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Abstract  

Multiple elements of the cAMP/protein kinase A (PKA) pathway have been shown to be mutated or 

deregulated in various endocrine disorders, indicating a major role of this pathway in the regulation of 

hormone secretion, but also in tumorigenesis of endocrine cells. In particular, several alterations are 

known to be involved in the pathogenesis of adrenocortical adenomas associated with autonomous 

cortisol secretion.  

In this review, recent findings on cAMP/PKA alterations causative for the pathogenesis of benign 

unilateral cortisol-producing adrenocortical adenomas are summarised. Special emphasis is given to 

latest reports on newly identified mutations in genes encoding PKA catalytic subunits and their 

functional characterization. 
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Adrenal Cushing syndrome 

Endogenous cortisol excess, referred to as Cushing’s syndrome (CS), is characterized by a number of 

clinical signs (e.g. muscle weakness, facial plethora, striae rubre, skin fragility, osteoporosis) and 

associated with substantial comorbidities (e.g. blood hypertension, hyper-coagulable state, diabetes 

mellitus, dyslipidemia, osteoporotic fractures, and psychiatric disorders) as well as increased mortality 

[1]. In particular, corticotropin (ACTH)-independent cortisol hypersecretion is mostly caused by benign 

tumours of the adrenal cortex, i.e. cortisol-producing adrenocortical adenomas (CPA) that are usually 

isolated and sporadic, or more rarely bilateral hyperplasia. Whereas only a subset of CPA is associated 

with overt Cushing’s syndrome, some degree of cortisol excess (mild autonomous cortisol 

secretion=MACS) is present in up to 47% of patients with adrenal adenomas, depending on the 

diagnostic criteria applied. This condition might be associated with a range of phenotypes, such as 

metabolic syndrome and osteoporosis [2]. The molecular pathogenesis of CPA remained largely 

unknown until lately. In this review, I will provide an overview about the mechanisms involved in the 

pathogenesis of unilateral sporadic CPA, specifically focusing on recent findings about cAMP/protein 

kinase A (PKA) signaling pathway. 

 

cAMP/PKA signaling pathway and adrenal cortex  

The adrenal cortex plays an essential role in body homeostasis through the biosynthesis of steroid 

hormones. This physiological role relies on functional zonation, whereby  zona glomerulosa synthesizes 

the mineralocorticoid aldosterone, zona fasciculata synthesizes the glucocorticoid cortisol (or 

corticosterone in rodents), and the zona reticularis produces androgens. The physiological stimulus for 

glucocorticoid and adrenal androgens synthesis and secretion, as well as adrenal cortex maintenance, is 

the pituitary hormone ACTH [3]. The actions of ACTH in the adrenal cortex is mediated by activation 

of the cAMP/PKA signalling pathway, via two temporally distinct responses (Figure 1A). The acute 

response leads to mobilization of cholesterol, the initial substrate for all steroidogenic pathways, from 

cellular stores and its delivery to the inner mitochondrial membrane where the cholesterol side chain 

cleavage cytochrome P450 (P45011A1) resides. The slower, chronic response to ACTH induces the 
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transcription of the genes encoding the steroidogenic enzymes [4]. ACTH acts via the G-protein coupled 

receptor (GPCR) melanocortin 2 receptor (MC2R), activating adenylyl cyclase and leading to cAMP 

production, which induces PKA activation [5]. Under basal conditions, PKA is a stable and inactive 

hetero-tetramer, consisting of two catalytic (C) and two regulatory (R) subunits. The human genome 

encodes three different C subunits (α, β and γ) and four different R subunits (Iα, Iβ, IIα, IIβ). PKA 

signalling is activated when two molecules of cAMP bind to each R subunit of the PKA heterotetramer, 

leading to its dissociation and release of the C subunits, which thereby become active. When activated, 

PKA phosphorylates specific nuclear factors, which bind to target promoters and facilitate steroidogenic 

gene transcription [5]. Among these transcription factors, steroidogenic factor 1 (SF-1), cAMP response 

element-binding protein (CREB), CRE modulator, CCAAT/enhancer-binding proteins, and activator 

protein 1 are well known for their implication in regulating the expression of the genes encoding for 

steroidogenic enzymes [6]. An increasing body of evidence points toward a regulatory role of the 

cAMP/PKA signaling pathway by targeting the C subunits to various C subunit binding proteins in the 

cytosol and nucleus. Moreover, recent identification of isoform specific amino acid sequences, motifs 

and three dimensional structures have together provided new insight into how PKA at the level of the 

C subunit may act in a highly isoform-specific fashion [7].  

In general, perturbations of cAMP/PKA-dependent cascade (i.e. somatic mutations) may cause 

dysregulation of steroidogenesis, resulting in autonomous cortisol excess (Figure 1B), as well as 

alterations in adrenocortical cell proliferation. 

 

cAMP/PKA signaling pathway and adrenocortical adenomas: old beliefs 

For the association between activation of cAMP/PKA signaling and tumour formation in different 

endocrine tissues as well as hereditary syndromes, I rely on previous extensive reviews [8, 9]. I will 

focus on the link between abnormal cAMP/PKA activity and unilateral CPA. In brief, somatic mutations 

in the gene encoding the α subunit of the stimulatory G protein (GNAS1) have been first described in 

adrenal hyperplasia leading to CS in patients with McCune–Albright syndrome [10] or macro-nodular 

bilateral hyperplasia [11]. Moreover, germline and somatic mutations in the gene encoding the 

regulatory subunit of the PKA (PRKAR1A) have been identified in patients with CS due to primary 
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pigmented nodular adrenocortical disease (Carney Complex) [12]. These mutations cause a reduced 

expression of the RIα subunits or impair its association with C subunits, thus leading to constitutive 

PKA activation [13]. Finally, inactivating mutations in the genes encoding the cAMP-degrading 

phosphodiesterase 11A (PDE11A) and phosphodiesterase 8B (PDE8B) have been also reported in 

patients with adrenal hyperplasia and Carney Complex [14, 15]. It was also well known since early 

2000 that also a good proportion of sporadic CPA are linked to one or another abnormality of the 

cAMP/PKA signaling pathway [16]. For instance, it was acknowledged already in previous studies that 

CPAs may harbor activating somatic mutations in either GNAS1 or PRKAR1A gene [17]. More recently, 

according to whole-exome sequencing series, GNAS1 mutations resulted to be found in up to 11% of 

unilateral CPA [18, 19]. Finally, very few cases of CPA have been associated with PDE11A and PDE8B 

genes defects [20, 21]. 

Genetic alterations in these driver genes, however, explained only a small fraction of CPA cases. The 

observation that a subset of adrenal adenomas is characterized by abnormal PKA activity, despite the 

absence of mutations in these candidate genes [22], suggested the presence of further unknown 

alterations in the cAMP/PKA signaling cascade in these tumors. 

 
cAMP/PKA signaling pathway and adrenocortical adenomas: new insights from 2014 

2014 marked a golden year in the elucidation of the pathogenesis of unilateral sporadic CPA. Somatic 

mutations in PRKACA, which encodes the catalytic subunit of PKA, have been described for the first 

time by whole-exome sequencing in about 30% of CPA [23]. The more frequent of the two mutations 

resulted in the substitution of a leucine residue at position 206 with arginine (p.Leu206Arg), while the 

second mutation caused insertion of a tryptophan residue between the amino acid 199 and 200 

(Leu199_Cys200insTrp). These findings were simultaneously confirmed by three independent studies 

by other groups [18, 24, 25]. Functional experiments and an in silico analysis also revealed that 

PRKACA mutations caused constitutive PKA activation (i.e. PKA activation in the absence of cAMP) 

impairing the association between catalytic and regulatory subunits and thus providing a molecular 

explanation for the development of CPA [23, 26] (Figure 1B). Always in 2014, two novel mutations 

have been reported within a targeted analysis of the PRKACA gene in a large cohort of 149 CPA cases 
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(p.Cys200_Gly201insVal in three adenomas and p.Ser213Arg+p.Leu212_Lys214insIle-Ile-Leu-Arg in 

one) [27]. Notably, based on the patient cohorts published to date, PRKACA mutations are observed in 

35-60% of CPA being clearly associated with higher circulating cortisol levels, younger age and a 

clinical phenotype of overt CS [28]. More recently, three further somatic mutations in PRKACA have 

been reported within a multicentric study investigating a large cohort of unilateral ACA (n=99), i.e. 

p.Trp197Arg, p.Glu32Val and p.245_248 [19]. Even if those mutations occur outside the known hot-

spot region of PRKACA in exon 7, two of them are they located at the interface between the C and R 

subunits of PKA and all were associated with presence of overt CS. According to these findings, 

nowadays there are seven different mutations recognized in PRKACA gene, being responsible for 

unilateral CPA (Figure 2A and 2B). Considering all currently available whole-exome sequencing 

studies on CPA associated with overt CS or MACS, we can conclude that 57% and 12% of cases are 

related to mutations in PRKACA or GNAS1 gene, respectively (Figure 3).  On the other side, missense 

mutations in the gene encoding for beta catenin (CTNNB1) are reported in slightly more than half of 

CPA associated with MACS or inactive adrenocortical adenomas, but in only 9% of CPA associated 

with overt CS [18, 19, 24, 25]. 

Interestingly, in a recent paper, our group also demonstrated a direct link between the presence of hot 

spot PRKACA mutations and reduced protein expression levels of two regulatory subunits of PKA in a 

sub-group of CPA cases. That specific expression also overlapped the different functional zones of the 

adrenal cortex, thus potentially indicating distinct roles of the different PKA regulatory subunits in the 

secretion of different hormones [29].  

Considering other adrenocortical diseases associated with autonomous cortisol secretion, germline 

PRKACA amplifications were seen in different types of bilateral adrenal hyperplasia, i.e. both micro- 

and macro-nodular with various degree of CS severity [23, 30]. On the other side, taking into 

consideration adrenocortical neoplasia non typically associated with CS, somatic PRKACA mutations 

have been described only recently in one patient with unilateral adrenal hyperplasia [31] and, even more 

interestingly, as rare events in aldosterone-producing adrenocortical adenomas (APA) associated with 

Conn Syndrome [32]. Specifically, two PRKACA somatic mutations have been reported in 1.9% of 

APAs, i.e. p.Leu206Arg in a patient with associated biochemical CS and p.His88Asp in a patient 



Ronchi CL, 7 
 

without cortisol excess. Thus, as cortisol co-secretion is known to occur in a subgroup of APAs [33], 

other molecular mechanisms are likely to be involved in their pathogenesis. 

 

PRKACA alterations and other types of tumours 

Since cAMP/PKA pathway is essential for the regulation of secretion of several other hormones despite 

cortisol, research groups investigated the presence of somatic PRKACA mutations in non-adrenal 

endocrine tumours. However, no PRKACA mutations had been found when specifically searched in 

either thyroid or pituitary functioning adenomas [34, 35]. Accordingly, we could hypothesise that the 

catalytic subunit Cα of PKA specifically plays a major role in the regulation of steroid production, but 

not of other hormones.  

On the other side, PRKACA gene has been recently found to be altered in other types of tumours, thus 

opening new insight into its potential implication in tumorigenesis. In fact, somatic PRKACA variants 

(i.e. in-frame micro-insertions in exon 7 and 8) have been observed in a subgroup of 4 out of 41 sporadic 

cardiac myxomas [36] and have been functionally associated with increased PKA activity. Together 

with previous reports of PRKAR1A mutations in cardiac myxoma associated with Carney Complex, this 

study corroborates the importance of the PKA pathway in the tumorigenesis of cardiac myxoma.  

Moreover, unexpectedly, three recent independent studies reported the presence of recurrent DNAJB1–

PRKACA chimeric gene transcripts in fibrolamellar hepatocellular carcinoma [37-39]. This fusion gene 

produces an enzymatically active chimeric protein J-PKAcα and represents a driver genetic alteration 

for this disease. Thus, it could be possible that even other pathologies will be found to be due to 

PRKACA (or other PKA subunit) defects and that new class of medications that target cAMP signaling 

might be useful in fighting the corresponding tumors [40]. 

 
 
PRKACA mutations and adrenocortical adenomas: update from last two years 

Although previous studies demonstrated a strong evidence for a causal role of first two described 

mutations in PRKACA [26], the mechanisms linking them to cortisol secretion and increased cell 

proliferation still remained under debate. A very recent study from our group reported a comprehensive 

functional characterization of all PRKACA mutations identified so far. The results indicated that in 
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addition to interfering with the binding of R subunits, PRKACA mutations cause major changes in the 

preference of PKA for its targets, leading to hyper-phosphorylation of several PKA substrates, most 

notably histone H1.4 at Ser36, which is required for and promotes mitosis [41]. The Figure 2C 

summarizes all experimental findings and biological effects associated with different PRKACA 

mutations reported until now. Of note, all variants described until now have been associated with the 

presence of overt CS expect one (d244-248), which has been reported in a CPA with mild cortisol 

excess [41].  

In the last two years, there was also increasing interest in searching for suitable therapeutic inhibitors 

targeting cAMP/PKA pathway that might be suggested for pharmacological treatment of patients with 

persisting CS. In particular, kinetics and inhibition studies were conducted on the L206R-PKACalpha 

mutant, providing useful insights for the development of mutant selective inhibitors as potential 

therapeutics for cortisol excess [42]. 

In another very recent study, a somatic missense mutation in the gene encoding the catalytic subunit B 

of the PKA (PRKACB) was identified for the first time in one case of sporadic CPA (p.Ser54Leu). This 

mutation was specifically shown to impair the formation of PKA I holoenzymes [43]. This finding 

further highlights a potential role of the PRKACB gene in the pathogenesis of autonomous cortisol 

secretion. In fact, a genomic amplification of the PRKACB locus was previously found to lead to Carney 

Complex in absence of PRKAR1A mutations [44]. 

 
 
Conclusion 
 
 
In conclusion, cAMP/PKA signaling pathway has long been identified to play a key role in cortisol 

secretion from adrenocortical cells and mutations affecting different elements of this pathway have been 

described in several adrenal diseases associated with autonomous cortisol secretion. However, 

PRKACA mutations have been only recently recognized as the cause of approximately 50% of unilateral 

sporadic CPA. While their role in the constitutive stimulation of steroidogenesis is largely accepted and 

new pathogenic mechanisms have been recently added to our knowledge [26, 41], only little is still 

known about their proliferative effects specifically contributing to adrenal tumorigenesis. Moreover, 
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despite the novel insights acquired predominantly high-throughput sequencing approaches, additional 

studies are now required to better elucidate the pathogenesis of the remaining proportion of CPA. 

Further research in this field might also pave the way towards new perspective for therapeutic advances.  
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as a Potential Cause of Cushing Syndrome. Endocrinology 2019; 160:447-459. 
 
The Authors investigated all somatic PRKACA mutations identified so far in Cushing’s syndrome and 
found that not all mutations interfere with the binding of regulatory (R) subunits as previously 
hypothesized. Specifically, they investigated their consequences on substrate specificity by quantitative 
phosphoproteomics and observed that all three mutations analyzed (L206R, 200_201insV and d244-
248+E249Q) cause major changes in the preference of PKA for its targets, leading to 
hyperphosphorylation of several PKA substrates, including most notably histone H1.4 at Ser36, which 
is required for and promotes mitosis.  
These findings suggest that besides hampering binding to R subunits, PRKACA mutations act via 
altering PKA substrate specificity, shedding a light on the molecular events leading to Cushing’s 
syndrome and provide an illustrative example of how mutations altering substrate specificity of a 
protein kinase might cause human disease. 
 
2) Luzi NM, Lyons CE, Peterson DL, Ellis KC. Kinetics and inhibition studies of the L205R mutant 
of cAMP-dependent protein kinase involved in Cushing's syndrome. FEBS Open Bio 2018; 8:606-
613 
 
In this study, the Authors conducted kinetics and inhibition studies on the hot spot PRKACA mutation 
(L205R-PKACα mutant). They found that the L205R mutation affects the kinetics of both Kemptide 
and ATP as substrates, decreasing the catalytic efficiency for each substrate by 12-fold and 4.5-fold, 
respectively. They also determined the IC50 and Ki for the peptide substrate-competitive inhibitor PKI(5-
24) and the ATP-competitive inhibitor H89. The L205R mutation had no effect on the potency of H89, 
but causes an impressive loss in potency for PKI(5-24).  
These results provide important insights for the potential development of L205R-PKACα inhibitors as 
potential therapeutics in Cushing syndrome. 
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3) Tseng IC, Huang WJ, Jhuang YL et al. Microinsertions in PRKACA cause activation of the 
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Cardiac myxoma is the most common cardiac tumour, occasionally developing in patients with Carney 
Complex, a syndrome characterized by cardiac myxoma, spotty pigmentation, and endocrine over-
activity. Two-thirds of patients with Carney Complex, but not those with sporadic cardiac myxomas, 
harbour germline mutations in PRKAR1A. Here, the Authors identified PRKACA mutations in 4 out of 
41 sporadic cardiac myxomas (9.7%). In contrast to the point mutations identified in adrenocortical 
adenoma, all mutations were in-frame microinsertions of 18-33 bp clustered in exons 7 and 8. The 
mutated PRKACA proteins lost their ability to bind to PRKAR1A, and thereby lead to constitutive 
activation of the PKA pathway. Together with previous reports of PRKAR1A mutations in syndromic 
cardiac myxoma, these observations demonstrate the importance of the PKA pathway in the 
tumourigenesis of cardiac myxoma. 
 
4) Weigand I, Ronchi CL, Rizk-Rabin M et al. Differential expression of the protein kinase A 
subunits in normal adrenal glands and adrenocortical adenomas. Sci Rep 2017; 7:49 
 
In this study, the Authors linked the presence of somatic mutations in PRKACA gene to the loss of 
regulatory subunit IIβ protein expression at the tumour level and demonstrated the down-regulation of 
RIIβ to arise post-transcriptionally. They also found that the PKA subunit expression pattern observed 
in different adrenocortical tumours is also present in the different zones of the normal adrenal cortex. 
Their findings showed that different PKA subunits have a differential expression pattern in each zone 
of the normal adrenal gland, thus indicating potential specific roles of these subunits in the regulation 
of different steroid secretion. 
 
5) Espiard S, Knape MJ, Bathon K et al. Activating PRKACB somatic mutation in cortisol-
producing adenomas. JCI Insight 2018; 3. 
 

This study identified for the first time a somatic mutation in the PRKACB gene, encoding the catalytic 
subunit β of PKA, in a single CPA from a patient with severe Cushing syndrome. Bioluminescence 
resonance energy transfer and surface plasmon resonance assays revealed that the mutation hampers 
formation of type I holoenzymes and that these holoenzymes were highly sensitive to cAMP. PKA 
activity was higher under basal conditions for the mutant enzyme compared with the wild type, while 
maximal activity was lower. These data suggest that at baseline the PRKACB mutant drove the adenoma 
cells to higher cAMP signaling activity, probably contributing to their autonomous growth.  

These findings demonstrate that a PRKACB mutation can lead to an adrenal tumor and suggest another 
mechanism of PKA pathway activation in CPAs. 
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Legend to the Figures 

Figure 1. Overview of cAMP/PKA signalling pathway in adrenocortical cells.  

(A) Normal adrenocortical cells. Through binding of ACTH to the melanocortin type 2 receptor 

(MC2R), the α subunit of the G-protein leaves the βγ-complex and activates adenylyl cyclase (AC) 

which converts ATP into cAMP. cAMP binds the regulatory subunits of PKA which results in the 

dissociation of the PKA holoenzyme and the activation of the catalytic subunits of PKA. The signal is 

terminated by phosphodiesterases (PDEs), which degrade cAMP to AMP. Activated catalytic (C) 

subunits then phosphorylate several targets in the nucleus (including several genes involved in the 

steroid hormone synthesis) or in the cytoplasm (e.g. CYP11A1), initiating cortisol secretion of these 

cells.  

(B) Adrenocortical cells from cortisol-producing adenomas with somatic mutations identified in the 

cAMP/PKA pathway. Activating mutations in GNAS (encoding the α subunit of the G-protein) lead to 

increased AC activation and hence increased cAMP levels. Inactivating mutations in PDE were shown 

to decrease the hydrolysis of cAMP into AMP and therefore preventing the termination of the PKA 

signal. Mutations in PRKACA were shown to inhibit the formation of PKA holoenzymes and the 

mutation in PRKACB was demonstrated to impair the formation of PKA I holoenzymes leading to over 

activated PKA signaling. Inactivating mutations in PRKAR1A lead to reduced RIα protein levels. All 

these mutations result into a constitutive activation of the cAMP/PKA pathway and an increase 

“autonomous” cortisol secretion. 

Modified from [45] and [46] 

 

Figure 2.  

A) Location of somatic PRKACA mutations identified in cortisol-producing adenomas at the level 

of plain protein scheme. (1) [23] (2) [27]; (3) [19]. 

B) Location of the identified PRKACA mutations in the crystal structure of the PKA holoenzyme. 

Note the clustering of the PRKACA mutations (in red) at the interface between the regulatory (R) 
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subunit (in grey) and the catalytic subunit (in yellow). The structure of the R subunit II type b2: Ca2 

holoenzyme [protein data bank (PDB) entry 3TNP] was used as a template. (1) [23]; (2) [27]; (3) [19]. 

Modified from [41].  

C) Summary of currently available data about biological effects of various PKA catalytic (C) 

subunit alfa (α) mutants. Shown is a schematic representation of the experimental results obtained in 

different studies on PKA Cα mutants compared to wild-type Cα and the corresponding clinical 

phenotype. Modified from [29, 41]. 

 

Figure 3. Overview of general mutation status (i.e. somatic mutations in known driver genes: 

PRKACA, GNAS and CTNNB1) reported in unilateral sporadic adrenocortical adenomas in the 

literature.  

Cortisol-producing adenomas (CPA) associated with overt Cushing syndrome (CS, n=100) or with mild 

autonomous cortisol secretion (MACS, n=43) in comparison with endocrine inactive adenomas (n=25).  

Data taken from literature [18, 19, 23-25].    


