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Abstract 

Nowadays, rolling-resistance sits at the core of tire development 
goals because of its considerable effect on the car’s fuel economy. In 
contrast to the experimental method, the finite element (FE) method 
offers an inexpensive and efficient estimation technique. However, 
the FE technique is yet to be a fully developed product particularly 
for rolling-resistance estimation. An assessment is conducted to study 
the role of material viscoelasticity representation in FE, in linear and 
non-linear forms, through using Prony series and parallel rheological 
framework (PRF) models respectively on the tire’s rolling-resistance 
calculation and its accuracy. A unique approach was introduced to 
estimate the rolling-resistance according to the tire’s hysteresis 
energy coefficient. The non-linear PRF choice showed rolling-
resistance calculations that reasonably match that of the experimental 
work and the literature for various vertical load and inflation cases, 
whereas Prony series option was found irresponsive to the tire’s 
deformation in which it gave unreliable and infinitesimal outputs. 

Introduction 

Primarily, rolling-resistance is seen as the mechanical energy losses, 
in terms of heat dissipation, incurred as a result of tire deformation 
while rolling. These losses can reach up to 30% of vehicle fuel usage 
depending on the driving route [1-4]. In a straight free-rolling 
condition on a flat surface, a core contributor to the tire’s rolling-
resistance is the mechanical hysteresis of the tire’s structure induced 
by the material viscoelasticity which can represent up to 95% of 
rolling-resistance while minor contributors like road-slip and 
aerodynamic drag can account for up to around 5% and 15% 
respectively [3, 5-9]. 

Many efforts have been exerted to capture the tire’s viscoelasticity 
response to compute rolling-resistance via FE approach as a cost-
saving alternative to the expensive experimental approach [10, 11]. 
Various solutions were adopted to calculate the rolling-resistance in 
terms of “resistive force” or “energy consumed per unit distance 
travelled” where the second definition (i.e. energy consumption) is 
commonly utilised since it provides a more complete and appropriate 
measure [12-15]. Generally, the energy lost in a tire is estimated in 
FEA by using either an “in-house post FE code based on a 
viscoelastic theory” or a “built-in viscoelastic function available in 
the given FE solver” [16]. 

For the “viscoelastic theory code”, commonly, an in-house code is 
used as a post-processing analyser of the stress-strain time outputs of 
an FE solver and the material loss coefficients obtained 

experimentally to calculate the rolling-resistance as per the 
viscoelastic theory which was written in the code. This methodology 
is applied by a lot of researchers such as Hoever [12], Ghosh [14] and 
Cho et al. [17]. Most of the presented works use a viscoelastic theory 
code that is built for in-house application and not for public use [11, 
18-22]. Also, commonly, the code would include linear viscoelastic 
based assumptions to solve the tire’s dynamical behaviour which is, 
however, highly non-linear, thus undermining the calculation 
accuracy [23]. In addition, the code is normally linked with FE 
model(s) of quasi-static contact and not compatible with dynamical 
contact model(s) as it would require way much lengthier and very 
complicated written code(s) [11, 16]. 

For the “FE solver built-in functions”, most FE solvers employ linear 
viscoelastic functions to describe the highly non-linear tire behavior 
[23, 24]. Examples of this are the investigations carried out by 
Hernandez et al. [25], Ghosh et al. [16] and Kim et al. [26]. These 
functions rely on the type of experimental material data used for 
fitting them in terms of the sort of material deformation, strain 
level(s), and/or response patterns under which the data were obtained. 
This has limited the validity of those functions and their 
implementation scope [16]. Furthermore, there is the trade-off 
between the calculation precision, the model complexity and the 
resources usage [11, 25].  

Based on the earlier findings, the FE option is found to require yet 
more improvements, when it comes to rolling-resistance modelling, 
to address its computational inaccuracies in establishing the 
sophisticated non-linear relationship between the structural hysteresis 
and the rolling-resistance which is more complicated with the 
involvement of the operational settings and the geometrical non-
linearity [11, 27]. 

In this regard, this paper reports on the potential for implementing the 
non-linear viscoelastic PRF model as a more reliable replacement of 
the classical linear Prony series in FE approach for estimating the 
rolling-resistance due to the mechanical hysteresis in the tire structure 
only. The paper’s scope excludes other factors of minor contribution 
to rolling-resistance like aerodynamic-drag and road surface. This is 
because this paper’s goal is to develop an FE model capable of 
simulating the tire structural effects alone on the tire’s rolling-
resistance as a part of future work to investigate tire structural design 
related to tire designing and prototyping. The FE option is found as 
an emerging solution that is time-saving, cost-effective, easy-to-
implement and modifiable compared to the costly, time-consuming, 
lengthy, hard-to-implement and irreversible experimental option with 
little gains in general [11, 12, 14, 25, 27-30]. In this context, this 
paper contributes to increasing the reliability and effectiveness of the 
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FE solution by introducing a working FE model that can serve as an 
initial and in-depth evaluation tool of the effect of tire structural 
design on rolling-resistance at a very early stage of the design process 
saving a lot of time and costs in narrowing down the potential tire 
designs for low rolling-resistance. Furthermore, the FE model 
presented in this paper can be used as a guide and a starting platform 
toward developing more advanced FE modelling of tire for more 
complicated or tailored applications. 

For this study, the rolling-resistance calculation is performed based 
on a proposed method that uses the tire’s energy dissipation ratio. 
Abaqus/Explicit was employed to build a complete FE tire model, 
simulate the tire’s free-rolling, and obtain the related energy results to 
estimate the rolling-resistance. The FE outputs of the tire’s rolling-
resistance using PRF and Prony series functions, respectively, were 
compared with the equivalent experimental results to validate both 
FE methodologies. 

Material Characteristics 

A 225/55 R17 tire was adopted for the analysis. To predict the rolling 
behaviour of the tire in FE, the hyperelasticity and viscoelasticity of 
the tire’s rubber components, besides the elasticity of the tire’s 
reinforcements, were necessary [31, 32]. 

Hyperelasticity Property 

To simulate the elastic behaviour of the tire’s rubbers, the 
hyperelastic property was acquired from the stress-strain records 
measured by performing a uniaxial tensile experiment, as per ASTM 
D412−15a [33], for the relevant tire’s rubber parts. These are the 
tread, sidewall and chafer/apex. In addition, the rubber’s behaviour is 
taken to be isotropic and almost incompressible. 

A least squares data fitting was performed via Abaqus 6.13 to fit the 
candidate hyperelastic functions (i.e. Arruda Boyce, Ogden, Mooney 
Rivlin, Neo Hooke and Yeoh) to the experimental test data in order to 
identify the best fit function to simulate the tire’s hyperelasticity. 
Based on the fitting in Figure 1 and Drucker stability criterion in 
Abaqus [34], Yeoh was selected to be the best hyperelastic function 
for the FE tire model since it showed a close fit, demonstrated 
compatibility with various deformational types, and required 
affordable experimental work for material property capture. For the 
other hyperelastic functions, compared to Yeoh, they had either a bad 
fit to the test data as seen in Figure 1 or were unstable under different 
deformational modes, according to Drucker stability criterion in 
Abaqus, which makes them inadequate given the complexity and 
diversity of tire deformation during rolling. Such an example would 
be the Ogden function which had the best fit among all other 
functions but was highly unstable under tension and compression 
modes whether uniaxially, biaxially, or planarly. The selected Yeoh 
hyperelastic function used in Abaqus is given in Eq. (1) [34]: 

ܷ ൌ ଵഥܫଵ଴ሺܥ െ 3ሻ ൅	ܥଶ଴ሺܫଵഥ െ 3ሻଶ ൅ ଵഥܫଷ଴ሺܥ െ 3ሻଷ 	൅ ⋯ 

൅
ଵ

஽భ
ሺܬ௘௟ െ 1ሻଶ ൅		

ଵ

஽మ
ሺܬ௘௟ െ 1ሻସ ൅	

ଵ

஽య
ሺܬ௘௟ െ 1ሻ଺           (1) 

Where, 
U = Strain Energy per Unit of Reference Volume. 
C୧଴	and	D୧ ൌ Material Parameters. 
Iଵഥ ൌ First Deviatoric Strain Invariant. 

Jୣ୪ = Elastic Volumetric Ratio. 
 

 
Figure 1. Hyperelastic Functions Fitting for Tread Sample. 

The material coefficients (ܥ௜଴) which were determined using the data 
fitting procedure in Abaqus, and used for Yeoh function 
characterisation, are as follows: 

Table 1. Yeoh Function Constants for Tire Components. 

Yeoh Parameters Tire Components 

Tread Sidewall Apex 

C10 1.0 0.5 1.6 

C20 -0.3 -0.1 -1.4 

C30 0.1 0.03 0.9 

 
Linear Viscoelasticity Property 

In Abaqus, the FE solver offers extraction of rubber viscoelasticity in 
the linear form through the Prony series function. The Prony series 
function was fitted to represent the linear viscoelasticity of the 
different tire rubber parts based on the stress relaxation experimental 
data obtained at strain stretch of 50% as per ASTM E328−13 [35]. A 
non-linear least square fitting was used via Abaqus to extract the 
coefficients of the Prony series function in Eq. (2) as shown in Figure 
2 [36]: 

݃ሺݐሻ ൌ 1 െ ∑ ݃పഥ ሺ1 െ ݁ି௧/ఛ೔ሻே
௜ୀଵ                  (2) 

Where, 
gሺtሻ = Dimensionless Relaxation Modulus. 
gనഥ , τ୧ and N = Material Constants. 
t = Relaxation Time. 
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Figure 2. Fitting of Prony Series Function for Tread Sample. 

The function’s parameters (݃పഥ ,	߬௜) were acquired from the fitting 
procedure and they are as shown in Table 2: 

Table 2. Function Constants of Prony Series for Tires Components. 

Prony Function Constants Tire Components 

Tread Sidewall Apex 

gଵതതത 0.03 0.04 0.03 

τଵ 12.6 56.7 11.5 

gଶതതത 0.04 0.04 0.04 

τଶ 88.4 932.7 88.3 

gଷതതത 0.04  0.04 

τଷ 651.5  781.6 

 
Non-Linear Viscoelasticity Property 

The PRF function was adopted to represent the non-linear 
viscoelastic response of the tire. For non-plastic behaviour, the PRF 
function is made up of several response links joined with each other 
in parallel; a pure elastic link and a group of viscoelastic links as 
illustrated in Figure 3. The pure elastic link uses the hyperelastic 
function (i.e. Yeoh) to show the non-linear bulk elastic responses and 
avoid an entire stress collapse in the PRF. On the other hand, in the 
viscoelastic links, the deformational response in each link is divided 
between two components; one is elastic and the other is viscous. The 
elastic component in each viscoelastic link is exhibited through a 
scaled Yeoh function as per each link’s stiffness level. As for the 
viscous component, the viscosity behaviour is demonstrated via the 
implementation of the given flow rule in Eq. (3) and “power law 
strain hardening” evolution law in Eq. (4) [37]: 

Flow Equation: 

௖௥ܦ ൌ
ଷ

ଶ௤ത
εതሶ ௖௥ߪത ൌ

ଷ

ଶ௤෤
εതሶ ௖௥ᴛത                      (3) 

Evolution Principle: 

εതሶ௖௥ ൌ ൭ݍܣ෤௡ሾሺ݉ ൅ 1ሻߝ௖̅௥ሿ௠൱

భ
೘శభ

          (4) 

Where, 
 .௖௥ = Symmetric Portion of Velocity Gradientܦ
 .ത = Equivalent Deviatoric Cauchy Stressݍ
 .ത = Deviatoric Cauchy Stressߪ

 .෤ = Equivalent Deviatoric Kirchhoff Stressݍ
ᴛത = Deviatoric Kirchhoff Stress. 
 .and ݊ = Material Coefficients ݉ ,ܣ
εതሶ௖௥ = Equivalent Creep Strain Rate. 
 .௖̅௥ = Equivalent Creep Strainߝ
 

 
Figure 3. PRF Model Concept. 

To represent the tire’s non-linear viscoelasticity, the PRF function’s 
coefficients in Eq. (4) were computed and fitted in comparison to the 
experimental stress relaxation results of the tire’s rubbery 
components for various strains to account for non-linearity. This was 
done through creating and running the Isight 5.9 optimization model 
illustrated in Figure 4 [38, 39]. The Isight model included three 
components to compute the PRF coefficients. An Abaqus solver was 
used to run an FE model of rubber samples subjected to stress 
relaxation test at different strains similar to that done experimentally 
in which FE stress relaxation results were obtained. Using a data 
matcher, the FE relaxation outputs were compared against the 
experimental relaxation data as a reference and a fitting error measure 
was produced. To reduce the fitting error, an optimizer was utilized 
to search for new Yeoh and PRF coefficients using a hooke-jeeves 
penalty algorithm that would give a lower fitting error. The new set 
of Yeoh and PRF coefficients produced by the optimizer was tested 
using the FE model of rubber samples in the Abaqus solver and the 
optimization cycle was repeated until a fitting error of zero or a 
negligible value was reached.  
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Figure 4. Isight Fitting Function. 

The calibrated relevant hyperelastic and viscoelastic coefficients are 
shown in Table 3 with an example of Isight’s data-fitting output for 
the tire’s tread in Figure 5. 

Table 3. Fitted Yeoh and PRF Coefficients for Tire Components. 

  Parts 

  Tread Sidewall Apex 

Yeoh Constants 
C10 0.6 0.4 0.8 

C20 -0.07 -0.03 -0.2 

C30 0.03 0.01 0.2 

PRF Constants 

SR1 0.4 0.1 0.0001 

SR2 0.03 0 0.4 

SR3 0.01  0.04 

A1 3.9 0.8 0.2 

n1 4.0 2.7 1.1 

m1 -0.7 -0.1 -0.01 

A2 0.3 0.04 1.5 

n2 2.8 1.2 6.5 

m2 -0.01 -0.3 -0.4 

A3 0.4  0.05 

n3 1.2  3.1 

m3 -0.0004  -0.0004 

 

 
Figure 5. Time History of Stress Relaxation for Tread Sample under Different 
Strains by Fitted PRF Function and Experiment. 

Experimental Set-up 

The laboratory tire-drum rig in Figure 6 was used to conduct the 
experimental measurement of the tire’s rolling-resistance with respect 
to ISO 18164:2005 [40] but at different rolling settings to address this 
paper’s objective(s). 

 
Figure 6. Laboratory Tire-Drum Testing Equipment. 

To investigate the rolling-resistance due to the tire’s internal losses 
(i.e. material hysteresis) only, the tire was set to roll at the straight-
line and steady free-rolling settings as shown in Table 4 on a smooth, 
even, and hard (non-deformable) drum surface. In addition, a skim-
load measurement, as per ISO 18164:2005 [40], was conducted to 
remove the parasitic losses including frictional losses of the tire/drum 
contact from the tire’s rolling-resistance readings. This is to exclude 
the effects of acceleration, deceleration, road-surface roughness, and 
adhesion component of road-surface on the tire’s rolling-resistance 
[40-44]. Furthermore, the tire had to roll at low speed of 30 Km/h in 
order to remove the impact of aerodynamic resistance on the rolling-
resistance as well [3, 45]. This would leave the rolling-resistance 
measurements depending mainly on the tire’s viscoelasticity (i.e. 
mechanical hysteresis) alone.  
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Table 4. Rolling Settings. 

Test 
No 

Operating Factors 

1 

Velocity 
(Km/h) 

Inflation Pressure 
(KPa) 

Vertical Load (N) 

30 220 1000, 2000, 3000, 4000 
and 5000 

2 

Velocity 
(Km/h) 

Inflation Pressure 
(KPa) 

Vertical Load (N) 

30 180, 200, 220, 240 
and 260 

4000 

 
In line with this paper’s scope, as indicated earlier, one of the 
operating conditions, the tire’s rolling velocity was set fixed at 30 
Km/h. This is because increasing the rolling velocity beyond 30 
Km/h would cause aerodynamic-drag to form and start to gradually 
increase the tire rolling-resistance in which this effect escalates 
considerably at 120 Km/h with the formulation of standing waves in 
the tire [3, 27, 45, 46]. Furthermore, the rolling velocities, at and 
below 30 Km/h, are found to have no impact on the tire’s rolling-
resistance [3, 27, 46-48]. That is why the rolling velocity was set at 
30 Km/h only and the material model for the FE model was tested 
and developed cost-effectively using strain-based (time domain) 
experimental data (i.e. stress-relaxation) to meet and suit the paper’s 
scope. 

Through the load cell sensor(s) of the tire-drum rig, the resistive 
longitudinal force at the wheel spindle was measured during tire 
rolling at the specified rolling settings in Table 4. From the measured 
force, the rolling-resistance as the energy lost from the tire’s structure 
was calculated using Eq. (5):   

ோோܧ ൌ .	௧ܨ ቀ1 ൅
௥ಽ
ோ
ቁ                  (5) 

Where, 
 .ோோ = Energy Lost per Unit Travelled Distanceܧ
 .௧ = Rolling-Resistance Forceܨ
 .௅ = Tire Loaded Radiusݎ
ܴ = Wheel Drum Radius. 
 

FE Model Set-up 

To have the real tire as an FE model, a 2D axisymmetric geometry of 
the real tire was drawn in Abaqus/CAE, as shown in Figure 7.a, 
based on a cross-sectional specimen cut from the real tire. The 2D 
geometry had the tire’s rubber and reinforcement sections located and 
identified while considering the tire’s tread without grooves to 
minimise hour-glass deformations since the “grooves” have a 
marginal impact on the tire’s rolling-resistance [26-28]. 

In the 2D FE model, the tire’s reinforcements were created as rebar 
wires constructed using “SFMGAX1” surface elements and 
implanted inside the relevant tire rubber sections that are made up of 
“CGAX4R” solid elements. The reinforcements included cap plies, 
steel belts, body plies and beads. They were considered as istropic 
and linear elastic materials because they are subjected to minor and 
elastic strains under normal usage [31, 32]. The FE input of the 
reinforcement material properties was obtained by conducting the 
relevant experimental testing for Young moduli and referring to the 
related literature for poisson ratio and density [31, 32, 49-53]. Those 
properties are listed in Table 5 below: 

Table 5. Reinforcement Properties 

Reinforcement 
Young Modulus 
(N/mm^2) × 103 

Poission 
Ratio 

Density 
(Kg/m^3) × 103 

Cap Ply 3.4 0.3 1.3 

Steel Belt 200 0.3 7.8 

Body Ply 5 0.3 1.5 

Bead 200 0.3 7.8 

 
The tire’s wheel rim was represented through a rigid body definition 
that contains and ties up the wheel centre node, the related tire/wheel 
contact nodes and inner rim surface (i.e. using “SFMGAX1” surface 
elements) facing the tire altogether. The wheel mass and rotational 
inertia were defined at the wheel reference node. Simplified geometry 
of wheel as just a surface in the tire FE model has been drawn since it 
is assumed non-deformable given the nature of FE simulation and to 
reduce the complexity of FE modelling and the needed computational 
resources. This is similar to Ghosh et al. [16], Lin and Hwang [54], 
Golbakhshi and Namjoo [22], Hoever [12] and Cho et al. [17]. 
Besides, the wheel part hardly plays any noticeable role in rolling-
resistance simulations especially for steady-state free rolling 
situations [25, 26, 28, 55].  

A complete 3D model of the tire was created by revolving the 2D 
model through 360 degrees using the procedures of “symmetric 
model generation” and “symmetric results transfer”. The 3D tire 
model data were extracted into an “input” script of Abaqus and an 
analytical rigid (non-deformable) road drum with a straight and 
smooth surface was added to the model, equivalent to that used in the 
experiment, as shown by Figure 7.b. 

 
Figure 7. Two and Three Dimensional Tire FE Models. 
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To ensure mesh independent analysis with minimum computational 
resources, a mesh sensitivity check for different mesh densities of the 
3D tire model was conducted in which a model with a minimum of 
200 uniform mesh sectors circumferentially was found to start to 
provide consistent and accurate FE outputs. The end 3D model 
included 29600 elements for the tread, 6000 elements for the 
sidewall, 7400 elements for the Apex/Chafer, and 6401 elements for 
the wheel assembly. 

FE Rolling Modelling 

The previously generated “input” script was modified to include the 
simulation steps required to roll the tire at the testing conditions 
equivalent to that of the experimental work. Two job scripts were 
produced for the tire rolling; one utilizes the Prony series function 
and the other uses the PRF function.  In those scripts, a general 
contact algorithm was used to represent the non-linear and 
complicated contact interaction between the tire and the road drum 
with a coulomb (constant) friction coefficient of 0.75 (i.e. due to free-
rolling) to replicate that of the experiment [56-59].  

Using the Prony series, several simulation steps and analysis tools 
were used to roll the tire. With Abaqus/Standard, two general static 
steps were made; the first was to inflate the tire and the second was to 
initiate tire/drum contact and then load the tire against the drum 
vertically. Third, a transport step was developed to roll the tire at 
steady-state by rolling the drum at the given angular velocity. 
Afterwards, the FE modelling outputs of the tire rolling in 
Abaqus/Standard were imported to Abaqus/Explicit to keep rolling 
the tire at the same rolling conditions but in a dynamic manner 
similar to the physical test using a dynamic rolling step to account for 
the dynamical and viscoelastic effects more effectively.  

Using the PRF option, the modelling of tire rolling was done entirely 
through Abaqus/Explicit alone because the PRF function is not yet 
supported in the steady-state transport and the import procedures in 
Abaqus/Standard. Three dynamic steps were applied to perform the 
tire rolling. To minimize the unrequired viscoelastic impact, in the 1st 
and 2nd steps consecutively, the tire was inflated and after that 
loaded straight down against the road drum in a quasi-static manner. 
The 3rd step was used to free-roll the tire in a straight path by turning 
the road drum at the targeted constant angular velocity. In the 3rd 
step, a unitless damping constant of 0.03 as a portion of the tire 
critical damping, computed internally by Abaqus/Explicit at the 
contact interface, was applied in the tire/drum contact definition to 
reduce the noises in the FE output results [60].  

Rolling-Resistance Estimation 

For this study, the rolling-resistance is estimated in terms of the 
“energy loss per unit distance travelled” because it provides a broader 
description and validity. For straight free-rolling cases, this study 
suggests an efficient computational approach for estimating the core 
rolling-resistance due to the tire’s internal losses, from the FE 
simulation outcomes, in terms of the hysteresis damping coefficient 
and the work transfer undergone by the tire when it deforms at its 
footprint as a result of being vertically loaded during rolling. The 
developed 3D FE model, in Figure 7, captures the complete tire’s 
construction in great detail similar to that of the actual tire tested 
experimentally. As shown in Figure 8, after the tire starts to free-roll 
at steady-state, the hysteresis damping constant is specified from the 
slope of the relationship between the tire’s dissipated energy 

(ALLCD) and its total strain energy (ALLIE) obtained from FE time 
history outputs. The ALLCD/ALLIE ratio covers the energy 
dissipation that occurs in the entire tire structure, including the 
footprint region, due to hysteresis damping as a result of tire 
deformation during rolling. This involves any deformational changes 
that occur to the tire’s geometry or dimensional profile, such as outer-
diameter, during rolling. However, the ALLCD/ALLIE ratio excludes 
the road drum. 

 
Figure 8. Rolling-Resistance Estimation Method. 

Under vertical loading, the energy used to deflect the tire vertically 
(i.e. deflection energy (ED)) at the footprint is found from 
multiplying the mean of the normal contact force (FC) generated at 
the tire’s footprint by the induced vertical deflection of the tire (DV) 
which are interrelated to the tire’s outer-diameter [3, 61]. To 
determine how much energy is lost from the tire deflection energy as 
unrecoverable at the footprint, the tire deflection energy (ED) is 
multiplied by the hysteresis constant (HR) to specify the tire’s energy 
lost at the contact region (EL). This is since the tire deformation at 
the contact-patch is the only significant deformation that takes place 
in the tire structure in which it can contribute up to 90-95% of the 
tire’s total rolling-resistance under straight free-rolling on flat 
surfaces [62]. Accordingly, by taking the quotient of the energy lost 
from the tire at the footprint (EL) over the footprint length (FL), the 
tire’s rolling-resistance force (FRR) can be calculated. Using Eq. (6), 
for flat road contact at equivalent rolling settings, it is possible to 
calculate the tire’s rolling-resistance (RR), in the form of energy lost 
per unit distance travelled, from the rolling-resistance force (FRR) 
acquired earlier for any moved distance [40]: 

RR ൌ FRR	 ൈ DT             (6) 

Where, 
RR = Energy Lost per Unit Distance. 
FRR = Rolling-Resistance Force. 
DT = Distance Travelled. 
 
Alternatively, for tire/drum contact, Eq. (5) can be used to calculate 
the rolling-resistance as the energy consumed per unit distance 
travelled. 
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Results and Discussion 

Rolling-Resistance 

To ensure the FE model is working properly and producing the right 
results, for Prony series and PRF cases, the total energy balance of 
the tire FE model was assessed and observed to yield nearly constant 
output confirming that the model is following the “conservation of 
energy” law. Furthermore, the artificial strain energy of the tire FE 
model was compared to that of the model’s internal energy and noted 
to equate to approximately 6% of the model’s total strain energy. 
This has illustrated that the model has marginal hour-glass modes and 
is able to physically simulate the tire rolling correctly.        

For Prony series and PRF cases, Figures 9 and 10 show the tire 
rolling-resistance outcomes under different rolling settings for both 
FE and experiment. The PRF option showed a close match and 
prediction of the tire’s rolling-resistance with that of the physical 
experiment whereas Prony series provided irrationally infinitesimal 
output of the rolling-resistance. In this respect, tire rolling is found to 
be a highly non-linear process in FE modelling from the perspective 
of the tire’s structure, contact settings, and material response, 
agreeing with Li et al. [63]. Obviously, the significant dissimilarity in 
the rolling-resistance results between the FE models is due to the 
material model chosen and its representation of the viscoelasticity 
since both tire FE models have the same characteristics with respect 
to the tire geometry and contact set-up with the exception of the 
employed material function (i.e. Prony series and PRF). 

 
Figure 9. Relationship of Rolling-Resistance against Vertical Load. 

 
Figure 10. Relationship of Rolling-Resistance against Inflation Pressure. 

For the Prony series case, the FE outputs showed unrealistic values of 
the tire’s energy losses regardless of the various rolling settings 
involved as indicated in the example in Figure 11 on the contribution 
of the different tire parts to the total energy lost during rolling. Such 
outputs illustrate that the Prony series choice is unable to address the 
tire’s non-linearity across changeable levels of loading and resultant 
strain when estimating the tire’s energy loss and hence rolling-
resistance during rolling. 

 
Figure 11. Energy Losses (ALLCD) as per Tire Component for Straight Free-
Rolling Case at 5KN vertical load, 220KPa, and 30Km/h using Prony 
Solution. 

The Prony function represents the tire’s viscoelasticity based on the 
assumption that the elastic modulus is independent of the stress-strain 
outputs as a linear relationship is presumed. This assumption is more 
suited for typical materials where the induced strains in the tire are 
tiny or occur at a really slow rate in a way that would cause only 
marginal changes to the molecules set-up compared to its equilibrium 
setting. Dealy and Wissbrun [64] had the same conclusions. On the 
contrary, in reality, tire rolling promotes medium to high strain levels 
that occur at a fast and continuous rate leading to large complicated 
and non-linear molecular dislocations and shifts in the tire’s structure 
especially the rubber components. Such a contradiction clarifies why 
the Prony function is being almost irresponsive to the different tire 
rolling settings when predicting the tire’s energy losses. 

However, Prony series has the potential to still be able to estimate the 
tire’s viscoelasticity for a given limited scope in the case where a 
sufficient number of Prony constants is employed or if the Prony 
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function could be fitted to the specific rolling setting that is of interest 
with no other settings being involved. Such an option may be 
challenging and expensive to achieve depending on the complexity of 
the given rolling process and the diversity of the contact settings 
involved as agreed by Pelayo et al. [65].  

With the PRF solution, more logical FE outcomes were produced that 
are in agreement with the experimental data under different rolling 
settings in terms of vertical load and inflation pressure. 

Under different vertical loadings, the PRF displayed a nearly linearly 
proportional relationship between the rolling-resistance and the 
vertical load. The increase in the vertical load applied to the tire is 
found to further displace the tire downward causing more 
deformation to the tire’s structure at the contact-patch and therefore 
more hysteresis damping in the process as the tire rolls. Rao et al. 
[66] showed similar findings. 

For various inflation pressures, the PRF showed an inversely 
proportional relation between the rolling-resistance and the inflation. 
Higher pressure would reduce the rolling-resistance as it would make 
the tire stiffer and less deformable, thus reducing the mechanical 
hysteretic damping, in turn agreeing with Hernandez et al. [25]. 

In Figure 12, as an example, the PRF illustrates a reasonable 
contribution of the various tire components to the total energy lost 
from the tire that is in line with other research findings [17, 25, 67]. 
Based on the PRF outputs, the tire’s tread is found to be the dominant 
and main component to generate most of the energy dissipation and 
hence cause the rolling-resistance followed by small contributions 
from both the sidewall and the chafer/apex. 

 
Figure 12. Energy Losses (ALLCD) as per Tire Component for Straight Free-
Rolling Case at 5KN vertically, 220KPa, and 30Km/h using PRF Solution. 

The accurate estimation of the actual tire’s rolling-resistance 
provided by the PRF function is due to the function being able to 
successfully link the relaxation modulus to the stress-strain outputs 
and consider the non-linearity involved on a molecular phase across 
large and varied scope of strains. 

Conclusion 

In this study, a suggested approach to calculate the core rolling-
resistance due to the tire’s internal losses for straight free-rolling 
cases was outlined, tested and found to be correct. Furthermore, the 
PRF function has been proven to be more accurate and reliable than 
the Prony series function in accounting for the non-linear dynamic 

rolling of the tire when representing the tire’s viscoelasticity for the 
FE rolling-resistance modelling. The PRF solution had a good 
agreement with the equivalent experimental data, whereas the Prony 
solution was completely out of the experimental data’s scope.  

The investigation outcomes indicate that the PRF option has the 
capability to assess and compute the rolling-resistance correctly, in 
particular with respect to the role of the tire’s structure and the 
component materials used. The PRF solution devised in this study 
can be used by tire specialists to specifically examine the influential 
role of the tire’s structure and material compounds adopted, as design 
factors, on the rolling-resistance performance of the tire for efficient 
tire prototype designing and development. 

Nevertheless, a potential drawback in utilising the PRF function in 
Abaqus/Explicit is the expensive computational costs sustained 
which are reliant on the complexity and the scope of the FE problem 
at hand. To tackle such a drawback, the approach of the rolling-
resistance estimation suggested in this study can be implemented, the 
required computational resources can be used if available, and/or 
mass scaling can be performed to the FE model. 

The minor deviation in the rolling-resistance outputs between the 
PRF solution and the experimental procedure in Figures 9 and 10 
may be attributed to several reasons. Such reasons could be the 
exclusion of the tread grooving and the reinforcement viscoelastic 
property from the tire FE modelling, the numerical noises produced 
from the usage of the FE explicit method, and the marginal non-
uniformities in the actual tire construction due to the manufacturing 
deficiencies.  

As future work, in the context of tire structural effects, the authors 
aim to use the current developed FE model to investigate further 
driving performances beside rolling-resistance such as cornering, 
cushioning and grip. Also, the authors look to expand the current 
model further to simulate and take into account other operating 
conditions like temperature, road roughness and aerodynamic drag.   
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