar. The dried
solids were placed in a desiccator containing a saturated KBr dispersion and incubated for 48 h
in a cabinet (Sanyo/Gallenkamp cabinet, model CF4) at 60 ◦C, with a relative humidity of 79%.
The conjugates were stored in disposable polypropylene containers at 2 ◦C until further use.

Conjugate dispersions were prepared by dissolving 0.4 g of freeze-dried solids in an appropriate
amount of deionized water, containing 0.02 w/w % sodium azide and 10 g citrate buffer (50 mM,
pH 5), and then stirred at 500 rpm and 25 ◦C for 1 h on a magnetic stirrer to ensure full hydration,
which was confirmed by the absence of visible solids. The buffer was used to ensure the same ionic
strength conditions were present as for the conjugates prepared by electrostatic cross-linking and
laccase catalysis. The 0.4 w/w % SBP-SC conjugate via Maillard reaction dispersion was labelled as
SBP:SC M dispersion (M to denote Maillard reaction).

2.5. Analytical Methods

2.5.1. Conjugate Size

The size of the different conjugates was quantified as the z-average as determined with a Zetasizer
(Zetasizer Nano ZS (Malvern Panalytical, Malvern, UK)). Prior to analysis, conjugate samples were
diluted with deionised water to a total polymer concentration of 0.01 w/w %, which gave an optimal
sample concentration for measurement, as indicated by the instrument’s software, and then filtered,
using syringe filters to remove larger particles, such as dust and other contaminants. 3 mL of sample
was then enclosed in a single-use disposable sizing cuvette (DTS0012, Sarstedt, Nümbrecht, Germany)
and placed into the equipment at 20 ◦C. The refractive index and absorption were set to be 1.450,
and 0.001, respectively.

2.5.2. Zeta-Potential Measurement

To determine the ζ-potential of the SBP-SC conjugates, a particle electrophoresis instrument
(Delsa Nano C, Meritics, High Wycombe, UK) was used at 20 ◦C. Before the measurement, samples
were diluted to 0.2 w/w % with deionized water. The samples were measured 1 day after preparation.

2.5.3. Shear Viscosity

The shear viscosity of SBP-SC conjugate dispersions prepared at pH 4.5 was analysed, using
a rotational rheometer (Physica MCR 301, Anton Paar, Graz, Austria) fitted with a double gap cylinder
geometry (DG26.7/T200/SS, Anton Paar, Graz, Austria). Before the measurement, the samples were
shaken well in a vial to separate the aggregated conjugates. Then, each sample was loaded into the
rheometer measurement cell and allowed to equilibrate at 20 ◦C for 2 min. Then, the steady shear
behaviour of the samples was assessed as a function of shear rate from 1 to 100 s−1.

2.6. Environmental Stress Tests

The conjugate dispersions were submitted to a pH and a temperature stress test, followed by
storing at 25 ◦C for 24 h before analysis with the same analytical methods, as applied to the freshly
prepared samples.
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2.6.1. pH Adjustment

The pH stress tests included, adjusting the pH of SBP-SC conjugates with 1 M HCl, 1 mM HCl,
and 1 M NaOH, as required, to a value of 4.5 or 7. These two pH values were selected because SBP-SC
conjugates might split at both pH 4.5 and pH 7, as a result of residual charges of SC, and opposite
charges between two biopolymers, respectively.

2.6.2. Thermal Stress

A thermal stress test was designed as follows. SBP:SC 1:1 P, SBP:SC 1:1 E, and SBP:SC 1:1 M
conjugates at pH 4.5 and pH 7 were transferred to a 100 mL vial and sealed with a plastic cap. The vial
was incubated in a water bath at 80 ◦C for 10 min. The samples were stored at 25 ◦C.

2.7. Statistical Analysis

All measured results are reported as the mean (n = 3) ± 1 standard deviation of triplicate freshly
independent-prepared samples. The data were statistically analysed for significant difference (p < 0.05)
applying the student’s t-test by using Microsoft Excel 2010 (Microsoft, Seattle, WA, USA).

3. Results and Discussion

3.1. Physico-Chemical Properties of the SBP-SC Conjugates

3.1.1. Visual Appearance

Figure 1 shows test tubes with the three types of SBP-SC conjugates prepared in this study at
pH 4.5, pH 7 before and after heat treatment 80 ◦C for 10 min. At pH 4.5 and before heat treatment,
test tubes labelled “1”, all conjugates had sedimented and the supernatant phases were clear except for
the P conjugate, which had a milky white supernatant phase. Precipitate colour was white for P and M
conjugates while the E conjugate was brown (appearing as grey in the b/w image). It can, therefore, be
postulated that the microstructure of these conjugates differed with conjugate type. The appearance of
the test tubes, labelled “3” in Figure 1, reveals that all three types of conjugates became transparent
following adjustment of their pH to pH 7. This indicates the absence of large aggregates.

However, there were no obvious differences in visual appearance between unheated and heated
SBP-SC conjugates, as revealed by comparing test tubes 1 with test tubes 2, and test tubes 3 with test
tubes 4. This observation confirms previous report that polysaccharides may protect proteins from
aggregation during heat treatment [21].
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Figure 1. Images of (a) SBP-SC P conjugates, (b) SBP-SC E conjugates, and (c) SBP-SC M conjugates
dispersions (1) at pH 4.5; (2) at pH 4.5 heated at 80 ◦C for 10 min; (3) at pH 7; and (4) at pH 7 heated at
80 ◦C for 10 min, respectively. The dotted line is the phase boundary of the sediment.
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3.1.2. Conjugate Size and Zeta Potential

Prior to Heat Treatment

In order to analyse the particle size of the SBP-SC conjugates, the z-average radius was determined
by dynamic light scattering (DLS). The results are shown in Figure 2. At pH 4.5, P conjugates were
characterised by a larger particle size than seen in E conjugates (p-value < 0.05). The particle size of the
M conjugates at pH 4.5 is not reported, as the dispersion was fully precipitated once preparation was
complete, and thus the particle size was out of the measurement range of the equipment, i.e., larger than
2,000 nm. When the pH conditions of the dispersions were adjusted from pH 4.5 to pH 7, the particle
size of the P conjugate decreased to from (259 ± 23) nm to (183 ± 31) nm, which was similar to that
observed for the E conjugate (188 ± 19) nm at pH 7 (p-value > 0.05). The particle size of the E conjugate
did not change significantly on pH adjustment (p-value > 0.05). The particle size of the M conjugate
(213 ± 19) nm was larger than the particle sizes for the P and E conjugates at pH 7 (p-value < 0.05).
When the P and M conjugates were at pH 4.5, the white precipitates were a result of SC self-assembly
under acidic conditions. Consequently, both conjugates possessed a large particle size at pH 4.5.
Comparatively, the E conjugate displayed a brown precipitate. This result may indicate a lower level
of SC aggregation in the E conjugate, leading to a precipitate colour resembling the colour of the
SBP solution (brown) and small particle size at pH 4.5. When the P and M conjugates were adjusted
from pH 4.5 to pH 7, their particle size decreased. This result corresponds to the visual observation
that P and M conjugates showed white precipitates at pH 4.5 that become transparent as the pH was
raised to pH 7. The decreased particle size for both conjugates implies that the SC conjugates were
de-agglomerated at pH 7. There was no significant change for the particle size of the E conjugate as
the pH was adjusted from pH 4.5 to pH 7, although the precipitates of the dispersion were changed
slightly under this adjustment. This indicates that less aggregation was observed in the E conjugate
dispersion at pH 4.5, suggesting that the E conjugate was more acid-tolerant.
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Figure 2. Particle size (z-average radius) of unheated (patterned bars) and heated (filled bars; 80 ◦C
for 10 min) of SBP-SC conjugates at pH 4.5 and pH 7, analysed at 20 ◦C. The letters (a–d) represent
significant differences among samples (p-value < 0.05). No data are shown for SBP:SC 1:1 M, unheated
and heated, as the values were outside the measurement range (upper limit of 2000 nm).

To measure the charge of the SBP-SC conjugate dispersions, the ζ-potential was determined.
The results are shown in Figure 3. Among these, the ζ-potential of the P conjugate at pH 4.5 was the
most negative of the three conjugate types while the E conjugate had the same negative ζ-potential as
the M conjugate. Although the ζ-potential of SC at pH 4.5 was not tested in this study, it was reported
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in a previous study that SC polymers possess a small positive charge at pH 4.5 [10], which is just below
the isoelectric point (pH ~4.6) of SC. Consequently, the negative ζ-potential of the SBP-SC conjugates
is likely to be the result of the presence of SBP polymers creating a net negative charge. In addition,
both, the E and M conjugates possessed lower net charges at pH 4.5 than the P conjugate, which
implies that there were buried negative carboxyl groups within the E and M conjugates. Although the
preparation of the E conjugates was based on the P conjugates, the addition of laccase would have
altered the structure of the conjugates. These buried carboxyl groups in the E conjugate may thus be the
result of covalent cross-links between the ferulic acid present in the SBP and certain amino acids, such
as tryptophan, cysteine and tyrosine in the SC, during laccase catalysis [21]. The buried negative groups
in the M conjugates were the result of the reducing end of the carbohydrate cross-linking with the
amino acids present in the protein during the Maillard reaction. Although the ζ-potentials of the E and
M conjugates were similar and especially negative (at both pH values), the visual observations and the
particle size data revealed precipitation and aggregation of the M conjugates at pH 4.5. This suggests
that the protein moieties of the Maillard conjugates interacted hydrophobically, as charge repulsion
between these moieties would have been negligible, due to the pH being close to the IEP of the protein.
It appears that the net conjugate charge was dominated by the properties of the SPB. When the pH of
the SBP-SC conjugates was adjusted to pH 7, a more negative ζ-potential was observed for all three
SBP-SC conjugates, which may be the result of the negative charge of SC at pH 7. In addition, there
were no significant differences in ζ-potential between the P, E and M conjugates at pH 7 (p-value > 0.05).

Post Heat Treatment

To assess thermal stability, an important factor for the application of food ingredients in general,
and particularly for those with structure functionality, the conjugate dispersions were heat treated at
80 ◦C for 10 min. Firstly, particle size data (Figure 2) revealed that the particle size of the P conjugate
decreased as a result of the heat treatment at both pH 4.5 and pH 7 (p-value < 0.05). In addition, there
was no significant change (p-value > 0.05) in the ζ-potential of the P conjugate after heat treatment
at pH 4.5, whereas it became more negative at pH 7. A decrease particle size of the P conjugate at
pH 4.5 after heat treatment suggests that a structural rearrangement took place during heat treatment.
Heat induced structural rearrangement of protein-polysaccharide conjugates from a random structure,
to a particle characterised by a protein core with a surrounding polysaccharide shell, has previously
been discussed [34,40–44]. The protein core formation could be related to the denaturation of casein at
pH 4.5 at 80 ◦C [45,46]. Smaller particle size and higher ζ-potential may suggest that a structural change
of the P conjugate at pH 7 during heat treatment. Due to the strong electrostatic repulsion between SBP
and SC biopolymers under neutral conditions, heat treatment can lead to the separation of a fraction
of the protein from the conjugates increasing the net negative charge of the system [44]. Secondly,
heating had a lesser effect on the E conjugate, as indicated by the particle size remaining constant,
but the ζ-potential decreased slightly at pH 4.5. This change can be attributed to the heat-induced
weakening of the unfolded structures of SBP-SBP conjugates in E conjugates, because the covalent
bond weakened after heat treatment, leading to the exposure of some negatively charged groups.
The fact that the ζ-potential of the E conjugates held at pH 7 was not affected by heating suggests
that separation of the E conjugate was either completely absent, due to the molecularly cross-linked
nature of this conjugate type, or too insignificant to affect the ζ-potential. Finally, the consequence
of heat treating the M conjugate type held at pH 4.5 could only be assessed by the ζ-potential, as the
particles were still too large for the selected particle sizing method (DLS). A less negative ζ-potential
was recorded for the M conjugate after heat treatment at pH 4.5, increasing from (−29.18 ± 0.52) mV to
(−28.26 ± 0.24) mV, shown in Figure 3. This result was probably due to the structural rearrangement
of SBP-SC conjugates contributing to reducing the negative charge. The results at pH 7 revealed
that the particle size of the M conjugate decreased from (213 ± 19) nm to (160 ± 14) nm after heating
(p-value < 0.05), shown in Figure 2. In addition, no significant change in ζ-potential at pH 7 after
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thermal treatment (p-value > 0.05) was found, see Figure 3. The smaller particle size may suggest that
the M conjugates were slightly less aggregated after heat treatment.
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Figure 3. ζ-potential of unheated (upward) and heated (filled) at 80 ◦C for 10 min of SBP-SC conjugates
at pH 4.5 and pH 7 at 20 ◦C. The different letters (a–f) represent significant differences among samples
(p-value < 0.05).

3.1.3. Steady Shear Viscosity

The conjugate dispersions were assessed for steady shear viscosity behaviour and the results
are shown in Figure 4. At pH 4.5 and prior to heating, but in fact, after heating as discussed later,
all three types of conjugate dispersions were shear-thinning. This shear-thinning behaviour was
more pronounced for the M conjugate dispersion, compared to the P conjugate dispersion, which
was more shear thinning than the E conjugate dispersion, see Figure 4a. The more pronounced
shear-thinning of the M conjugate dispersion would have been the consequence of the aggregated
state of the conjugate [47]. Analogously, as the P conjugate demonstrated stronger aggregation than
the E conjugates, their degree of shear-thinning was comparatively higher. One of the most important
parameters affecting the rheology of dispersed systems is particle volume fraction, and shear-thinning
behaviours are the result of intermediate volume fractions (0.1 < ϕ < 0.5) [48]. It has been reported
that higher particle volume fractions in this intermediate volume range result in higher shear viscosity
because of the formation of chains and networks of interacting particles. In this case, the magnitude of
the shear viscosity is related to the particle size and the coefficient of friction between particles [49].
In this study, the larger aggregated particles of the M conjugates render this conjugate dispersion the
highest viscous of the three conjugate dispersions. When the pH condition was adjusted to pH 7,
see Figure 4b, shear-thinning was less pronounced for P and M conjugates. This result further evidences
the aggregation of P and M conjugates at pH 4.5 but not at pH 7. Comparatively, the E conjugates
were less influenced by the altered pH condition, with no change in flow behaviour as the conditions
changed from pH 4.5 to pH 7.
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Figure 4. Steady shear viscosity (a) at pH 4.5; (b) at pH 7; (c) heated at 80 ◦C and pH 4.5 for 10 min;
(d) heated at 80 ◦C and pH 7 for 10 min of SBP:SC 1:1 P (triangle), SBP:SC 1:1 E (diamond), and SBP:SC
1:1 M (square) conjugates measured at 20 ◦C. The values are means, and the error bars correspond to
a ± 1 standard deviation of the triplicate measurements taken from freshly prepared samples.

To understand the viscosity behaviours of the SBP-SC conjugates after thermal treatment, rotational
rheological measurement was performed on the heated conjugate dispersions. In Figure 4c, it is revealed
that there was a decrease in viscosity for both P and M conjugates, as compared with unheated SBP-SC
conjugates at pH 4.5. The decreased particle size may contribute to the decrease of the shear viscosity
for the P conjugate dispersion after heat treatment as it means a lower particle volume fraction.
The decreased viscosity of the M conjugate dispersion after heat treatment suggests that the particle size
of the conjugates was lower after heat treatment (but still >2000 nm, as explained earlier). As previously
interpreted from the ζ-potential results, following heat treatment at pH 4.5, the M conjugates most
likely had a core of denatured SC, surrounded by a shell of SBP. Comparatively, a slight decrease and
no obvious change in viscosity were observed for the P and E conjugate dispersions, as a result of
heating at pH 4.5, comparison data is shown in Figure 4a,c. This phenomenon may be a result of the
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decreased particle size of the P conjugates due to heating and the heat had less effect on the size of
the E conjugates, see Figure 2, heating at pH 7 on the other hand did not change viscosity for any of
the three dispersions, comparison data is shown in Figure 4b,d. On analysing the particle size and
ζ-potential, there were no significant changes for the E conjugate at pH 7 after heat treatment, and thus
no shear viscosity changes. This result further shows the reduced effect of heating on the E conjugate.
However, decreased particle sizes were observed for both P and M conjugates, which may contribute
to less viscosity in both dispersions after heat treatment. In the shear viscosity results, such phenomena
were not observed, perhaps as the particle size decrease was too little.

3.2. Microstructure Model

The physico-chemical data, acquired on the three types of SBP-SC conjugates, were interpreted in
terms microstructure models pre- and post-heating, see Figure 5a,b respectively. The references in the
figure captions refer to previously published models for protein-polysaccharide conjugate structures,
but non SBP-SC.

A possible structure of the SBP-SC conjugates at pH 4.5 and pH 7 is shown in Figure 5a. P and E
conjugates were hypothesised to possess similar structures at pH 4.5 because of the folded structure of
the SC biopolymer at this for casein proteins unfavourable pH. However, there were slight differences
because of the additional laccase catalysed cross-linking between SBP and SBP within E conjugate,
leading to a higher branched structure of SBP in the E conjugate [26]. In contrast, there is a high
degree of covalent bonding between the amine groups of the SC and the aldehydes groups of the SBP
during the Maillard reaction, leading to unfolded SC and SBP structures within M conjugates. Under
acid conditions, the unfolded SC in the M conjugates is aggregated, resulting in more pronounced
aggregation and thus precipitation. At pH 7, similar aggregation properties were observed for P, E, and
M conjugates, favouring the coil confirmation of SBP and SC, and suggesting that a similar structure
pertains among all three SBP-SC conjugates. Moreover, the large particle size for M conjugate may
be a result of more than one SBP cross-linked with SC during Maillard reaction [50]. Comparatively,
only one the SBP molecule, cross-linked with one SC molecule in both P and E conjugates [51].
A possible structural rearrangement of P, E and M conjugates after heat treatment at pH 4.5 is shown in
Figure 5b. Previous studies suggested that the structural rearrangement of SBP-SC conjugates, during
heat treatment, may reinforce the stability of SBP-SC conjugates because of the structure of a protein
core with a surrounding polysaccharide shell [44].
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Figure 5. Schematic of (a) SBP-SC conjugate via complexation [2], laccase catalysis [30], and Maillard
reaction [6,31] at pH 4.5 and pH 7; and (b) the structure of P and M conjugates at pH 4.5 heated at 80 ◦C
for 10 min [38].

4. Conclusions

In this study, the aggregation properties of electrostatically-stabilised, laccase-catalysed and
Maillard cross-linked SBP-SC conjugates were studied at different environmental stresses. The pH and
thermal treatment affected the aggregation properties of all three types of conjugates. The E conjugate
was most acid tolerant, followed by the P conjugate, while the M conjugate was the least acid-tolerant.
This conclusion is based on the lowest precipitate volume, smallest mean particle size and least degree
of shear-thinning behaviour of this conjugate type at pH 4.5. When the condition was adjusted to
pH 7, all three dispersions revealed similar aggregation properties. Based on the aggregate property
data, it could be concluded that the P conjugate was the structure of folded SC cross-linked with SBP,
E conjugates was the structure of folded SC, cross-linked with more compact, higher branches SBP,
and M conjugates was the structure of unfolded SC cross-linked with one or two SBPs. Heat treatment
led to a structuring re-arrangement with the degree of re-arrangement depending on conjugate type.
At pH 4.5 the microstructure model proposes a protein core with a surrounding polysaccharide shell.
During heating at pH 7, SC separated from P conjugates, whereas E and M conjugates were hardly
affected by heating, probably as SC and SBP were covalently cross-linked. So, it can be concluded that
the covalently cross-linked conjugates were more heat-resistance than the electrostatically cross-linked
conjugate and would, therefore, be a preferred choice for acidic emulsion-based food and drink
formulations requiring pasteurisation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/8/6/192/s1,
Figure S1. (a) Standard absorbance of ferulic acid concentration in sugar beet pectin at 325 nm wavelength and
25◦C; (b) Influence of different enzyme concentrations on time-dependence of absorbance at 325 nm of 0.4 w/w %
sugar beet pectin dispersions at pH 5 (citrate buffer 50mM) at 25 ◦C. Table S1: Effect of thermal treatment at
80 ◦C for 10 min on particle size and ζ-potential of SBP-SC conjugates at pH 4.5 and pH 7 at 20 ◦C. In this section,
the ferulic acid concentration and the activity of laccase on sugar beet pectin have been analysed, as shown in
Figure S1a. 0.1% w/w SBP dispersion was measured at 325 nm and 25 ◦C, and the absorbance of 0.1% w/w SBP was
0.866 from 1.33 mg/100 g ferulic acid. Thus, the sugar beet pectin used in this research contained 1.33% ferulic
acid. In Figure S1b, 5 AU and 10 AU laccase possessed lower absorbances than 1 AU and 20 AU during laccase
catalysis, suggesting that 5 AU appeared to be sufficient to fully cross-link ferulic acid with each other in sugar
beet pectin. Therefore, 5 AU laccase was used to cross-link SBP-SC conjugate in this study.

http://www.mdpi.com/2304-8158/8/6/192/s1
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