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9 Abstract

10 Sector collapses affect volcanic edifices across all tectonic settings and involve a rapid 

11 redistribution of mass, comparable in scale to the largest magmatic eruptions. The eruptive 

12 behaviour of a volcano following sector collapse provides a test of theoretical relationships 

13 between surface loading and magma storage, which imply that collapse-driven unloading 

14 may lead to changes in eruption rate and erupted magma compositions. Large sector collapses 

15 are infrequent events globally, with all historical examples being relatively small in 

16 comparison to many of the events documented in the geological record. As a result, 

17 exploration of the impacts of sector collapse on eruptive behaviour requires detailed 

18 investigation of prehistoric collapses, but this is often hindered by poorly-resolved 

19 stratigraphic relationships and dating uncertainties. Nevertheless, observations from a number 

20 of volcanoes indicate sharp changes in activity following sector collapse. Here, a global 

21 synthesis of studies from individual volcanoes, in both arc and intraplate settings, is used to 

22 demonstrate a number of common processes in post-collapse volcanism. Multiple examples 

23 from large (>5 km3) sector collapses in arc settings show that collapse may be followed by 

24 compositionally anomalous, large-volume and often effusive eruptions, interpreted to 

25 originate via disruption of a previously stable, upper-crustal reservoir. These anomalous 

26 eruptions highlight that magma compositions erupted during periods of typical (i.e. 

27 unperturbed by sector collapse) volcanism may not be representative of the range of 

28 compositions stored within a vertically extensive crustal reservoir. If eruptible magma is not 

29 present, upper-crustal reservoirs may rapidly solidify following collapse, without further 

30 eruption, allowing more mafic compositions to ascend to the surface with only limited upper-

31 crustal modification, resulting in edifice regrowth at temporarily elevated eruption rates. 

32 Subsequent re-establishment of an upper-crustal reservoir further supports a relationship 

33 between surface loading and crustal storage, but long-term chemical and mineralogical 

34 differences between pre- and post-collapse evolved magmas imply that a newly-developed 
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35 reservoir can overprint the influence of a preceding reservoir, forming a spatially and 

36 compositionally distinct plumbing system. These broad patterns are replicated in intraplate 

37 settings, despite differences in scale and melting processes; current evidence suggests that 

38 post-collapse evolution of intraplate volcanoes can be explained by unloading-induced 

39 destabilisation of the magma plumbing system, rather than increased melt production. What 

40 emerges from an apparently diverse set of observations is a systematic behaviour that 

41 strongly supports a coupling between edifice growth and magma ascent, storage and 

42 pressurisation. Eruption rates, erupted compositions, and the style of volcanism at any 

43 particular system may thus be modulated from the surface, and long-term shifts in surface 

44 behaviour may thus occur without any changes in the deep parts of magmatic systems. 

45 Observations of sharp post-collapse changes in erupted compositions, including the ascent of 

46 primitive mafic magmas, also require a crystal-dominated mid- to upper-crustal reservoir, 

47 consistent with recent models of crustal magmatic systems.

48

49 Keywords: sector collapse; magma storage; eruptive behaviour; edifice growth and 

50 destruction; debris avalanche

51

52 Highlights

53 • Global synthesis of volcano-magmatic evolution following sector collapse

54 • Decompression-driven reservoir disruption leads to anomalous post-collapse 

55 eruptions

56 • Rapid regrowth via mafic volcanism; subsequent re-establishment of shallow storage

57 • Implies direct modulation of shallow plumbing system development by surface load

58 • Common patterns in intraplate and arc settings

59

60 1. Introduction

61 Volcanic edifices across all tectonic settings are prone to structural instability and the 

62 generation of large landslides (Ui, 1983; Siebert, 1984), resulting in a redistribution of 

63 volcanic rock across the surrounding land surface. Landslides formed by edifice collapse 

64 span a wide range of dimensions, and their scars have been identified on volcanoes ranging 

65 from submerged seamounts to large ocean islands, and across subaerial composite volcanoes 

66 in both arc and intraplate settings (Siebert et al., 1987, 2006; Moore et al., 1989; Deplus et al., 

67 2001; Coombs et al., 2007; Staudigel and Clague, 2010). The triggers for such landslides are 
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68 varied. Although some, such as the sector collapse of Mount St Helen’s in 1980, are directly 

69 associated with large magmatic eruptions (Glicken, 1996), structural failure is not always 

70 linked with magma ascent (Siebert et al., 1987; McGuire, 1996).

71

72 Historical observations and deposit characteristics suggest that structural failure of volcanic 

73 edifices generally occurs in a sudden, catastrophic event (although this may follow a long 

74 period of more gradual flank spreading (e.g., Moore et al., 1989; Neri et al., 2004; Wooller et 

75 al., 2004; Karstens et al., 2019); and failure itself may occur over several, shortly-spaced 

76 stages (Glicken, 1996; Hunt et al., 2013)). The base of the failure plane in large edifice 

77 collapses may lie deep within the volcano structure (Crandell, 1989; Glicken, 1996; Watt et 

78 al., 2014) and even intersect basement rock (e.g., Wadge et al., 1995; Shea et al., 2008), and 

79 in many cases cuts the central conduit. The mobilised mass may be remarkably large, in some 

80 cases accounting for >10% of the edifice volume. Sector collapses thus profoundly alter both 

81 the morphology of a volcano and the distribution of mass above an active magma plumbing 

82 system, potentially reducing the thickness of overlying rock by a kilometre or more.

83

84 Theoretical analyses suggest that mass redistribution following edifice collapse can influence 

85 pressurisation and failure conditions in stored magma bodies (Pinel and Jaupart, 2005; Pinel 

86 and Albino, 2013). It is therefore plausible that major collapses may be followed by changes 

87 in eruption rate or style, or in the composition of erupted magma. Anecdotal evidence from 

88 several individual volcanoes supports this idea (e.g., Tibaldi, 2004; Hora et al., 2009; 

89 Manconi et al., 2009), but it is not clear that there is a common pattern to post-collapse 

90 activity. In addition, some volcanoes show no apparent change in behaviour following large-

91 scale edifice failure (e.g., Ponomareva et al., 2006; Zernack et al., 2012). Given the diversity 

92 of volcanic systems affected by edifice collapse, this is perhaps unsurprising, but the limited 

93 current understanding of the impacts of sector collapse on volcano-magmatic processes 

94 provides the motivation for this work. This paper draws on existing data on volcanoes 

95 affected by large-scale sector collapse to assess evidence for changes in subsequent volcanic 

96 activity, how this varies between volcano-tectonic settings, and whether any common 

97 processes or patterns of behaviour can be deduced.

98

99 2. Volcano sector collapse

100 The focus of this paper is on the impact that major volcanic structural failure has on the 

101 associated magmatic system, rather than on the mechanisms of the failure itself or of the 
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102 mass-movement that it generates. Some brief terminological definitions are nevertheless 

103 necessary, given the range of terms used in published literature to describe volcanic collapses 

104 and their resultant deposits.

105

106 2.1. Terminology

107 All of the events documented in this paper involve the rapid gravity-driven transport of 

108 material away from a volcanic edifice, in a process that is effectively instantaneous relative to 

109 the timescale of volcano growth. The term sector collapse is used to describe the structural 

110 failure itself. Early uses of this term were used principally to describe major structural 

111 failures of composite arc volcanoes, where failed sectors of the cone generally encompassed 

112 the central conduit and summit of the volcano (e.g., Ui, 1983; Siebert, 1984; Siebert et al., 

113 1987), providing a useful distinction from smaller mass movements that affect a single flank 

114 but don’t extend to the central vent, which may be termed flank collapses. The term lateral 

115 collapse is also widely used, and emphasises the transport of mass away from the volcano, in 

116 contrast with the subsidence that accompanies caldera formation.

117

118 In general, sector collapses on polygenetic volcanoes result from large (as a proportion of the 

119 entire edifice) and deep-seated instabilities (Fig. 1), whereas some flank collapses are 

120 relatively superficial landslides, and not of interest here due to their small dimensions. The 

121 term sector collapse is thus used to emphasise that the studied events are large in the context 

122 of the parent edifice, and a minimum primary volume criterion of 1 km3 is applied here. This 

123 value is somewhat arbitrary (and volumes of prehistoric events are often poorly constrained), 

124 but this limits the events under consideration to those that are at least equivalent in volume to 

125 a large magnitude (i.e. Magnitude >5; cf. Pyle, 2000) magmatic eruption.

126

127 Landslides on intraplate ocean islands form some of the largest mass-movements on Earth 

128 (Moore et al., 1989; Masson et al., 2002), potentially exceeding hundreds of cubic kilometres 

129 and dwarfing those on arc volcanoes (Fig. 1). The tectonic setting and magma generation 

130 process at these long-lived volcanic systems leads to islands that are morphologically very 

131 different to arc stratovolcanoes. Ocean islands typically have a lower overall gradient than arc 

132 volcanoes, and may be dominated by rift zones (Carracedo, 1994; Walter et al., 2005), 

133 potentially without a well-developed central magma system. Rift zone instabilities may be 

134 deeply rooted and lead to large flank landslides (not strictly meeting the sector collapse 

135 definition above), which nevertheless involve a smaller proportion of the total volcanic (i.e. 
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136 island) volume than many sector collapses in arc settings (Watt et al., 2014), despite their 

137 extreme size (Fig. 2). Such mass movements clearly have the potential to form a significant 

138 local stress perturbation, and are therefore considered here alongside their counterparts on 

139 composite arc volcanoes.

140

141 The term debris avalanche is widely used to describe volcanic landslides (and their resultant 

142 deposits) that involve non-juvenile material. However, the style of landslide movement can 

143 vary widely during transport (Scott et al., 2001) (and may involve failure over several 

144 discrete stages, particularly in ocean-island settings; cf. Hunt et al., 2013) and is also 

145 dependent on the nature of the failed mass, resulting in a wide range of deposit morphologies 

146 (Shea et al., 2008; Dufresne and Davies, 2009). The products of small volcanic landslides can 

147 also form block-rich debris avalanches (e.g. Voight and Sousa, 1994; Voight et al., 2002; 

148 Belousov et al., 2010), and at some volcanoes these may occur repeatedly on timescales as 

149 short as a few hundred years (e.g. Begét and Kienle, 1992). The term thus has no overall 

150 implications in terms of landslide volume or frequency.

151

152

153 2.2. Causal mechanisms

154 Ultimately, sector collapses are driven by gravitational instabilities arising from the 

155 geologically rapid construction of relatively steep topography, but are also influenced by 

156 internal structural and lithological heterogeneities (including basal discontinuities and 

157 spreading; van Wyk de Vries et al., 2001; Shea et al., 2008), alteration (Reid et al., 2001) and 

158 changes in pore-fluid pressure (Day, 1996), magmatic activity (Siebert et al., 1987), and 

159 external destabilising processes such as the retreat of glacial ice (Watt et al., 2009a; Tormey, 

160 2010) or, possibly, sea level changes (cf. McMurtry et al., 2004; Hunt et al., 2014; Coussens 

161 et al., 2016; Paris et al., 2018). The precise trigger of sector collapses is generally difficult to 

162 identify, and may not be attributable to a single process. However, many sector collapses are 

163 not necessarily driven by magma ascent. Although some events, such as that at Mount St 

164 Helens in 1980, are a direct consequence of shallow intrusive or eruptive processes 

165 destabilising edifice flanks (Siebert et al., 1987), the role of eruptive activity in collapse is 

166 ambiguous in many other cases, even when sector collapses occur during a period of eruption 

167 (such as the 2018 collapse of Anak Krakatau, Indonesia). Other collapses show no evidence 

168 of associated magmatic activity, and examples such as the 1888 collapse of Bandai, Japan, 

169 which hasn’t had a magmatic eruption since 25 ka (Yamamoto et al., 1999), suggest that 
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170 sector collapses can occur entirely as a result of other destabilising processes. This is 

171 significant, because it implies that patterns of eruptive behaviour spanning sector collapses 

172 can provide a test of how magmatic systems respond to external stress changes, and how the 

173 changes in surface loading that accompany edifice growth influence crustal magmatic 

174 processes. For many prehistoric collapses, the role of magmatism in triggering sector collapse 

175 cannot be determined. Although the presence of juvenile material mixed within collapse 

176 deposits strongly suggests an eruption-driven process, the same is not true of juvenile 

177 products that immediately overlie collapse deposits, since they could reflect collapse-

178 triggered eruption rather than the reverse. Such ambiguities in driving mechanisms and the 

179 contemporaneous state of the underlying magma reservoir present a challenge in evaluating 

180 the general effects of sector collapses on crustal magmatic processes.

181

182 2.3. Global distribution 

183 Many individual sector collapses, and in particular their deposits, have been studied in detail 

184 (e.g. Wadge et al.,1995; Glicken, 1996; Shea et al., 2008; Hora et al., 2009). The majority of 

185 these well-studied examples are from subaerial arc volcanoes, although a significant number 

186 have also been documented from intraplate ocean islands such as Hawaii and the Canary 

187 Islands (Moore et al., 1989; Masson et al., 2002). Individual events are commonly recognised 

188 both from their hummocky deposits, which transport poorly-sorted and block-rich material 

189 tens of kilometres away from the volcano, and their characteristic amphitheatre-shaped scars 

190 (Siebert et al., 1987). The large number of identified examples indicates that collapse is a 

191 ubiquitous process affecting constructive volcanic landforms.

192

193 A global compilation of documented sector collapses, shown in Fig. 2, comprises over 300 

194 events with estimated volumes >1 km3, from over 200 individual volcanoes. Event volumes 

195 are often very poorly constrained, due to infilling or erosion of scars and limited information 

196 on deposit thicknesses. For events where specific volume estimates are available (Fig. 2), 

197 71% are from subduction zone settings, 25% from intraplate ocean islands, and 4% from 

198 other settings. Compared to the global distribution of subaerial volcanoes (Global Volcanism 

199 Program, 2013), these values suggest that intraplate ocean-island landslides are over-

200 represented in the dataset, since they account for 7% of volcanoes. Rift and continental 

201 intraplate volcanoes are under-represented, and there is also a slight under-representation of 

202 events in island-arc settings. These patterns are likely to reflect a sampling bias: the few 

203 regional-scale surveys of island arcs (Deplus et al., 2001; Coombs et al.. 2007; Silver et al., 
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204 2009) show that sector collapse deposits occur around the majority of volcanic islands, but 

205 their identification is dependent on good quality bathymetric data. The over-representation of 

206 ocean-island collapses partly reflects the large number of events documented from Hawaii 

207 (Moore et al., 1989), the Canary Islands (Masson et al., 2002; 2006), the Cape Verde Islands 

208 (Masson et al., 2008) and Réunion (Oehler et al., 2008). It also reflects the long lifespan of 

209 many ocean islands and the large dimensions of their landslides, meaning that relatively 

210 ancient deposits can still be identified while those of a similar age in subduction-zone settings 

211 are more likely to have been buried, or their scars eroded.

212

213 In subduction zone settings, over 50% of documented sector collapses (only considering 

214 those >1 km3 and with a specified volume) have volumes between one and five cubic 

215 kilometres, with a thick tail of larger events that extends up to 50 km3 (Fig. 2). This pattern 

216 mirrors the overall size distribution of typical arc volcanoes: a compilation of 400 subaerial 

217 arc stratovolcanoes (Grosse et al., 2014) indicates a median edifice volume of 20.1 km3 but a 

218 mean volume of 43 km3, skewed by a small number of very large edifices that exceed 200 

219 km3 in volume. There are several examples of sector collapses that mobilise 10% of the total 

220 edifice volume, with some affecting over 25% of the total volcanic structure (e.g. Wadge et 

221 al., 1995; Zernack et al., 2012). Given typical lifetimes of 105-6 years for individual 

222 subduction zone volcanoes (White et al., 2006), a single event may transport a volume 

223 equivalent to tens of thousands of years of accumulated material. Such collapses are thus 

224 major and relatively infrequent events in the history of individual volcanoes.

225

226 3. General evidence of magmatic responses to external stress changes

227 Several external processes have been proposed as causes of significant stress perturbations to 

228 stored magma. The best studied of these is ice retreat, particularly following the end of the 

229 last glaciation. Evidence from Iceland suggests a substantial increase in volcanism in the late 

230 Pleistocene and early Holocene, attributed principally to enhanced melt production (Jull and 

231 McKenzie, 1996; Maclennan et al., 2002; Eason et al., 2015).

232

233 Glacial unloading is different from sector-collapse induced unloading in two ways. Firstly, 

234 deglaciation is a regional-scale effect, and the resultant lithospheric adjustment may drive 

235 increased mantle melting (in a rift setting such as Iceland, at least; evidence is more limited in 

236 arc settings (cf. Watt et al., 2013; Rawson et al., 2016)), as well as affecting crustally stored 

237 magma. In contrast, volcanic edifices represent a local perturbation to the lithostatic stress 
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238 field (Pinel and Jaupart, 2005). The impact of sector collapse is thus limited to upper crustal 

239 magma bodies in arc settings, and is not likely to affect melting processes, with the possible 

240 exception of large collapses in ocean-island settings (Presley et al., 1997; Hildenbrand et al., 

241 2004; Manconi et al., 2009) (see Section 8, below). Secondly, the timescale of sector collapse 

242 is much more rapid than ice retreat, and the stress change thus exceeds the rate of magmatic 

243 processes. This means that sector collapse provides a much clearer natural laboratory than ice 

244 retreat to test the impact of surface unloading on stored magma. The effectively instantaneous 

245 nature of collapse means that any effects can be placed in a clear stratigraphic context, even if 

246 absolute ages are unknown, providing a sharp distinction between pre- and post-unloading 

247 conditions.

248

249 The rapid nature of sector-collapse induced stress changes is comparable to earthquake 

250 induced magmatic stresses (Albino, 2011), but the local static stress change is far larger. A 

251 range of evidence supports magma disruption following earthquakes, leading to triggered 

252 eruptions within days (Linde and Sacks, 1998; Manga and Brodsky, 2006), to potentially 

253 years (Watt et al., 2009b). However, most postulated mechanisms suggest that these effects 

254 are due to dynamic stress induced by seismic waves, rather than static stress changes (Hill et 

255 al., 2002; Walter and Amelung, 2007).

256

257 4. Theoretical effects of sector collapse on magmatic systems

258 The relationship between magma storage, pressurisation and local crustal stress has been 

259 explored through a variety of analytical and numerical approaches (Pinel and Jaupart, 2003, 

260 2005; Gudmundsson, 2006; Manconi et al., 2009; Karlstrom et al., 2015). These models 

261 generally assume simplified geometries and physical properties of magma and surrounding 

262 rock. Such simplification is justifiable given that constraints on subsurface storage conditions 

263 are limited by the spatial resolution and uncertainties of geophysical interpretations (e.g., 

264 Foroozan et al., 2010; Paulatto et al., 2012). Petrological studies are increasingly highlighting 

265 a complex picture of magma transport, storage and crystallisation (Cashman and Blundy, 

266 2013), suggesting that magma reservoirs may depart significantly from the simplified liquid 

267 chamber of theoretical models (Cashman et al., 2017). Nevertheless, it is clear that eruptions 

268 are fed by large and relatively homogeneous volumes of eruptible, melt-dominated magma, 

269 regardless of how and when these are assembled, and theoretical approaches can thus provide 

270 valuable insights into how the volcanic edifice load, or surface loading in general, influences 

271 storage conditions and dyke formation.
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272

273 4.1. Loading, magma storage and dyke formation

274 An edifice load imposes a departure from a lithostatic stress state in the underlying crust. This 

275 effect decreases with depth and becomes negligible at around three times the edifice radius (if 

276 the edifice is supported by the strength of the lithosphere; i.e. the edifice radius is small 

277 relative to lithospheric elastic thickness) (Pinel and Jaupart, 2005), and is thus most relevant 

278 to upper-crustal magma bodies in arc settings. In affecting the local stress field, the edifice 

279 load may influence magma chamber growth (Karlstrom et al., 2010; Gudmundsson, 2012), 

280 dyke formation (Pinel and Jaupart, 2005; Hurwitz et al., 2009), and dyke propagation (Pinel 

281 and Jaupart, 2000; Muller et al., 2001; Kervyn et al., 2009), and focus dyke ascent around a 

282 central vent. Dyke formation – the critical precursor to eruption – may be modelled in terms 

283 of a rupture criterion for a liquid body in an elastic medium (Fig. 3) (Pinel et al., 2010). 

284 Rupture will occur at the maximum pressure above the lithostatic state (i.e. overpressure), Pr, 

285 that the host rock can sustain. A linked variable, Pc, describes the pressure at which a dyke 

286 will close and an eruption will cease (Pinel et al., 2010). Pr is dependent on reservoir 

287 geometry and the stress state of the wall rock. Some models (Pinel et al., 2003; 

288 Gudmundsson, 2006) relate Pr to the host-rock tensile strength (cf. Gudmundsson, 2012), but 

289 others (Grosfils, 2007; Hurwitz et al., 2009; Gerbault et al., 2012) argue that much higher 

290 overpressures can be sustained if gravitational loading is accounted for.

291

292 4.2. Edifice growth and eruption rate

293 Following the analytical approach of Pinel and Jaupart (2003), as an edifice increases in size 

294 the load-related tensile stress on a subsurface liquid body increases to a maximum (and Pr 

295 and Pc decrease to a minimum; Fig. 3). Beyond this point, increasing edifice growth 

296 progressively hinders rupture. A broad range of factors, including reservoir shape, affect the 

297 details of this relationship but not the qualitative principles. If an open link to a deeper 

298 reservoir is assumed, then the rate of pressurisation of the upper reservoir will be determined 

299 by the pressure difference between them (Fig. 3A). When Pr is relatively low, then following 

300 an eruption, replenishment of the upper reservoir (i.e. the repressurisation from Pc to Pr; 

301 assuming no replenishment during the eruption) will be relatively rapid, and the time to the 

302 next eruption correspondingly short (i.e. a high theoretical eruption rate). This therefore 

303 predicts that edifice growth is accompanied by an increasing eruption rate, to the point where 

304 Pr reaches a minimum, and then a decreasing eruption rate (Pinel et al., 2010) (Fig. 3B). 

305 There are large simplifications in this model, including assumptions of constant magma 
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306 properties and supply rates, and that dykes consistently feed eruptions rather than intrusions, 

307 but it nevertheless provides a simple framework to consider the impacts of edifice growth and 

308 destruction. It also implies a limit to edifice growth, with the surface load modulating the 

309 storage system, which fits with broad observations of a finite lifetime to individual volcanoes 

310 and the common occurrence of successively younger edifices adjacent to older, extinct 

311 systems (e.g. Singer et al., 1997; Davidson and de Silva, 2000).

312

313 4.3. The impact of sector collapse

314 The simplified theoretical relationship between edifice size, dyke formation and eruption rate 

315 allows a range of different scenarios to be postulated following the sudden reduction in 

316 edifice load that accompanies edifice collapse (or more accurately, the redistribution of this 

317 load across a broader area; Albino et al., 2010; Pinel and Albino, 2013) (Table 1). If sector 

318 collapse is triggered by a shallow intrusion or incipient eruption (i.e. a Mount St. Helens type 

319 event), then this implies that eruptible magma is present and that the initial Pr criterion has 

320 been met. Collapse will always reduce the magma chamber pressure, Pm (Fig. 3), and the 

321 nature of the subsequent eruption is dependent on the difference between the resultant Pr and 

322 the post-collapse Pm. In some circumstances, a larger eruption may result, but Pinel and 

323 Albino (2013) show that for many edifice and chamber geometries, the eruption will be 

324 smaller or may stall entirely. For subsequent eruptions, the impact of collapse depends on 

325 where the system lies on the Pr curve (Fig. 3) (Pinel and Albino, 2013). Broadly speaking, for 

326 edifices at a later stage in the growth cycle outlined above, a load decrease will reduce Pr, 

327 favouring conditions for dyke rupture and an increased subsequent eruption rate (Fig. 3). The 

328 opposite effect is predicted for smaller edifices. Similar outcomes are predicted if sector 

329 collapse is not intrusion-related, but if an eruptible body of magma is present. The newly 

330 established stress state may, in some circumstances, result in a Pr that is less than the post-

331 collapse Pm, and in this instance an eruption would be triggered by the collapse. Finally, if no 

332 eruptible magma is present, the post-collapse stress state will simply alter the conditions for 

333 subsequent dyke formation, if and when an eruptible liquid body forms in the upper crust.

334

335 In addition to these effects, and regardless of the change in Pr, the reduction in Pm  that 

336 accompanies collapse will induce magma ascent from a deeper reservoir, if an open 

337 connection exists (Pinel et al., 2013). Sector collapse may therefore initiate the addition of 

338 heat or volatiles to the upper reservoir, which may potentially (but not necessarily for larger-
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339 volume systems; cf. Ruprecht and Wörner, 2007)) lead to eruption or compositional changes 

340 in subsequently erupted magmas.

341

342 In general, given that surface loading inhibits the ascent of denser mafic magmas and 

343 promotes their stalling in the upper crust (Pinel and Jaupart, 2004), a plausible outcome of 

344 collapse is the eruption of more mafic magmas, or of magmas that show a greater influence 

345 of a deeper, mafic input. The principle of edifice and chamber co-development acting to 

346 influence mafic dyke ascent is supported by observations of outlying vents at Mount 

347 Mazama, which become increasingly restricted to locations distant from the central vent prior 

348 to the climactic Crater Lake eruption (Karlstrom et al., 2015). In this case, the authors suggest 

349 that development of the shallow magma system was driven by increased deep magma influx, 

350 but the observation nevertheless supports a relationship between edifice and magma reservoir 

351 growth, dyke capture, and a modulation of erupted magma compositions at different stages of 

352 volcano development (cf. Schindlbeck et al., 2014).

353

354 The theoretical model outlined above (Fig. 3; Table 1) implies that the manifestation of sector 

355 collapse on subsequent activity may not follow a common pattern, even before parameters 

356 such as magma composition, density and volatile content are accounted for. If these are also 

357 considered, it is clear that magmatic responses to sector collapse could be diverse, being 

358 dependent on the local load-induced stress state (i.e. the relationship between edifice size and 

359 magma reservoir geometry), the nature of the upper crustal magma reservoir at the time of 

360 collapse, and the geometry and composition of the crustal plumbing system. Nevertheless, the 

361 hypothesis that emerges is that sector collapse results in a sudden shift in eruptive behaviour 

362 relative to pre-collapse activity, potentially manifested as a change in eruption frequency, 

363 magnitude, composition or style. This would imply that changes in volcanic composition or 

364 output do not necessarily reflect changes at the source, but can be modulated from the 

365 surface. Past events can be examined in this framework. Conversely, the type of response, if 

366 one can be identified, may provide constraints on the nature of the underlying magma 

367 reservoir.

368

369 5. Volcano growth and eruption-rate measurements

370 The model outlined in Section 4 implies that changes in eruption rate may be a key 

371 manifestation of sector collapse. However, eruption rates can only be accurately defined from 

372 recent historical records; even at the best studied volcanoes, reconstructions of prehistoric 
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373 eruptions are still likely to be highly incomplete (Brown et al., 2014). Beyond historical 

374 timescales, the mean volumetric eruptive flux calculated across a defined time period can be 

375 used as a proxy for eruption rate. This measurement is  reliant on detailed stratigraphic and 

376 chronological information and is not a true indicator of eruption rate (since it reflects the 

377 magnitude as well as the frequency of eruptions). It also fails to account for intrusive growth 

378 of volcanic edifices. Nevertheless, the theoretical relationship in Fig. 3 implies that eruptive 

379 flux correlates with eruption rate, and can thus be used to explore variations in eruptive 

380 behaviour over prehistoric timescales. Before doing so, it is instructive to assess how well 

381 eruptive flux  can be determined on timescales of 103-4 years, both in order to interpret 

382 observations at volcanoes affected by sector collapse and as a general test of the theoretical 

383 relationship between edifice growth and eruption rate.

384

385 Measurements of eruptive flux are necessarily time-averaged. On short timescales (100-2 

386 years), very high values can be maintained (Wadge, 1982), but there is a steady decline in the 

387 estimated eruptive flux as the duration of the measurement increases (Fig. 4, inset). Thus, 

388 estimates of eruptive flux made over the tens of thousands of years will hide finer-scale 

389 variations, and particularly short episodes of elevated output (Hildreth and Lanphere, 1994) 

390 such as those that may be expected following sector collapse.

391

392 There are relatively few studies that have attempted a detailed quantification of eruptive flux 

393 over the lifetime of a volcano. Fig. 4 shows a compilation of thirteen such datasets, all from 

394 composite arc volcanoes. Even for these comprehensive field studies, temporal resolution is 

395 rarely <104 years. Erosion and burial, along with dating limitations, mean that age-volume 

396 relationships are obscured by multiple uncertainties, and estimates of eruptive flux are likely 

397 to be underestimated, with dispersed pyroclastic deposits difficult to account for. 

398 Nevertheless, Fig. 4 shows that episodic growth behaviour is a common characteristic of 

399 composite arc volcanoes, with relatively short periods characterised by volumetric output 

400 rates as much as on order of magnitude greater than relatively quiescent interludes (cf. 

401 Davidson and de Silva, 2000). This episodic pattern implies that magma systems remain 

402 active across long timescales, even if little extrusion occurs (Hildreth and Lanphere, 1994). 

403 Fig. 4 also highlights the decrease in data resolution with time: the highest measured values 

404 occur within the past few ten thousand years; before this time, high-flux episodes are 

405 generally not resolvable. The average eruptive flux across all these datasets shows that this is 

406 not just a smoothing effect, because the long-term mean decreases markedly beyond ~120 ka. 
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407 This suggests that erosion, burial and dating limitations all hinder our ability to reconstruct 

408 volcanism beyond the most recent episodes of cone-building (cf. Singer et al., 2008). 

409 Reconstructions prior to the youngest period of volcanism at any volcano are thus likely to 

410 significantly underestimate eruptive flux and are unlikely to resolve variability on timescales 

411 below 104 years. The temporal resolution at which past activity can be reconstructed therefore 

412 remains too coarse to fully test whether edifice growth cycles replicate in detail the shape of 

413 the curve predicted in Fig. 3.

414

415 Although it is not always clear what divides individual constructional episodes, several 

416 studies identify major sector collapse deposits that delineate periods of cone-building (Hall et 

417 al., 1999; Thouret et al., 2005; Hora et al., 2007; Hall and Mothes, 2008; Samaniego et al., 

418 2012) and cycles of collapse and regrowth characterise the history of many individual 

419 volcanoes (Robin et al., 1990; Zernack et al., 2012; de Silva and Lindsay, 2015). Sector 

420 collapse thus appears to be a fundamental process in composite volcano development, and 

421 systematic variation in volcanic output may be related both to the maturation of a magma 

422 reservoir and the growth of the overlying edifice, even if the details of how post-collapse 

423 volcanism differs from pre-collapse activity are not documented. In many cases, collapse 

424 scars are buried by rocks erupted during subsequent rapid regrowth (de Silva and Lindsay, 

425 2015), providing general support for enhanced post-collapse activity. However, a more 

426 detailed evaluation of this process requires reconstructions that can address whether, by 

427 effectively shifting the coupled volcano-magma system to an earlier stage in a theoretical 

428 growth cycle, collapse drove a resultant change in eruptive behaviour. To reject the null 

429 hypothesis, we must ideally demonstrate that through the rebuilding process, a volcanic 

430 system moves back towards its pre-collapse state, thus responding both to the perturbation 

431 and to subsequent regrowth.

432

433 6. Historical events

434 Wide recognition of sector-collapse processes came about following the Mount St. Helens 

435 eruption of 1980, although earlier eruptions such as those at Bandai (1888) and Bezymianny 

436 (1956) had been identified as distinctive in terms of their deposits and horseshoe-shaped scars 

437 (cf. Siebert, 1984). The largest historical sector collapse, at Ritter Island (1888), was 

438 originally interpreted as a caldera-forming explosive eruption and only later recognised as a 

439 sector collapse (Johnson, 1987). These historical events provide only a geologically short 

440 window into subsequent activity, potentially insufficient to fully examine the consequences 
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441 of collapse on the magmatic system, but at least providing information at a high temporal 

442 resolution and overcoming the age uncertainties and incompleteness that hinders prehistoric 

443 reconstructions.

444

445 Historical collapses that meet a >1 km3 volume criterion are shown in Table 2. Smaller 

446 collapses, such as that at Bezymianny (0.5 km3; Belousov et al., 2007) or the December 2018 

447 collapse of Anak Krakatau, are excluded from the table, but described below in the context of 

448 other historical events. Recently revised volumes of the Bandai collapse (Yoshida, 2013) 

449 suggest its volume was also <1 km3, and the Oshima-Oshima (1741) collapse volume is 

450 relatively poorly constrained (Table 2). Although these were all major landslides and caused 

451 extensive local impacts, they are relatively small in the context of documented prehistoric 

452 sector collapses (Fig. 2).

453

454 6.1. Eruption-associated collapses

455 With the exception of Bandai and possibly Ritter, all historical examples of sector collapse 

456 were associated with fresh magma ascent. Collapse occurred during an explosive eruption at 

457 Oshima-Oshima and Bezymianny, and during a longer-lasting phase of eruptive activity at 

458 Anak Krakatau, while the Mount St. Helens collapse was preceded by magma ascent to a 

459 shallow level within the edifice. Decompression of the shallow Mount St. Helens intrusion, 

460 initiated by landslide movement, resulted in a powerful lateral blast (Glicken, 1996), and a 

461 similar effect occurred following conduit depressurisation at Bezymianny (Belousov et al., 

462 2007). At Shiveluch (and also at Harimkotan, 1933 (0.4 km3; Belousov and Belousova, 

463 1996)) magma was not sufficiently shallow for a directed blast to result (Belousov, 1995), but 

464 collapse was preceded by accelerating seismicity and immediately followed by a large 

465 explosive eruption, suggesting that an incipient eruption caused these collapses.

466

467 It is difficult to assess whether these historical eruptions proceeded differently relative to a 

468 hypothetical scenario without collapse (cf. Table 1). However, it is clear that there are no 

469 instances among them of a stalled eruption (assuming that the Bandai collapse was not due to 

470 magma ascent, which is reasonable given an absence of magma extrusion since 25 ka), which 

471 is one of the outcomes of collapse put forward by Pinel and Albino (2013) (Table 1). In all 

472 the above cases, the intense explosive eruption that accompanied collapse was followed by an 

473 effusive phase (and a phreatomagmatic phase in the case of Anak Krakatau) that partially 
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474 infilled the collapse scar, which appears to be a common process in eruption-associated sector 

475 collapses (Table 2).

476

477 At Oshima-Oshima and Bezymianny, collapse followed a long period of quiescence (Satake 

478 and Kato, 2001; Belousov et al., 2007; Girina, 2013). However, in both cases it was a 

479 renewed eruptive phase that triggered collapse, rather than the reverse. At Oshima-Oshima 

480 (and similarly at Harimkotan; Belousov and Belousova, 1996), this eruptive phase declined 

481 over the subsequent fifty years (Katsui and Yamamoto, 1981), and there have been no 

482 subsequent eruptions. In this case, there is nothing to indicate that the post-collapse state of 

483 the system differs significantly from pre-collapse conditions. At Bezymianny, the initial 

484 event heralded a period of intense activity that is ongoing today and has largely buried the 

485 collapse scar (Girina, 2013), but since this renewed phase of volcanism began prior to the 

486 collapse, its origin is likely related to deeper magmatic processes.

487

488 6.2. The largest historical collapses: Ritter, Shiveluch and Mount St. Helens

489 In contrast to Oshima-Oshima and Bezymianny, Shiveluch, Ritter and Mount St. Helens were 

490 relatively active volcanoes before collapse and remain so today (Global Volcanism Program, 

491 2013; Day et al., 2015; Watt et al., 2019). At Shiveluch, the 1964 event is just one of multiple 

492 Holocene sector collapses (Belousov et al., 1999; Ponomareva et al., 2006) and fits within a 

493 long-term pattern of repetitive collapse and regrowth. Similar behaviour is suggested by 

494 multiple relatively small (generally ≤1 km3) collapses at volcanoes such as Stromboli 

495 (Tibaldi, 2001), Augustine (Begét and Kienle, 1992) and Harimkotan (Belousov and 

496 Belousova, 1996)). Shiveluch is characterised by an unusually high magma flux (Belousov et 

497 al., 1999), and the 1964 collapse volume is equivalent to ~102 years of magmatic output. In 

498 this context, the collapse is relatively minor. It accounted for <1% of the total edifice volume 

499 (cf. Grosse et al., 2014), and predominantly involved material extruded since the preceding 

500 edifice failure. Regular and relatively small collapses, involving recently erupted material, 

501 may be a common outcome of rapid construction at highly active volcanoes. The 1964 event 

502 was not unusual in the context of Holocene activity at Shiveluch, and would not, therefore, be 

503 expected to mark a major change in behaviour relative to pre-1964 activity. It is also dwarfed 

504 by a late-Pleistocene or early-Holocene collapse, which was not accompanied by a major 

505 eruption (Ponomareva et al., 2006) but does mark a distinct shift in erupted magma 

506 compositions (Belousov et al., 1999; see Section 7).
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508 As suggested at Shiveluch, the significance of sector collapse at a volcano may not be 

509 correlated closely with collapse volume, but may be better evaluated in terms of long-term 

510 eruptive flux and total edifice volume. In this sense, the Ritter and Mount St. Helens events 

511 stand out among historical collapses, in mobilising 10–20% of the edifice (based on edifice 

512 volume estimates from Grosse et al. (2014) and Day et al. (2015)). At Ritter, recent 

513 observations suggest that the collapse marked a shift in erupted compositions and was also 

514 immediately followed by a compositionally anomalous felsic explosive eruption (Watt et al., 

515 2019). This post-collapse eruption was bimodal, containing a mafic phase alongside felsic 

516 material that is distinctive in both its glass chemistry and mineral content (containing 

517 phenocryst amphibole), and unlike any other known eruption products from Ritter. The 

518 eruption is consistent with collapse-driven perturbation of the underlying magma reservoir 

519 (see Section 7). Scoriaceous deposits from subsequent eruptions are less compositionally 

520 diverse, but comprise a mixture of mafic clasts that are more primitive than pre-collapse 

521 material, as well as intermediate compositions, suggesting tapping of discrete crustal magma 

522 bodies during post-collapse regrowth of the volcano (Watt et al., 2019). It is unclear if these 

523 changes were accompanied by a change in eruption rate; the volcano experienced frequent 

524 minor basaltic explosive eruptions before 1888, and similar activity is ongoing within the 

525 collapse scar (Day et al., 2015; Watt et al., 2019), implying no major changes in eruption 

526 style.

527

528 Mount St. Helens is better studied than Ritter, and has been highly active throughout the 

529 Holocene. The 1980 collapse followed a pause in activity of ~120 years, and principally 

530 involved material erupted over the preceding 2.5 kyr, ranging from basalts to dacites 

531 (Glicken, 1996). The collapse and explosive eruption was followed by extrusion of a highly 

532 crystalline and gas-poor dacitic lava dome, with no major changes in magma chemistry, 

533 suggesting that the event tapped a relatively well-mixed and homogeneous magma body. 

534 Broadly similar dacitic magma was erupted in a subsequent dome-building phase from 2004-

535 2008 (Pallister et al., 2008), and both magmas are comparable to those erupted in pre-

536 collapse historical eruptions. The 2004-08 lavas show the least evidence of mixing with a 

537 basaltic contaminant for any eruption in the past 500 years (Pallister et al., 2008), and there is 

538 no strong evidence to support the input of fresh magma from the lower crust.

539

540 Recent eruptions at Mount St. Helens suggest a long-lived dacitic upper-crustal reservoir, 

541 with no significant change in post-collapse eruption rates or magma compositions. One 
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542 notable observation, however, is that the equilibration pressure of the 2004 magma (130 

543 MPa) is significantly lower than that of the magma that initiated the 1980 collapse (220 MPa) 

544 (Pallister et al., 2008; Rutherford and Devine, 2008). Pallister et al. (2008) interpret this in a 

545 framework of a magma reservoir extending from depths of 5 to 12 km, tapped at different 

546 levels by different eruptions. The change in equilibration depth between successive eruptions, 

547 in a shallowing pattern, was noted by Gardner et al. (1995) and has characterised two cycles 

548 of activity at Mount St. Helens over the past 4000 years. It is, however, unclear why the 

549 equilibration depths of magma batches follows a systematic shallowing trend, and Pinel and 

550 Jaupart (2003; see also Pinel et al., 2010) offer an alternative explanation. They argue that 

551 edifice destruction following large explosive eruptions or sector collapse results in a 

552 reduction of the overpressure required to initiate dyke ascent, and that conversely, edifice 

553 growth results in higher overpressures. In this model, the equilibration pressures do not 

554 reflect depth, but the overpressure sustained in a fixed magma reservoir. Although this is 

555 qualitatively consistent with theoretical relationships between edifice growth, chamber 

556 pressurisation and replenishment rates (Pinel and Jaupart, 2003), the absolute magnitude of 

557 the pressure range during eruptive cycles at Mount St. Helens (up to 180 MPa) is an order of 

558 magnitude larger than most estimates of maximum magma reservoir overpressures 

559 (Gudmundsson, 2012). Constraints from mineral assemblages and other petrological 

560 indicators also support a vertically extensive reservoir, with magma phenocryst mixtures 

561 spanning this pressure range (Rutherford and Devine, 2008; Cashman and Blundy, 2013). 

562 The post-collapse behaviour of Mount St. Helens doesn’t, therefore, fit a simple model of 

563 collapse-modulated pressurisation. However, it is possible that the reduction in equilibration 

564 pressures is linked to the reduced edifice load, if loading influences the depth range of 

565 magma convection, the accumulation depths of mobile magmatic components, or the stalling 

566 depth of any mafic, replenishing magma.

567

568 7. Magmatic impacts of sector collapse in subduction zone settings

569 Many of the factors controlling arc magma compositions, including slab input, mantle 

570 melting and lower crustal interactions, are not plausibly influenced by sector collapse (see 

571 Section 4). Any collapse-associated changes in eruptive behaviour are thus expected to reflect 

572 mid- to upper-crustal magma processing, including the timescale of crustal transit, storage 

573 and assimilation, the relative proportions and influence of mixing, the ascent and stalling of 

574 mafic magmas, and consequent pressure and temperature controls on mineral phase stability. 

575 Such processes may be apparent via changes in erupted compositions or eruption rate and 
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576 style. Evaluating evidence of this for prehistoric collapses requires comparison between pre- 

577 and post-collapse magmas at a range of timescales, which is often hindered by limited 

578 exposures and poorly resolved age relationships. Although many volcanoes show evidence 

579 for rapid post-collapse regrowth and scar burial (e.g., Hora et al., 2007; Samper et al., 2007; 

580 de Silva and Lindsay, 2015), this regrowth may prevent sampling of the oldest post-collapse 

581 products and inhibit estimates of eruption rates and volumes. For example, the relatively 

582 small 1956 collapse scar at Bezymianny has been filled by dome lavas within a few decades 

583 (Girina, 2013), representing a rapid extrusion rate that would be unresolvable for more 

584 ancient events.

585

586 Dating uncertainties also hinder discrimination between rapid (decadal to centennial) and 

587 much more gradual shifts in behaviour. There are numerous examples of major collapses 

588 where data are too limited to unambiguously correlate specific episodes of volcanism with 

589 the timing of collapse (e.g., Galunggung, Indonesia (Bronto, 1989)), or where available data 

590 span a restrictive stratigraphic range (e.g., Avachinsky, Kamchatka (Ponomareva et al., 

591 2006)) or are coarsely resolved (e.g., Orizaba, Mexico (Schaaf and Carrasco-Núñez, 2010); 

592 St Lucia, Lesser Antilles (Boudon et al., 2013); Baru, Panama (Sherrod et al., 2007)). For the 

593 vast majority of identified sector collapses in Fig. 1, stratigraphic resolution and age 

594 reconstructions do not enable a robust evaluation of how collapse affected subsequent 

595 volcanism. The examples discussed here (summarised in Table 3) are thus limited to a small 

596 number of better studied volcanoes. These are also geographically skewed, with detailed 

597 studies available from many Andean volcanoes and a notable absence of data from Japan and 

598 Indonesia.

599

600 7.1. Anomalous post-collapse eruptions

601 If eruptible magma exists beneath a volcano, regardless of whether an incipient eruption 

602 caused the collapse, collapse-driven depressurisation may result in magma ascent or other 

603 perturbation of the magma reservoir (cf. Table 1). This is supported by the post-collapse 

604 eruption of unusually voluminous or compositionally anomalous lavas at several volcanoes. 

605 For example, the 12 km3 collapse of Chimborazo, Ecuador at 60–65 ka was followed by the 

606 eruption of homogeneous andesitic lava flows that extend to distances of 22 km and have a 

607 total volume of 1–1.5 km3 (Samaniego et al., 2012). The Holocene collapse of Antuco, Chile, 

608 presents a comparable example, where two unusually thick and far-reaching lava flows 

609 directly overlie the debris avalanche deposit (Fig. 5). The Sr-isotope composition of these 
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610 lavas is more closely aligned with younger post-collapse rocks (unpublished data), but they 

611 are less mafic than the basalts that have dominated all subsequent activity at Antuco (Table 3; 

612 Martínez et al., 2018). In both cases, the lava-flow volumes are anomalously large in a long-

613 term context of activity at the volcano, and the lava composition is potentially consistent with 

614 mixing between a pre-existing magma body and fresh, mafic input, or the disruption of a 

615 previously stable (e.g. vertically zoned or compartmentalised) reservoir.

616

617 Other examples of anomalously voluminous post-collapse effusive eruptions may include 

618 Fuya Fuya (Robin et al., 2009) and Tungurahua I (Hall et al., 1999), both in Ecuador. The 

619 latter edifice experienced a large but poorly-exposed collapse at the end of its history, 

620 followed by emplacement of voluminous dacite lavas, unusually silicic in the long-term 

621 history of the volcano. The andesites erupted during the regrowth of the younger Tungurahua 

622 II edifice are geochemically distinct from those of Tungurahua I, indicating establishment of 

623 a discrete plumbing system (Hall et al., 1999). Tungurahua II itself collapsed at ~3 ka, and 

624 the volcano provides a rare example where collapse-associated shifts in behaviour are 

625 replicated over more than one eruptive cycle. The Tungurahua II collapse was followed by 

626 voluminous (6-km long) and petrologically distinctive (olivine, two-pyroxene and amphibole-

627 phyric) dacite lava flows, and then a pause in volcanism of ~700 years before rapid regrowth 

628 of the andesitic Tungurahua III edifice (Hall et al., 1999). A comparable pattern occurs at San 

629 Pedro, Chile, where a mid-Holocene collapse was followed by an unusual composite lava 

630 flow with a total volume (0.8 km3) several times larger than younger summit lavas (Costa and 

631 Singer, 2002). The composite flow, representing the earliest post-collapse rocks, differs from 

632 both older and younger lavas in containing hornblende phenocrysts. As well as having a bulk 

633 composition more felsic than any other Holocene lavas at San Pedro, it contains gabbroic 

634 xenoliths and basaltic inclusions that extend to more mafic compositions than other Holocene 

635 products (Fig. 5). Costa and Singer (2002) interpret these lavas as representing rapid 

636 withdrawal from a zoned upper-crustal reservoir, and infer that their textural complexity 

637 developed prior to collapse. However, an alternative explanation is that mixing was induced 

638 by unloading, and an absence of intervening material or erosion suggests that the 

639 emplacement of these complex lavas occurred shortly after sector collapse. 

640

641 Post-collapse pyroclastic deposits at Nevado de Colima, Mexico may provide an additional 

642 example of decompression-driven disruption of a zoned magma reservoir (Fig. 5). This ~7 

643 km3 collapse is directly overlain by deposits containing juvenile clasts of mixed composition, 
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644 including the most mafic material known from the volcano (although more mafic rocks occur 

645 at outlying scoria cones) (Robin et al., 1990). At both Colima and San Pedro, compositions 

646 that are unknown at the surface in other intervals are observed in the earliest post-collapse 

647 rocks, but not in subsequent eruptions. The hornblende-phyric pumice erupted after the 1888 

648 collapse of Ritter Island, which appears to have otherwise erupted relatively homogeneous 

649 basalts and basaltic andesites (Watt et al., 2019), provides a comparable example, as do the 

650 Secche di Lazzaro deposits at Stromboli (Petrone et al., 2009; see Section 7.2 and Table 3). 

651 Collectively, these examples are consistent with anomalous mixing and ascent dynamics 

652 following collapse, and highlight that compositions erupted under equilibrium (i.e. without 

653 collapse-driven reservoir perturbation) conditions may present an incomplete or biased 

654 picture of the compositional range of crustal magmas.

655

656 7.2. Post-collapse regrowth through mafic volcanism

657 A post-collapse shift to more mafic erupted compositions occurs at several volcanoes, 

658 maintained over multiple eruptions (Fig. 6). This pattern includes examples with anomalous 

659 post-collapse eruptions, such as Antuco, where the voluminous lava flows were followed by 

660 more mafic monotonous lavas and scoria deposits that have infilled the collapse scar 

661 (representing a higher eruptive flux than pre-collapse activity) and persist to the present day 

662 (Martínez et al., 2018). Similarly, at Martinique, the Le Prêcheur collapse is bracketed by two 

663 near identical lavas (suggesting post-collapse eruption from an existing magma body), but is 

664 followed by a sharp shift to mafic compositions before an eventual return to more evolved 

665 magmas (Germa et al., 2011). 

666

667 Eruptions of relatively mafic magmas may be maintained for several thousand years 

668 following collapse, and this is consistent with conditions that favour rapid crustal transit and 

669 the ascent of denser magmas to the surface. At Planchón, Chile, pre-collapse basaltic 

670 andesites are followed by post-collapse basalts that lack evidence for upper crustal storage 

671 (Tormey et al., 1995; Tormey, 2010) and are compositionally similar to the oldest pre-

672 collapse rocks, thus supporting a general cyclical coupling of edifice growth and magma 

673 evolution, with increased loading favouring upper crustal stalling of denser, mafic magmas 

674 (e.g., Schindlbeck et al., 2014). Alongside more mafic compositions and evidence of reduced 

675 storage and assimilation, an elevated eruptive flux is observed in several examples. At 

676 Tungurahua, rapid regrowth of the TIII edifice (following the dacite lava eruptions and a 700-

677 year pause in activity) was achieved by volumetric growth rates of ~1.5 km3/kyr that have 
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678 persisted since 2.3 ka (Hall et al., 1999). The early stages of this cone rebuilding produced 

679 homogeneous basaltic andesites, suggesting relatively rapid crustal transit, but recent magmas 

680 are more evolved and may hint at a transition towards more prolonged shallow storage. A 

681 broadly similar pattern is suggested by the evolution of Ollagüe, Chile, following a relatively 

682 smaller flank collapse (Feeley et al., 1993; Clavero et al., 2004), as well as the examples 

683 shown in Fig. 6.

684

685 At Parinacota, Chile, the 6 km3 collapse at 8.8 ka (Jicha et al., 2015) was followed by 

686 extremely high eruptive flux of up to 10 km3/kyr for one to two thousand years, sufficient to 

687 entirely bury the collapse scar. Post-collapse rocks are relatively homogeneous and more 

688 mafic than pre-collapse lavas (Wörner et al., 1988; Hora et al., 2007, 2009), including the 

689 most primitive compositions known at the volcano (Fig. 6). The collapse appears to have 

690 occurred within a long-term trend towards more mafic compositions, but regardless of the 

691 compositional impact of collapse, the increased post-collapse flux of relatively monotonous 

692 magmas represents a sharp change from pre-collapse activity. Evidence for long-term upper-

693 crustal stagnation under pre-collapse conditions contrasts with much more limited evidence 

694 of assimilation in younger products (Hora et al., 2009). A spatial change in the post-collapse 

695 plumbing system, with a diminished upper crustal reservoir, is also suggested by plagioclase 

696 zoning patterns (Ginibre and Wörner, 2007).

697

698 Stromboli, Italy, provides a further example of a coupled post-collapse shift in magma 

699 chemistry and eruptive behaviour (Francalanci et al., 1989; Bertagnini and Landi, 1996; 

700 Tibaldi, 2001, 2004; Petrone et al., 2009; Vezzoli et al., 2014). The 14 ka Upper Vancori 

701 collapse (2.2 ± 0.9 km3) ended a period erupting variable basic and intermediate magmas 

702 (Fig. 6), and was followed by more compositionally restricted mafic volcanism (Francalanci 

703 et al., 1989; Vezzoli et al., 2014) at a higher volumetric growth rate (Tibaldi, 2004; Vezzoli et 

704 al., 2014). These post-collapse magmas are unusually potassic, with relatively monotonous 

705 bulk compositions and petrological characteristics. However, their variable Sr-isotope 

706 compositions suggests differential assimilation during crustal transit, coincident with the 

707 reduction of the upper crustal reservoir (Francalanci et al., 1989; Hornig-Kjarsgaard et al., 

708 1993). The unstable post-collapse cone at Stromboli has failed to achieve the dimensions of 

709 the preceding edifice, and has experienced three younger and relatively closely-spaced 

710 collapses from ~6 ka (each <50% of the volume of the Upper Vancori collapse; Tibaldi, 

711 2001, 2004), maintaining high growth rates but with a further compositional shift to basaltic 
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712 shoshonitic magmas following the ~6 ka collapse (Fig. 6), and a predominance of explosive 

713 over effusive activity (Francalanci et al., 1989; Hornig-Kjarsgaard et al., 1993)). The 

714 Neostromboli eruptive phase, which followed the Upper Vancori collapse and was terminated 

715 by a ~1km3 sector collapse at 6 ka (Tibaldi, 2001), provides additional support to a cyclic 

716 model of post-collapse regrowth through mafic volcanism and the re-establishment of a more 

717 evolved, upper crustal reservoir (Petrone et al., 2009; Vezzoli et al., 2014). The youngest 

718 magmas erupted in this 8 kyr period are also the most evolved Neostromboli rocks (Fig. 6), 

719 and derived from fractional crystallisation of the more primitive magmas that fed earlier post-

720 collapse eruptions (Vezzoli et al., 2014). These biotite-shoshonites also fed powerful 

721 phreatomagmatic explosive eruptions associated with the 6 ka sector collapse (Petrone et al., 

722 2009), whereas all subsequent volcanism has been more primitive. Thus, since the 

723 Neostromboli sector collapse at 6 ka, the upper-crustal reservoir does not appear to have been 

724 re-established (Vezzoli et al., 2014). The phreatomagmatic activity that accompanied the 

725 Neostromboli collapse (the Secche di Lazzaro eruptions) erupted petrographically 

726 heterogeneous products, suggestive of disruption of a complex, stratified shallow plumbing 

727 system, and thus consistent with the processes described in Section 7.1 (Petrone et al., 2009). 

728 Based on mineral zoning, compositional variability and disequilibrium textures, Petrone et al. 

729 (2009) rule out fresh mafic input as a trigger for the Secche di Lazzaro eruptions (and by 

730 implication, as a trigger for the Neostromboli collapse); rather, physical and petrological 

731 observations are consistent with decompression-driven eruption of shallowly-stored magma 

732 as a direct result of the collapse (Bertagnini and Landi, 1996; Petrone et al., 2009). The 

733 evolution of Stromboli between the Upper Vancori and Neostromboli collapses thus 

734 encapsulates the range of processes described in Sections 7.1 to 7.3, across an 8 kyr period 

735 (Fig. 6).

736

737 7.3. Re-establishment of upper crustal storage

738 Longer timescale reconstructions suggest that the mafic activity at volcanoes such as 

739 Stromboli, Parinacota and Antuco may represent a temporary cone-rebuilding stage. Edifice 

740 regrowth and increased loading may eventually promote upper-crustal storage, manifested as 

741 a return to more evolved erupted compositions. The ~32 ka collapse of Pelée, Martinique, 

742 initiated a similar pattern to that of the older Le Prêcheur collapse (Germa et al., 2011): pre-

743 collapse andesites were followed by denser basaltic andesites at an elevated eruption rate 

744 (inferred from tephra-deposit frequencies and volumetric reconstructions) (Germa et al., 

745 2015). However, within ~10 kyr eruptions returned to predominantly andesitic compositions 
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746 (Boudon et al., 2013) (Fig. 6), but enclaves in these young andesites show that deeper mafic 

747 magmas were still feeding the newly established upper crustal reservoir.

748

749 The evolution of Pelée has a counterpart in the basaltic South Soufrière Hills episode on 

750 Montserrat (Cassidy et al., 2015a), which followed the 130 ka D2 collapse and is 

751 compositionally anomalous in the long-term history of this andesitic island (Fig. 6). Although 

752 the duration of South Soufrière Hills volcanism is difficult to constrain, Cassidy et al. (2015a) 

753 suggest that the onset of post-collapse mafic volcanism was rapid (<100 years). Available 

754 dates for South Soufrière Hills are also identical within error (Harford et al., 2002), 

755 suggesting elevated eruption rates with a maximum duration of a few thousand years. Cassidy 

756 et al. (2015a) interpret the basalts to have risen rapidly from mid-crustal depths, suggesting 

757 an absent or inactive upper-crustal storage system in the early post-collapse period, in 

758 common with the other examples cited above.

759

760 Activity at Montserrat returned to andesitic dome-forming eruptions after the South Soufrière 

761 Hills episode, erupting rocks similar to pre-collapse lavas but distinctive in containing 

762 phenocryst hornblende (this distinction has persisted to the present day) (Harford et al., 2002; 

763 Cassidy et al., 2015a). This pattern is replicated at some Andean volcanoes (de Silva et al., 

764 1993), but is the reverse to that observed at Parinacota, where the dominant mineralogy 

765 changes from a pre-collapse hornblende andesite to a two-pyroxene assemblage (Wörner et 

766 al., 1988). The direction of the change is not necessarily significant, but simply highlights 

767 that the re-established crustal plumbing system was distinct in terms of its predominant 

768 pressure and temperature conditions from that which existed previously.

769

770 7.4. Long-term collapse-induced shifts in storage and plumbing systems

771 The impacts of large-scale edifice collapse are not always manifested through more mafic 

772 erupted compositions of the type described above. This may be because the post-collapse 

773 stress regime, although modified from preceding conditions, still promotes upper crustal 

774 stalling of denser magmas. In such cases, evidence of enhanced ascent of mafic, lower-crustal 

775 magmas may be more subtle. At San Pedro, post-collapse replenishment (following the 

776 anomalous lava flows; Fig. 5) led to eruptions of basaltic andesites with similar major-

777 element chemistry to pre-collapse lavas, but with distinct trace-element and isotope 

778 signatures (Costa and Singer, 2002). This implies a crustal processing history that is 

779 temporally distinct from the pre-collapse magmas. The same conclusion can be drawn at 
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780 Chimborazo (Fig. 7; Table 3), Tungurahua (Hall et al., 1999) and elsewhere, where 

781 permanent changes in bulk compositional trends support the establishment of a discrete 

782 plumbing system, overwriting any influence of older magmatic contributions. There are many 

783 other less well studied volcanoes where available data nevertheless hint at post-collapse 

784 modification of the plumbing system. Examples include the presence of unusually mafic 

785 inclusions in post-collapse lava domes at Tata Sabaya, Bolivia (de Silva et al., 1993), and a 

786 change to predominantly effusive activity after the sector collapse of Santa Ana, El Salvador 

787 (Siebert et al., 2004).

788

789 The very large late-Pleistocene collapse of Shiveluch marks a transition in both chemistry 

790 and eruption style (Table 3). Although pre- and post-collapse rocks span a similar range of 

791 silica contents, the post-collapse mafic magmas are more primitive (e.g., in terms of Mg#; 

792 Table 3) than older equivalents, thus supporting renewed mafic input (Gorbach et al., 2013) 

793 (Fig. 7). Compositional trends suggest that pre-collapse magmas predominantly evolved via 

794 fractional crystallisation, while post collapse magmas are consistent with mixing between 

795 deeper basalts and shallower felsic magmas, interpreted by Gorbach et al. (2013) as 

796 indicating a simpler and smaller shallow reservoir in the post-collapse period. Belousov et al. 

797 (1999) suggest that these changes had additional consequences for eruption style and edifice 

798 stability, producing intermediate magmas with higher viscosity in the post-collapse period, 

799 emplaced as lava domes. These built a steep edifice prone to destabilisation upon subsequent 

800 intrusion, and susceptible to repeated smaller-scale collapses of the type observed in 1964. In 

801 this respect, post-collapse behaviour at Shiveluch mirrors that at Stromboli, over a 

802 comparable time period (cf. Tibaldi, 2004).

803

804 Observations at several volcanoes suggest that sector collapse focuses shallow dyke 

805 propagation towards the collapse scar (Tibaldi et al., 2008), with the vent migrating to the 

806 centre of the collapse amphitheatre at volcanoes such as Planchón (Tormey, 2010), Ollagüe 

807 and Stromboli (Tibaldi et al., 2008) (comparable processes have also been suggested at 

808 ocean-island volcanoes; Maccaferri et al., 2017). Post-collapse rebuilding often buries the 

809 scar (e.g., Parinacota), and is generally centred on a similar position to the pre-collapse 

810 conduit. Thus, assuming broadly vertical storage geometries, younger magmas appear to pass 

811 through preceding storage regions while retaining a discrete chemical signature. The South 

812 Soufrière Hills episode at Montserrat is unusual in lying to one side of the collapse scar (cf. 

813 Cassidy et al., 2015b), but given observations elsewhere there is no general requirement for 
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814 post-collapse mafic magmas to bypass upper crustal reservoirs to reach the surface. Indeed, 

815 by reaching the surface, the eruption of deeper, mafic magmas implies the absence of a 

816 mobile upper crustal reservoir under early post-collapse conditions.

817

818 7.5. A coherent model?

819 The sections above provide several examples where sector collapses mark clear transitions in 

820 erupted magma compositions or style of volcanic activity, but these effects are not identical 

821 at each volcano. Nevertheless, the observations can fit a single coherent model if inter-

822 volcano differences are attributable to local factors. For example, the volume of a sector 

823 collapse, in conjunction with storage depths, reservoir volumes, and the presence of eruptible 

824 magma, is likely to determine the observed effect. Notwithstanding these differences, a 

825 consistent model emerges from the examples above, summarised in Fig. 8.

826

827 7.5.1. Collapse-driven reservoir disruption, or vice versa?

828 Determining the causal sequence of collapse-associated transitions in volcanic behaviour is 

829 challenging. If it is fresh magma input that drives edifice instability, then shifts in magma 

830 compositions may simply be temporally associated with sector collapse, but not initiated by 

831 the unloading process. However, although it is not possible to definitively exclude this 

832 interpretation, large-scale sector collapse provides a plausible mechanism for disruption and 

833 reconfiguration of an otherwise stable plumbing system (and one that has developed in 

834 equilibrium with the overlying load), whereas no specific mechanism exists for the reverse. 

835 The anomalous eruptions described in Section 7.1 followed but did not accompany collapse 

836 (i.e. they are not present as syn-collapse pyroclastic deposits or juvenile debris-avalanche 

837 blocks), suggesting that magma ascent did not precede or trigger collapse in these instances. 

838 Petrone et al. (2009) present a rare example where detailed mineralogical analyses are used to 

839 specifically exclude the possibility of fresh magmatic input prior to the Neostromboli 

840 collapse, implying that the intense phreatomagmatic eruptions associated with the collapse 

841 directly reflect decompression-driven disruption of the shallow system, and supporting the 

842 above interpretation. The replication of compositional anomalies in several examples, 

843 contemporaneous with collapse but absent in both older and younger rocks, lends further 

844 support for a discrete external process (i.e. sector collapse) driving this atypical behaviour, 

845 and one that falls outside the prevailing factors that govern magma storage and eruption at 

846 other times in a volcano’s history. This argument is also supported by the sharpness of the 

847 compositional shifts between pre- and post-collapse magmas (Figs. 6 and 7), which imply the 
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848 development of a structurally distinct plumbing system during post-collapse regrowth. The 

849 interpretation presented here suggests that erupted magma compositions spanning sector 

850 collapses are governed by upper crustal processes that reflect the interaction between edifice 

851 loads and the stability and growth of shallow magma reservoirs. They do not require (but nor 

852 do they exclude) any variation in the flux or ascent of deeper, primitive magmas, but the 

853 capacity of such magmas to reach the surface, rather than being captured within shallow 

854 reservoirs, may vary as a result of the prevailing upper crustal conditions. 

855 7.5.2. Persistent impacts on plumbing systems and cyclic development

856 Although the precise age and duration of the compositionally anomalous eruptions described 

857 above are not generally constrained, their stratigraphic position directly overlying debris 

858 avalanche deposits or pre-collapse rocks (e.g., Ritter, Stromboli, Antuco; Table 3), generally 

859 as a single eruptive unit, suggests that they represent short-lived events that potentially 

860 occurred immediately after collapse. In contrast, subsequent periods of more persistent mafic 

861 volcanism may span time intervals of several thousand years (Fig. 6). This suggests that the 

862 compositionally anomalous eruptions mark the death of a plumbing system that is out of 

863 equilibrium with the collapse-modified surface load. That anomalous eruptions are not 

864 observed after all large sector collapses may simply reflect that eruptible magma wasn’t 

865 present at the time of collapse (Fig. 8), or that post-collapse stress conditions were not 

866 favourable to magma ascent (Table 1) – one of the outcomes predicted by Pinel and Albino 

867 (2013). The former interpretation is more consistent with observations: if the upper crustal 

868 reservoir is retained after collapse, but magma ascent is simply temporarily hindered, then 

869 this can’t explain long-term changes in erupted compositions. The fact that sharp 

870 compositional changes are observed in multiple examples, coeval with collapse, implies more 

871 fundamental impacts on plumbing systems, leading to a post-collapse magmatic regime that 

872 is discrete from the preceding one.

873

874 The eruption sequences at San Pedro, Tungurahua, Antuco, Stromboli and elsewhere can thus 

875 be interpreted in a framework of a pre-existing mobile reservoir, where unloading drives 

876 mixing of a previously stagnant magma body. In this interpretation, the earliest post-collapse 

877 magmas would not have erupted without sector collapse. It is notable that several of these 

878 anomalous eruptions were effusive (Hall et al., 1999; Costa and Singer, 2002; Martínez et al., 

879 2018), and not necessarily initiated by high overpressures or the ascent of volatile-rich 

880 magmas from the lower crust, but simply by upper crustal decompression (cf. Petrone et al., 

881 2009).
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882

883 Other examples, such as Soufrière Hills, Pelée and Tungurahua, support a coupling between 

884 edifice growth and magma storage, whereby post-collapse eruptions of deeper, mafic 

885 compositions are followed by a return to more evolved compositions (Hall et al., 1999; 

886 Boudon et al., 2013; Cassidy et al., 2015a) upon partial edifice regrowth and the re-

887 establishment of upper-crustal stalling of denser, mafic magmas. Longer timescale 

888 observations thus support a broad cyclicity of mafic to evolved volcanism, delineated by 

889 collapses, which are followed by sharp shifts to more mafic erupted compositions. This 

890 provides strong evidence that collapse is followed by the establishment of a storage and 

891 plumbing system distinct from the preceding one and, by implication, supports an inherent 

892 coupling between surface loading and the factors controlling magma storage and ascent.

893

894 The observation of sharp and wholesale shifts in magma composition calls into question 

895 models of magma storage that propose long-lived and large-volume liquid bodies, because it 

896 is difficult to conceive how such bodies could be bypassed or sufficiently diluted by younger 

897 magmas to erase preceding compositional signatures. Rather, reservoirs dominated by crystal 

898 mushes, susceptible to becoming immobile over short timescales, are more consistent with 

899 observations that require rapid adjustment of upper crustal plumbing systems to enable 

900 changes in dominant storage depths and the transit of magmas with persistently different 

901 assimilation and crystallisation histories.

902

903 7.5.3. Counter-examples and historical collapses

904 Many arc volcanoes affected by sector collapse have only limited age and compositional data, 

905 and even examples with better stratigraphic constraints, such as those in Fig. 6, may suffer 

906 from data gaps of many thousands of years or unresolvable age relationships. An absence of 

907 mafic post-collapse magmas (e.g., de Silva et al., 1993), or even an apparent shift to more 

908 felsic post-collapse compositions (e.g. Boudon et al., 2013), may thus be attributable to 

909 sparse stratigraphic reconstructions (cf. collapses on Martinique and St Lucia, much older 

910 than those outlined above, where the time gap between collapse and the next dated eruption is 

911 poorly resolved; Boudon et al., 2013), and may also be affected by burial of the earliest post-

912 collapse magmas.

913

914 At all arc volcanoes with high-resolution stratigraphic reconstructions spanning large-volume 

915 (several cubic kilometres; Table 3) sector collapses, the observations are consistent with the 
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916 processes outlined in Fig. 8. However, with the exception of Ritter Island in 1888 (Watt et al., 

917 2019), historical sector collapses show no such dramatic impacts on the underlying magma 

918 system. This may simply reflect the small magnitude of historical events (Table 2) relative to 

919 those in Table 3. The 1964 collapse at Shiveluch, for example, involved a fraction of the 

920 material mobilised in its late-Pleistocene collapse. If collapse-induced stress changes are 

921 comparable to those experienced by crustal magma reservoirs during normal cycles of 

922 pressurisation and eruption, then the plumbing system may withstand the impacts of collapse 

923 without major modification. Similar behaviour is observed in general eruptive activity: small 

924 eruptions fit within coherent trends of composition and style, while major eruptions, 

925 involving several cubic kilometres of magma, may mark sharp transitions in behaviour (e.g. 

926 Schindlbeck et al., 2014; Gavrilenko et al., 2016). What is notable about sector collapse is 

927 that the magma plumbing system may be modified without evacuation of the upper crustal 

928 reservoir. This implies that material within the pre-collapse reservoir remains in the crust, but 

929 a new plumbing system, giving rise to distinct compositions and evolutionary trends, can 

930 overprint the former regime.

931

932 Taranaki, New Zealand, provides an example of a volcano that may not fit into the scheme 

933 outlined above. Although Taranaki’s rocks display a gradual evolution to more evolved and 

934 more potassic compositions over its 130 kyr lifetime (Zernack et al., 2012), available data 

935 show no apparent sharp changes in magma composition following collapse (post-collapse 

936 stratigraphic constraints are, however, absent beyond the Holocene, due to burial during 

937 younger regrowth cycles). The volcano is remarkable for the number of identified collapses, 

938 and although their precise volume is difficult to constrain (Zernack et al., 2009, 2011), 

939 several appear to be comparable in scale to the events in Table 3 (Zernack et al., 2012). The 

940 collapse frequency is not as high as that at Augustine (Béget and Kienle, 1992) and Shiveluch 

941 (Belousov et al., 1999; Ponomareva et al., 2006), but the larger average collapse volume 

942 suggests that Taranaki, like these volcanoes, is characterised by a notably high magma flux 

943 and edifice growth rate. This elevated flux may limit the coupling between surface loads and 

944 the upper crustal plumbing system, if edifice growth outpaces the crustal response. This is 

945 suggested by the relatively constant long-term effusive flux at Taranaki (Zernack et al., 

946 2012), which contrasts with the more pulsatory eruptive flux observed at many volcanoes.

947 (Fig. 4).

948

949 8. Collapses at intraplate ocean islands
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950 Intraplate ocean islands represent a second volcano-tectonic setting where several 

951 comprehensive studies have identified large-scale flank collapses (e.g., Moore et al., 1989; 

952 Masson et al., 2002, 2008), and where the question of how collapse affects magma generation 

953 and storage has been addressed by different authors (cf. Longpré et al., 2009; Manconi et al., 

954 2009; Boulesteix et al., 2012; Hunt et al., 2018). Despite the common physical process of 

955 gravitational unloading, the magmatic impacts of ocean-island collapses should be evaluated 

956 separately to subduction zone volcanoes for a number of reasons. First, ocean islands are 

957 dominated by mafic volcanism and do not typically develop long-lived upper-crustal 

958 plumbing systems characterised by intermediate to evolved magmas (even if shallow mafic 

959 reservoirs develop; cf. Clague, 1987; Frey et al., 1991; Amelung and Day, 2002; Galipp et al., 

960 2006; Hildner et al., 2012). With limited shallow magma storage and without evolved 

961 compositions, the influence of loading on magma plumbing systems may be more poorly 

962 developed than in arc settings. This is not true of all ocean islands, however, with locations 

963 such as Tenerife, Canary Islands, producing large explosive eruptions of felsic magma (e.g., 

964 Bryan et al., 1998). Second, the dimensions of ocean islands (Figure 1) are in some cases 

965 comparable to the elastic thickness of the underlying (oceanic) lithosphere, and the 

966 dimensions of collapse-driven mass redistribution may even be significant in this context. 

967 Unlike arc settings, it cannot be assumed that the island mass is supported by the strength of 

968 the lithosphere, and there may be an isostatic response to landslide mass redistribution (cf. 

969 Smith and Wessel, 2000), and potentially an influence on melt production through mantle 

970 decompression (e.g., Presley et al., 1997). Finally, there are variable spatial relationships 

971 between flank collapses on ocean islands and the underlying plumbing system. The aspect 

972 ratio of collapses is generally lower (Figure 1), despite very large collapse volumes, and 

973 collapses may not necessarily overlie the central plumbing system due to the rift-zone 

974 structure that characterises many ocean islands (cf. the Orotava and Güímar collapses on 

975 Tenerife (Fig. 9), which lie on a rift zone outside the central Cañadas caldera structure; Martí 

976 et al., 1997; Carracedo et al., 2011).

977

978 8.1. Evidence of plumbing system modifications

979 Pressure constraints at several ocean islands suggest pre-eruptive magma storage at upper 

980 mantle depths, but observations imply that such deep plumbing systems can nevertheless be 

981 directly influenced by sector collapse (Table 4). At Fogo, Cape Verde Islands, magmas 

982 erupted after the Monte Amarelo collapse (123-62 ka) equilibrated at greater depths (~25 km) 

983 than pre-collapse magmas (~18 km), which showed a long-term shallowing trend prior to 
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984 collapse (although the absolute timescale of this is not well constrained; Hildner et al., 2012) 

985 (Fig. 10). Subsequent post-collapse regrowth involved magmas with a shallower and broader 

986 range of storage depths, suggesting development of an increasingly complex crustal plumbing 

987 system. A broadly similar pattern, spanning comparable depth ranges, has been identified at 

988 La Palma, Canary Islands, where the Bejenado volcano grew rapidly after the Cumbre Nueva 

989 collapse (560 ka; Guillou et al., 1998; Galipp et al., 2006) (Fig. 10). Younger Bejenado 

990 magmas show evidence of increased fractional crystallisation and possibly decreasing magma 

991 supply rates as the edifice developed, and the range of storage depths suggests entirely 

992 distinct pre- and post-collapse plumbing systems (Galipp et al., 2006). 

993

994 A detailed evaluation of shield-basalt sequences at the Teno massif, Tenerife, highlights 

995 further distinctive shifts in volcanism (Longpré et al., 2009) associated with two >20-25 km3 

996 landslides. These landslides interrupt and sharply reverse long-term trends towards more 

997 silicic and less magnesian lavas, and appear to have disrupted the pre-existing plumbing 

998 system. They resulted in explosive eruptions from minor shallow reservoirs (unusual in the 

999 long-term effusion-dominated context of the shield) and enabled the ascent and eruption of 

1000 deep, dense, crystal-rich mafic magmas in the early post-collapse period. Similar patterns 

1001 follow the El Golfo collapse on El Hierro, Canary Islands (Manconi et al., 2009), where the 

1002 pre-collapse stratigraphy includes evolved compositions (trachytes). Such rocks are absent in 

1003 the post-collapse stratigraphy, which is dominated by mafic, crystal-rich lavas. Numerical 

1004 models (Manconi et al., 2009) suggest that pressure changes in the deep plumbing system, on 

1005 the order of 1 MPa, are sufficient to disrupt stored magma, drive volumetric expansion and 

1006 potentially initiate fracturing and dyke ascent. 

1007

1008 Volcan Ecuador, in the Galapagos, provides a further example where sector collapse is 

1009 associated with a shift in the locus of volcanism following disruption of the shallow plumbing 

1010 system (comparable to changes in vent distribution following the SW landslides on Mauna 

1011 Loa, Hawaii (Lipman et al., 1990)), and where post-collapse magmas have elevated MgO 

1012 contents, suggesting favourable ascent of mafic melts (Geist et al., 2002). Shifts in vent 

1013 location, associated with modified magma ascent paths under post-collapse conditions, have 

1014 been observed in many ocean island (and some arc) settings (cf. Maccaferri et al., 2017) and 

1015 may play a role in the development of discrete post-collapse plumbing systems. A direct 

1016 relationship between rift-zone configuration and flank stability has been proposed at La 

1017 Palma (Day et al., 1999a), and on Tenerife it has been proposed that rift-zone reorganisation 
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1018 is a direct consequence of large-scale flank collapses (Walter et al., 2005), which may also 

1019 promote more centralised and evolved subsequent volcanism (Carracedo et al., 2011). 

1020 Maccaferri et al. (2017) propose that post-collapse stress redistribution, focusing dyke ascent 

1021 towards the collapse scar, can potentially act as a feedback mechanism promoting edifice 

1022 regrowth and subsequent collapses in the same area. Such a mechanism may be particularly 

1023 influential following very large volume collapses in a neutral tectonic environment, as 

1024 characterised by many ocean-island volcanoes. As suggested by the evolution of the NE rift 

1025 zone on Tenerife, focusing of volcanism within collapse scars can ultimately promote 

1026 shallow magma storage, differentiation, and the eruption of more evolved magma 

1027 compositions (Carracedo et al., 2011). Thus, the structural as well as the magmatic evolution 

1028 of islands such as Fogo (Day et al., 1999b; Maccaferri et al., 2017) and Tenerife (Carracedo 

1029 et al., 2011) may directly reflect the past history of sector collapse.

1030 The above examples indicate that although storage conditions and depth ranges may differ 

1031 from arc settings, the cyclic pattern of plumbing system modification at ocean-island 

1032 volcanoes, characterised by the transit of deeper magmas via simpler ascent routes in the 

1033 post-collapse period, with concomitant shifts in chemistry, petrography, and possibly 

1034 eruption style and vent position (Table 4), is comparable to the cone-rebuilding phase in Fig. 

1035 8. This implies that collapse-initiated reorganisation of magmatic plumbing systems is a 

1036 general process.

1037

1038 8.2. Impacts on shallow magma reservoirs

1039 Tenerife is unusual among ocean islands in having a central, large-volume shallow reservoir, 

1040 dominated by evolved compositions (Carracedo et al., 2007) (Fig. 9). Indeed, large-scale 

1041 sector collapses have been cited as a possible reason for the absence of shallow reservoirs on 

1042 some other ocean islands (Amelung and Day, 2002; Geist et al., 2002). The cyclic Bandas del 

1043 Sur ignimbrite deposits on Tenerife (Bryan et al., 1998, 2002; Brown et al., 2003; Edgar et 

1044 al., 2007) show that evolved magmas have been erupted for prolonged periods of the island’s 

1045 recent history, and the impact of the Icod collapse (~175 ka) on the shallow reservoir 

1046 (Carracedo et al., 2007; Boulesteix et al., 2012) provides further evidence that large ocean 

1047 island landslides impact magma plumbing systems in an essentially identical way to that 

1048 observed in arcs.

1049

1050 The Icod landslide deposit is associated with phonolitic pumiceous deposits, but the base of 

1051 the collapse scar is infilled by mafic lavas, which were erupted at elevated rates over a 10 kyr 
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1052 period (Boulesteix et al., 2012). Regrowth is interpreted to have led to stalling of mafic 

1053 magmas, accompanied by eruption of increasingly evolved compositions at decreasing rates. 

1054 This ultimately led to the growth of the phonolitic Teide volcano, fed from an established 

1055 upper crustal reservoir (Fig. 9). This sequence replicates very closely the model put forward 

1056 in arc settings, and shows the same transitions in magma composition and storage, on a 

1057 broadly similar timescale, observed at Montserrat, Martinique and the other examples cited 

1058 above (Fig. 8). 

1059

1060 It is clear that an evolved upper-crustal reservoir existed at the time of the Icod collapse. 

1061 Phonolitic pumice deposits consistent in age and composition with the Abrigo ignimbrite 

1062 (Fig. 9) are both cut by the landslide and appear in collapse-associated breccias (Boulesteix et 

1063 al., 2012), as well as appearing in the upper units of the Icod turbidite (Hunt et al., 2018) and 

1064 tsunami deposits (Paris et al., 2017). This suggests that a large explosive eruption occurred in 

1065 the latter stages of collapse, but that similar magma had also fed previous eruptions. Whether 

1066 an incipient explosive eruption (i.e. shallow magma ascent) led to collapse, or if the 

1067 accompanying eruption was truly collapse-triggered, cannot be deduced. In any case, the next 

1068 erupted lavas were mafic and no phonolitic deposits appear in the younger stratigraphy for 

1069 tens of thousands of years, replicating the patterns of mafic renewal observed at arc 

1070 volcanoes following termination of the upper crustal storage system.

1071

1072 Hunt et al. (2018) suggest that the pattern of contemporaneous pumice clasts occurring in the 

1073 upper units of collapse-derived turbidites is replicated by the Orotava collapse (~535 ka) on 

1074 Tenerife (possibly linked to the Granadilla eruption at 560-600 ka). A collapse-triggered 

1075 eruption seems less likely in this case, given the location of the Orotava landslide outside the 

1076 central caldera structure on Tenerife (Fig. 9), but it is plausible that pre-eruptive unrest led to 

1077 the collapse.

1078

1079 8.3. A direct influence on melting?

1080 Chemical evidence in support of a direct influence of collapse on mantle melt fraction is 

1081 provided by Hildenbrand et al. (2004) from Tahiti, where the 0.87 Ma collapse is followed by 

1082 a 90 kyr period of elevated eruptive flux, interpreted as the result of increased melt 

1083 production. Post-collapse trace-element and isotopic signatures are consistent with higher 

1084 degrees of mantle melting (Fig. 10). A gradual reversal of this chemical signature, 

1085 concomitant with a reduced eruptive flux, further supports a relationship between surface 
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1086 loading and mantle melt fraction, although parts of this longer-term trend may be associated 

1087 with plate movement away from the plume head.

1088

1089 A comparable pattern has been suggested for the evolution of Waianae volcano, Oahu, 

1090 Hawaii, where an onshore landslide scar marks the interval between the Palehua and 

1091 Kolekole members (Presley et al., 1997). Gradual evolution of the pre-collapse Palehua lavas 

1092 is consistent with a decrease in partial melting of 1-2 % through time, but the post-collapse 

1093 Kolekole lavas mark a sharp reversal of this pattern, consistent with a 1-2 % increase in 

1094 partial melting (Presley et al., 1997). Kolekole lavas are less differentiated and equilibrated at 

1095 greater depths than the preceding Palehua magmas. This pattern replicates observations at 

1096 Fogo and La Palma, while also suggesting, like Tahiti, a relationship between growth, 

1097 collapse and mantle melt fraction. Presley et al. (1997) suggest that the volume of the 

1098 Waianae slump is more than sufficient to explain the increase in partial melting implied by 

1099 post-collapse lava compositions. However, their assumptions may substantially overestimate 

1100 the impacts of decompression at melt-source depths (>80 km; Watson and McKenzie, 1991) 

1101 (cf. Manconi et al., 2009; Longpré et al., 2009). Changes in melt fraction and magma 

1102 compositions, comparable to those at Waianae, have not been documented for other Hawaiian 

1103 landslides (although renewed episodes of post-collapse volcanism have been noted following 

1104 some of these (cf. Presley et al., 1997)), and the calculations of Manconi et al. (2009) suggest 

1105 that, even for these very large collapses, there would not be a significant influence of 

1106 landslide mass redistribution on melt production.

1107

1108 9. Summary and conclusions

1109 Despite severe limitations in stratigraphic reconstructions, disparate data types, and potential 

1110 magmatic responses that span a range of timescales, a common pattern emerges from this 

1111 investigation of the impact of large-scale sector collapses on volcano-magmatic systems. 

1112 Observations are consistent with an intrinsic relationship between surface loading and the 

1113 development of mid- to upper-crustal magma reservoirs, indicating that changes to surface 

1114 loading can modulate magma ascent and storage, and are thereby manifested by shifts in 

1115 erupted compositions, eruption rate and style. Discrete, rather than gradual, shifts in eruptive 

1116 behaviour, replicated at several volcanoes and concomitant with collapse, implies that 

1117 wholesale and fundamental changes to the magma plumbing system can be driven by sector-

1118 collapse. This pattern is apparent in examples across both arc and intraplate settings. It is thus 

1119 reasonable to infer that the impact of large-volume sector collapse on underlying magma 
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1120 reservoirs is independent of tectonic setting, even though data don’t currently exist to test this 

1121 at rift or continental intraplate volcanoes.

1122

1123 Large sector collapses may be followed by compositionally anomalous and notably large-

1124 volume eruptions, which are often effusive. This short-timescale response is, however, 

1125 dependent on the presence of eruptible (i.e. with sufficient liquid proportions) magma in the 

1126 crustal reservoir, and is therefore not observed in all cases. The anomalous composition of 

1127 such eruptions implies disruption of an otherwise stable reservoir, and suggests that 

1128 compositions tapped from this reservoir during typical (i.e. unperturbed by collapse) periods 

1129 of volcanism are not fully representative of crustal magma compositions. These anomalous 

1130 events represent truly triggered eruptions (in contrast to eruption-triggered collapses, of the 

1131 Mount St. Helens type), and are not dependent on magma ascent driving the initial collapse. 

1132 They thus imply that surface mass redistribution alone has the potential to disrupt stored 

1133 magma bodies and initiate magma ascent. Although theoretical relationships suggest that 

1134 collapse is not necessarily expected to favour this process, such models are based on 

1135 simplified physical and geometrical assumptions that may not well represent a vertically 

1136 extensive, crystal-rich plumbing system. Thus, although the absence of triggered eruptions in 

1137 some cases could be consistent with post-collapse conditions that hinder dyke formation, they 

1138 could equally be explained by an absence of eruptible magma. The latter explanation is more 

1139 consistent with subsequent compositional changes in erupted magmas at volcanoes affected 

1140 by large-scale sector collapse.

1141

1142 There are multiple examples of sector collapses followed by a temporary (lasting 103-4 years) 

1143 shift to eruption of more mafic compositions, often at elevated eruption rates. Such behaviour 

1144 indicates that deeper, denser magmas can ascend to the surface without capture by a more 

1145 evolved upper-crustal reservoir. This implies both that surface loading may modulate mafic 

1146 magma stalling, and that solidification of the existing upper-crustal reservoir, to the extent 

1147 that mafic magmas can ascend to the surface, is a common result of large-scale sector 

1148 collapse. On longer timescales, upper-crustal storage is re-established following edifice 

1149 regrowth, with a transition towards eruption of more evolved compositions at eruption rates 

1150 comparable to pre-collapse activity. Volcano growth and collapse, with a co-developing 

1151 crustal plumbing system, can therefore be defined within a broadly cyclic pattern of 

1152 behaviour, on timescales of 104-5 years in arc settings. This supports theoretical relationships 

1153 that have previously been proposed, although stratigraphic reconstructions remain too coarse 
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1154 and incomplete to provide a quantitative analysis of this cyclicity. Broadly similar behaviour 

1155 is observed in intraplate ocean-island settings, but the absence of an evolved shallow 

1156 reservoir in many instances results in less clear compositional shifts than those outlined 

1157 above. Nevertheless, post-collapse changes in behaviour at ocean islands can be explained via 

1158 plumbing system disruption, and enhanced melt production is not a necessary part of the 

1159 general relationship between collapse and subsequent eruptive behaviour.

1160

1161 The relationships described above are evident in multiple examples of large-volume sector 

1162 collapses, generally with volumes exceeding 5 km3. These events are significantly larger than 

1163 historical sector collapses, with the exception of Ritter Island. The absence of such clear post-

1164 collapse responses following historical examples may thus be attributed to the smaller scale 

1165 of these events, both in absolute terms, and potentially as a proportion of the reservoir and 

1166 edifice volumes. The load redistribution associated with smaller collapses may be comparable 

1167 to volumetric and pressure changes during typical eruptive behaviour, and insufficient to 

1168 drive major changes to the plumbing system (the impacts may potentially be accommodated 

1169 by decompression within the reservoir (e.g., Voight et al., 2010), and a steady-state is thus 

1170 maintained). In contrast, the largest sector collapses, much less frequent in the history of 

1171 individual volcanoes, result in disequilibrium between the crustal reservoir and surface load, 

1172 marking major shifts in the long-term development of a volcano-magmatic system. The 

1173 magnitude of collapse is thus significant in terms of its magmatic impact, although 

1174 investigating the detail of this relationship is again constrained by limitations in 

1175 reconstructing collapse volumes and magma fluxes.

1176

1177 It is notable that surface mass redistribution alone can drive reorganisation of the upper 

1178 crustal plumbing system, without large scale magmatic eruption. In such cases, magma 

1179 within the pre-collapse reservoir remains in-situ, yet post-collapse mafic activity indicates 

1180 that subsequent eruptions can be fed by magma ascending through this reservoir. 

1181 Furthermore, isotopic, mineralogical and trace-element characteristics of post-collapse 

1182 evolved magmas imply that post-collapse upper-crustal reservoirs, although occupying a 

1183 similar depth range, represent a discrete plumbing system, not directly related to the pre-

1184 collapse storage system. Taken together, these observations are consistent with a vertically 

1185 extensive and crystal-dominated crustal plumbing system beneath volcanoes, since it is 

1186 difficult to envisage a large-volume, liquid dominated system resulting in such sharp changes 

1187 in behaviour.
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1188

1189 The patterns discussed here are based on a relatively small number of examples, representing 

1190 all available cases where chemical, chronological, stratigraphic and volumetric data are 

1191 sufficient to assess pre- and post-collapse patterns in volcanism. Even in these instances, the 

1192 impact of collapse can only be analysed at a low resolution. Further testing of the processes 

1193 outlined here, and the theoretical relationships that imply episodic development of volcanic 

1194 systems and modulation of magma storage by surface loading, is reliant on a greater number 

1195 of more detailed investigations of individual volcanoes affected by sector collapse, 

1196 combining compositional and stratigraphic information on timescales spanning tens of 

1197 thousands of years. The value of such studies lies not simply in improving the understanding 

1198 of individual systems, but in providing essential insights into the fundamental controls on 

1199 magma storage, eruptive behaviour, and the nature of magma reservoirs.
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1792 Table 1: Theoretical impacts of sector collapse on an upper crustal liquid magma bodya.
Pressure parameters (P) (Fig. 3)b and impact

Sector collapse type
Pr(f)< Pr(i) Pr(f)> Pr(i)

if Pm(f)> Pr(f)
if Pc(f)<Pm(f)< 

Pr(f)
if Pc(f)<Pm(f) if Pc(f)<Pm(f)

incipient 

eruption: larger 
eruption

smaller eruption
stalled 

eruption

Eruption-
related 
collapse

subsequent 

eruptions:

shorter time to eruption, higher 
rate

longer time to eruption, lower 
rate

if Pm(f)> Pr(f)Eruptible magma present

triggered 
eruption

otherwise, 
shorter time to 

eruption, 
higher rate

longer time to eruption, lower 
rate

No eruptible magma when eruptible magma forms, 
eruption favoured relative to 

pre-collapse conditions

when eruptible magma forms, 
eruption impeded relative to 

pre-collapse conditions

a cf. Pinel and Albino (2013)

b Subscript (i) refers to pre-collapse conditions; (f) refers to post-collapse conditions

1793

1794 Table 2: Summary of historical sector collapses (volumes >1 km3)a.
Location Date 

(A.D.)

Collapse 

volume 

(km3)

Preceding repose 

interval

Precursory 

activity

Post-collapse activity

Oshima-
Oshima, Japan

1741 2.5b ~1500 years ~10 days of 
explosive eruptions

Strong explosive eruption 
accompanying collapse; ~9 months 
intense activity; minor sporadic 
activity to 1790; no subsequent 
eruption

Ritter Island, 
Papua New 
Guineac

1888 4.2; 2.4d 1-3 years?; frequent 
minor explosive 
eruptions

Uncertain Compositionally bimodal post-
collapse eruption, including an 
evolved pumiceous component not 
known from any other Ritter 
samples. Extent of eruption-
associated turbidite, immediately 
overlying collapse deposits, 
suggests a powerful submarine 
explosive eruption triggered by 
collapse. Smaller subsequent 
eruptions have built a submarine 
scoria cone within the scar, 
compositionally distinct from pre-
collapse samples and involving 
both more mafic and more evolved 
components.

Bandai, Japan 1888 0.5e No magmatic 
activity for ~25 
kyr; phreatic 
explosions in 1808

1 week of minor 
seismicity; event 
triggered by M5 
earthquake 

Immediate strong phreatic eruption. 
No subsequent activity.

Shiveluch, 
Kamchatka

1964 1.15 Preceding eruption 
in 1946-50; 
frequent prior 
activity (effusive 
and explosive)

Seismicity over 10 
months, 
accelerating before 
collapse

Immediate phreatic explosion; 
Plinian eruption within minutes, but 
no directed blast. Broadly 
continuous extrusion with 
explosions from 1980 to present.

Mount St. 1980 2.3-2.5 Last eruption 2 months of Immediate lateral blast and Plinian 
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Helens, U.S.A. ~1857; frequent 
prior activity

increasing 
seismicity, slope 
deformation and 
phreatic explosions.

explosive eruption, followed by 
lava-dome extrusion; subsequent 
phases of dome extrusion.

a Data from Global Volcanism Program (2013) and: Oshima-Oshima (Katsui and Yamamoto, 1981; Satake and Kato, 
2001; Satake, 2007); Ritter (Johnson, 1987; Day et al., 2015; Karstens et al., 2019; Watt et al., 2019); Bandai 
(Yamamoto et al., 1999; Yoshida, 2013); Shiveluch (Belousov, 1995; Ponomareva et al., 2006); Mount St. Helens 
(Voight et al., 1983; Glicken, 1996).

b  The subaerial collapse scar suggests a much smaller volume (0.4 km3); the larger volume is based on relatively 
limited bathymetry, but is consistent with tsunami observations (Satake and Kato, 2001).

c The base of the scar is several hundred metres below sea-level, meaning that replacement by seawater partially 
compensates for the mass-removal associated with collapse.

d Volumes based on reconstructions in Day et al. (2015) and Karstens et al. (2019) respectively.
e An earlier quoted volume of 1.4 km3 is disputed by later authors, whose topographic reconstructions suggest a 

volume of ≤0.5 km3 (cf. Yoshida, 2013). 
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1796 Figure 1

1797 Example morphologies of volcanoes affected by sector collapse. A: Oblique view of Mount 
1798 St Helens, USA (image: NASA Earth Observatory), showing the approximate distribution of 
1799 the landslide mass (Glicken, 1996) following the 1980 sector collapse. The distance across 
1800 the collapse amphitheatre is 2 km. The deposit volume of 2.5 km3 was distributed up to 29 
1801 km from the volcano (Glicken, 1996). B: Gradient-shaded bathymetry of Ritter Island, Papua 
1802 New Guinea (image: Christoph Böttner), site of the largest historical sector collapse, in 1888, 
1803 showing the submerged island morphology (the shallowest edifice and subaerial remnant is 
1804 not shown). The collapse was approximately twice the volume of that at Mount St. Helens 
1805 (Day et al., 2015). C: Scale cross-sections (without vertical exaggeration) through Socompa, 
1806 Chile (one of the largest known subaerial sector collapses; Wadge et al., 1995) and Ritter 
1807 Island (Ward and Day, 2003), both composite volcanoes in arc settings, and El Hierro, 
1808 Canary Islands (Masson et al., 2002), one of the youngest examples of a large-scale flank 
1809 landslide on an oceanic intraplate volcanic island. The pre-failure surfaces are conjectural.
1810

1811 Figure 2

1812 A summary of documented sector collapses (>1 km3). A: Global distribution of known 
1813 examples, divided by tectonic setting. B: Relative proportions of sector collapse volumes 
1814 across different tectonic settings (for events where specific volume estimates are available). 
1815 Most subduction-zone collapses are <5 km3, and the very largest collapses are all from 
1816 intraplate ocean islands.
1817

1818 Figure 3

1819 A theoretical framework for investigating the effects of edifice loading on magma chamber 
1820 pressure, dyke formation and eruption rate (cf. Pinel et al., 2010). A: An edifice load ( )  !"ℎ

1821 affects the stress field around an upper crustal liquid cavity, characterised by a pressure Pm, 
1822 and connected to a deeper source with pressure PS and density . Pr describes the critical � 

1823 pressure for magma chamber rupture and dyke formation, and Pc the pressure at which this 
1824 dyke will close. Any change in edifice load (depicted in red) will alter Pm, Pr and Pc. B: The 
1825 rate of pressurisation of a shallow cavity connected to a deeper source depends on the 
1826 pressure difference between the two (shown by the black curve), predicting a constant 
1827 eruption rate under any particular set of conditions. If Pr is relatively low (condition 1), then 
1828 replenishment of the upper chamber (following the pressure drop to Pc) will be relatively 
1829 rapid. At higher Pr (condition 2), a longer pressurisation time results in a lower eruption rate. 
1830 C: As an edifice load increases, Pr falls to a minimum and then increases with further edifice 
1831 loading, with the eruption rate therefore following an opposite pattern. Sector collapse results 
1832 in an instantaneous reduction in edifice load. This may either favour (condition 1) or impede 
1833 (condition 2) subsequent eruptions, depending on the impact of unloading on Pr.
1834

1835 Figure 4

1836 Long-term eruptive flux at well studied composite arc volcanoes. The main graph shows 
1837 estimates of eruptive flux through time (<400 ka) compiled from detailed field studies at 
1838 thirteen volcanoes (Hildreth and Lanphere, 1994; Singer et al., 1997, 2008; Hobden et al., 
1839 1999; Davidson and de Silva, 2000; Thouret et al., 2001; Hildreth et al., 2003a, 2003b; Frey 
1840 et al., 2004; Bacon and Lanphere, 2006; Jicha and Singer, 2006; Hora et al., 2007, 2009; 
1841 Samaniego et al., 2012). Relatively short episodes of heightened output are often interspersed 
1842 with longer, quieter periods. The average of all datasets is shown as a red line (with shaded 
1843 upper and lower quartiles). The inset graph shows literature estimates of eruptive flux against 
1844 the duration of the estimate (data from Wadge, 1982; Hall et al., 1999; Thouret et al., 2001, 
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1845 2005; White et al., 2006; Singer et al., 2008; Samaniego et al., 2012; Zernack et al., 2012), 
1846 showing that decreasing temporal resolution leads to lower apparent flux.
1847

1848 Figure 5

1849 Examples of anomalous post-collapse eruptions, interpreted as representing collapse-driven 
1850 disruption of a pre-existing magma reservoir. A: Post-collapse lava flows at Antuco, Chile, 
1851 directly overlying the mid-Holocene sector collapse deposit. The two lavas have near 
1852 identical compositions, and are less mafic than the basalts that have dominated subsequent 
1853 cone rebuilding in the collapse scar. These lavas are unusually voluminous and extensive in 
1854 the context of both older and younger activity. B: Compositionally anomalous post-collapse 
1855 products at Nevado de Colima, Mexico (Robin et al., 1987, 1990) and San Pedro, Chile 
1856 (Costa and Singer, 2002). In both cases debris avalanche deposits are directly overlain by 
1857 units that span a wide bulk compositional range, and in the case of San Pedro also have a 
1858 distinctive phenocryst assemblage relative to both pre- and post-collapse products. Post-
1859 collapse lavas at Tungurahua, Ecuador, provide a comparable example (Hall et al., 1999).
1860

1861 Figure 6

1862 Post-collapse shifts to more mafic magma compositions (highlighted by bulk MgO and SiO2 
1863 compositions) for collapses at Soufrière Hills, Montserrat (Zellmer et al., 2003; Cassidy et al., 
1864 2012, 2015a), Pelée, Martinique (Boudon et al., 2013), Stromboli, Italy (Hornig-Kjarsgaard et 
1865 al., 1993; Vezzoli et al., 2014), and Parinacota, Chile (Hora et al., 2009). Data are plotted at 
1866 the same timescale and demonstrate the data gaps and differences in temporal resolution that 
1867 hinder inter-volcano comparisons and reconstructions of eruptive behaviour associated with 
1868 prehistoric sector collapses. When specific ages are unavailable, the stratigraphic intervals of 
1869 data are indicated by vertical arrows. Soufrière Hills and Pelée returned to eruption of more 
1870 evolved compositions, comparable but not identical to pre-collapse rocks. Further examples 
1871 of more mafic magmatism in post-collapse cone-building episodes are provided in Table 3.
1872

1873 Figure 7

1874 Persistent shifts in bulk magma compositions following sector collapse, at Shiveluch, 
1875 Kamchatka (Gorbach and Portnyagin, 2011; Gorbach et al., 2013) and Chimborazo, Ecuador 
1876 (Samaniego et al., 2012). The sharp nature of these shifts, replicated at several other 
1877 volcanoes, are interpreted as indicating that the post-collapse reservoir is discrete 
1878 (compositionally, geometrically or thermally) from the preceding system, with resultant 
1879 changes in the relative crustal influences on erupted magma compositions.
1880

1881 Figure 8

1882 A conceptual model of the impact of large-volume sector collapse at an arc volcano. The top 
1883 panel depicts the pre-collapse state, with a magma reservoir in equilibrium with the surface 
1884 load. Short term post-collapse behaviour is dependent on the presence of eruptible magma, 
1885 which may be destabilised by the surface mass redistribution. Cone rebuilding is promoted by 
1886 subsequent ascent of deeper mafic magmas, which may reach the surface with little 
1887 modification. Longer-term regrowth promotes upper crustal storage and a return to more 
1888 evolved compositions, but with a plumbing system that is spatially and temporally distinct 
1889 from the pre-collapse reservoir.
1890

1891 Figure 9

1892 Sector collapse and magmatic processes on Tenerife, Canary Islands. The map shows three 
1893 morphologically prominent collapse scars, the youngest of which is the Icod landslide (~175 
1894 ka; Boulesteix et al., 2012), as well as the location of the Micheque collapse scar (Carracedo 
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1895 et al., 2011). Mafic vent sites (from Dóniz-Páez, 2015) highlight the rift zone structure of the 
1896 island. More evolved magmas only erupt in the central region (Ablay et al., 1998), which is 
1897 also the location of the Cañadas caldera structure, and inferred to mark a long-lived upper 
1898 crustal magma reservoir. The central panel shows reconstructed eruption rates in the caldera 
1899 region following the Icod collapse, and the right panel shows bulk rock MgO and K2O 
1900 contents for the same area (based on extrapolated ages, and both derived from the lava 
1901 stratigraphy in Boulesteix et al. (2012)). This highlights a sharp-shift to mafic compositions 
1902 following the Abrigo ignimbrite eruptions (composition from Wolff et al. (2000)), 
1903 temporarily elevated and then declining eruption rates, and a trend towards more evolved 
1904 compositions as upper-crustal magma storage is re-established over a ~150 kyr period.
1905

1906 Figure 10

1907 Long-term magmatic trends at various ocean islands indicative of a direct collapse-driven 
1908 influence on magma plumbing systems. The left panel shows calculated storage depths (from 
1909 clinopyroxene-melt barometry) for eruptive units from La Palma, Canary Islands (Galipp et 
1910 al., 2006) and Fogo, Cape Verde Islands (Hildner et al., 2012), highlighting gradual 
1911 shallowing trends over ~100 kyr time periods, with a shift to higher pressures following 
1912 sector collapse. The right panel shows changes in trace element chemistry of lavas on Tahiti 
1913 (Hildenbrand et al., 2004, plotting only lavas with a differentiation index <30), either side of 
1914 the major ~870 ka collapse. A compositional shift coincides closely with collapse, and 
1915 suggests an interruption of long-term evolutionary trends. This is interpreted by Hildenbrand 
1916 et al. (2004) as reflecting a relationship between loading, collapse, and mantle partial melting, 
1917 with a collapse-driven increase in melt fraction.
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