

University of Birmingham

FPGA-based high-performance parallel architecture
for homomorphic computing on encrypted data
Sinha Roy, Sujoy; Turan, Furkan; Jarvinen, Kimmo; Vercauteren, Frederik; Verbauwhede,
Ingrid
DOI:
10.1109/HPCA.2019.00052

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Sinha Roy, S, Turan, F, Jarvinen, K, Vercauteren, F & Verbauwhede, I 2019, FPGA-based high-performance
parallel architecture for homomorphic computing on encrypted data. in 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA)., 8675244, High-Performance Computer Architecture, IEEE
Symposium on, IEEE Computer Society Press, pp. 387-398, 25th IEEE International Symposium on High
Performance Computer Architecture (HPCA 2019), Washington, DC, United States, 16/02/19.
https://doi.org/10.1109/HPCA.2019.00052

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren and I. Verbauwhede, "FPGA-Based High-Performance Parallel Architecture for
Homomorphic Computing on Encrypted Data," 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA),
Washington, DC, USA, 2019, pp. 387-398.
doi: 10.1109/HPCA.2019.00052

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1109/HPCA.2019.00052
https://doi.org/10.1109/HPCA.2019.00052
https://birmingham.elsevierpure.com/en/publications/f3cd0a3f-ad86-4074-81f1-b131b718592a

FPGA-based High-Performance Parallel
Architecture for Homomorphic Computing on

Encrypted Data
Sujoy Sinha Roy∗†, Furkan Turan∗, Kimmo Järvinen‡, Frederik Vercauteren∗ and Ingrid Verbauwhede∗

∗KU Leuven, imec-COSIC, Belgium
†University of Birmingham, School of Computer Science, United Kingdom

‡University of Helsinki, Department of Computer Science, Finland
∗firstname.lastname@esat.kuleuven.be †s.sinharoy@cs.bham.ac.uk ‡kimmo.u.jarvinen@helsinki.fi

Abstract—Homomorphic encryption is a tool that enables
computation on encrypted data and thus has applications in
privacy-preserving cloud computing. Though conceptually amaz-
ing, implementation of homomorphic encryption is very challeng-
ing and typically software implementations on general purpose
computers are extremely slow. In this paper we present our
year long effort to design a domain specific architecture in a
heterogeneous Arm+FPGA platform to accelerate homomorphic
computing on encrypted data. We design a custom co-processor
for the computationally expensive operations of the well-known
Fan-Vercauteren (FV) homomorphic encryption scheme on the
FPGA, and make the Arm processor a server for executing
different homomorphic applications in the cloud, using this
FPGA-based co-processor. We use the most recent arithmetic
and algorithmic optimization techniques and perform design-
space exploration on different levels of the implementation
hierarchy. In particular we apply circuit-level and block-level
pipeline strategies to boost the clock frequency and increase
the throughput respectively. To reduce computation latency, we
use parallel processing at all levels. Starting from the highly
optimized building blocks, we gradually build our multi-core
multi-processor architecture for computing. We implemented and
tested our optimized domain specific programmable architecture
on a single Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation
Kit. At 200 MHz FPGA-clock, our implementation achieves
over 13x speedup with respect to a highly optimized software
implementation of the FV homomorphic encryption scheme on
an Intel i5 processor running at 1.8 GHz.

Keywords-Cloud computing, privacy in cloud computing, ho-
momorphic encryption, FV homomorphic encryption, lattice-
based cryptography, polynomial multiplication, number theoretic
transform, domain specific accelerator, hardware accelerator

I. INTRODUCTION

Cloud services play an important role in our everyday life.
When we update our Facebook status, check bank balance
or upload photos on Instagram, we use cloud computers. In
business applications, cloud services can be used for storing
and processing information, analyzing big-data, providing
an environment for test and development, supporting cost-
effective disaster recovery, backing up files and so on [1].
However, cloud computing raises privacy issues. To compute
on the data using cloud services, we need to deliver our
data unencrypted. Since a cloud computer is a third-party

resource, the owner of the cloud can see, use or abuse the
unencrypted data. For instance, our internet search engine
shows advertisements for cheap hotels or car rental just after
searching for a flight. A cloud service provider may analyze
business data of its clients for its own gain! Homomorphic
Encryption (HE) is a tool to prevent invasion of users’
privacy while keeping the conveniences offered by the cloud
services. HE enables computation on encrypted data: users
can upload their encrypted data to the cloud, and yet perform
computations while it is kept encrypted (hidden from cloud
owner). Some of the many interesting HE applications are:
privacy-preserving services for information storage and
processing in business and health-care applications [2],
encrypted web-search engine [3], electronic voting, and
privacy-preserving prediction from consumption data in smart
electricity meters [4], machine learning on encrypted data [5]
etc.
State of the art: Though, HE was conceptualized by
Rivest, Adleman and Dertouzos [6] almost 40 years ago in
1977, the construction of a HE scheme that can compute
‘complex’ operations on encrypted data was an open
problem until 2009 when Gentry came up with the first
construction of such a scheme [7]. The first generation of
HE schemes including Gentry’s were extremely slow, hence
did not provide a practical solution. Current generation
HE schemes [8], [9] increased the performance by orders
of magnitude; however, their software implementations
are still very slow. Recent implementation in a high-end
GPU [10] reduce the computation time by several factors.
Hardware accelerators offer parallel processing capabilities
to achieve fast computation time. In the literature there
are several reported hardware implementation that try to
speedup performance of HE schemes [11]–[21]. Several
of these reported implementations report only simulation
based results. An actual hardware implementation requires
additional building blocks to perform memory management,
synchronization of parallel cores, and reliable interfacing with
a host processor, etc. This makes implementation of complex
HE schemes in hardware very challenging.

Our contributions:
During the Turing 2018 Award Ceremony, Hennessy and

Patterson pointed out that domain-specific architectures are
going to be the computer architectures of the future as the
performances of general-purpose computers are touching their
limits. As HE is so complex, such general-purpose devices
fail to satisfy a practical application. Therefore, we propose
a domain-specific architecture for HE, implemented on an
Arm+FPGA heterogeneous platform, that could accelerate
homomorphic computations on encrypted data in cloud instal-
lations.

The hardware is used to accelerate the Fan-Vercauteren
(FV) scheme which is a popular HE scheme and has been
implemented in several software libraries, e.g. FV-NFLlib from
CryptoExperts [22] and SEAL from Microsoft [23]. Its hard-
ware implementation poses unique challenges as it depends on
dozens of modules in the design-hierarchy and their careful
integration. High performance is obtained by minimizing the
number of clock cycles with the help of parallel processing,
and at the same time boosting the clock frequency with a
pipelined datapath design. In addition, multiple processors are
instantiated at the higher level to distribute the computation.

We study the mathematical steps used in the sub-routines,
analyze data dependencies and apply circuit-level pipeline
strategy when constructing the building blocks for the complex
sub-routines. At the higher level where the building blocks
are connected, we apply a block-level pipeline strategy and
an optimized task-scheduling to increase the throughput. To
reduce the number of cycles, we instantiate multiple process-
ing elements inside the building blocks after taking care of the
data dependencies. Starting from these fast building blocks, we
gradually construct our multi-core processor architecture and
implement it in FPGA to compute homomorphic operations
on encrypted data.

We designed the hardware and its software counterpart
in a Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation
Kit [24] and verified its correctness. With these optimization,
our domain specific hardware architecture achieves 400 homo-
morphic multiplications per second at 200 MHz FPGA-clock,
including hardware-software communication overhead. This
is over 13x faster than a FV-NFLlib based highly optimized
software running on an Intel i5 processor at 1.8 GHz clock
frequency.

Last but not least, we make the source codes of our
domain-specific accelerator architecture and documentation
available on https://github.com/KULeuven-COSIC/HEAT.

The organization of this paper is as follows: A mathematical
background on homomorphic encryption is provided in Sec. II.
The parameters for the system are presented in Sec. III. Sec. IV
discusses the design decisions, approaches and algorithms
used. Architecture details are provided in Sec. V and the
implementation results shown in Sec. VI. The final section
draws the conclusions.

II. BACKGROUND

A. Homomorphic encryption
A homomorphic encryption scheme is an augmented en-

cryption scheme with two additional routines HE.Add() and
HE.Mult() to perform add or multiply on encrypted data.
Due to its mathematical homomorphism, the result is still an
encrypted data (called ciphertext) encrypting the sum or re-
spectively the product of the plaintexts. Users can upload their
ciphertext in an untrusted cloud and still perform computations
on their ciphertext without the need for decryption.

Existing HE schemes are ‘noisy’ in nature. Noise is used to
hide the message during encryption. With every homomorphic
evaluation on the ciphertext, the noise in the result-ciphertext
increases. There is also a noise threshold beyond which further
homomorphic evaluations would result in decryption failures.
This threshold value is called the ‘depth’ of the homomorphic
scheme and it is determined by the choice of parameter set
(e.g, length of data structures and size of coefficients etc.). In a
simplistic view, ‘depth’ of a homomorphic encryption scheme
is analogous to ‘critical path’ of a circuit. An HE scheme
that supports a limited number of evaluations on ciphertext is
called ‘Somewhat Homomorphic Encryption (SHE).’ When an
HE supports unlimited number of evaluations on ciphertext, it
is called ‘Fully Homomorphic Encryption (FHE)’ scheme. Ex-
isting constructions of FHE schemes start from a SHE scheme
and use a complicated mechanism known as ‘bootstrapping’
on top to reduce the noise in the result. Though conceptually
amazing, this bootstrapping mechanism requires a very large
parameter set which adds a drastic performance penalty. In
most real-life applications, the complexity (i.e., the depth) is
bounded and hence application of SHE instead of FHE makes
more sense. In the following sub-section, we briefly describe
the well-known FV [9] SHE scheme for which we have
constructed our domain-specific high-performance computer
architecture.

B. FV SHE scheme
The FV SHE scheme was introduced by Fan and Ver-

cauteren [9] in 2012. Like all other SHE schemes, FV performs
‘complicated’ mathematical operations. In this paper, we only
provide a high-level description of the scheme, while details
can be found in the original FV paper [9]. The FV scheme
augments a Ring Learning With Errors (ring-LWE) public-
key encryption scheme with two additional functions Add
and Mult to perform addition and multiplication respectively
on ciphertext. The encryption and decryption operations are
described using a block diagram in Fig. 1.

All computations are performed in a polynomial ring R =
Z[x]/〈f(x)〉 with reduction polynomial f(x) = Φd(x), the
d-th cyclotomic polynomial of degree n = ϕ(d). The ring
is denoted as Rq when the coefficients of the polynomials
reduced to modulo q which is an integer. All variables shown
in Fig. 1 are degree n − 1 polynomials. The public key is
the pair (p0, p1) and the private is s. During encryption, the
message m is encoded, three polynomials (u, e1, e2) are sam-
pled from an error distribution (typically a discrete Gaussian

https://github.com/KULeuven-COSIC/HEAT

c
1

c
0

u

e
1

e
2

p
0

p
1

Encoder
m

m
~

m

m’

FV.DecryptFV.Encrypt

s

GaussNoise

Decoder

Fig. 1. FV encryption and decryption.

distribution) and then polynomial additions and multiplications
are performed to generate the ciphertext c which consists
of two polynomials (c0, c1) ∈ (Rq, Rq) with coefficients
modulo q. In practice, the coefficients of u are uniformly
random signed binary numbers. The decryption performs a
polynomial multiplication followed by an addition and finally
decoding. The security of the encryption scheme relies on
the ring-LWE problem which states that, given many tuples
(ai, bi) ∈ (Rq, Rq), where bi = ai · s + ei, ai is uniformly
random, and s and ei are unknown polynomials sampled from
a proper error distribution, it is computationally unfeasible to
compute the secret s.

Now we describe the Add and Mult functions that en-
able computation on ciphertext. Note that these are the two
functions that are executed in the cloud and our hardware
accelerator targets them. Let us consider two ciphertexts
c0 = (c0,0, c0,1) and c1 = (c1,0, c1,1). FV.Add simply adds
the polynomials of the two input ciphertexts and outputs the
result ciphertext c = (c0,0 + c1,0, c0,1 + c1,1). FV.Mult is the
most complicated operation and it determines the noise growth
in the ciphertext. The steps are shown using a block diagram
in Fig. 2.

q QLift

q QLift

q QLift

q QLift WordDecomp

c~
0

c~
1

c~
2

c
0,0

c
0,1

c
1,0

c
1,1

c
0

c
1

Q qScale

Q qScale

Q qScale

2

 ReLin

 ReLin

c
~

rlk

rlk

0

1

Fig. 2. FV homomorphic multiplication.

The FV.Mult uses additional routines, namely Liftq→Q,
ScaleQ→q , WordDecomp and ReLin, besides polynomial
addition and multiplication. Liftq→Q is used to lift the poly-
nomials to RQ from Rq where Q is a much larger modulus
than q and is in the order of O(n · q2). ScaleQ→q works
in the reverse way, i.e., it scales polynomials from RQ to
Rq . WordDecomp is used to decompose a polynomial, say
a ∈ Rq , in base w by slicing each coefficient of a. It
returns a vector of polynomials (as shown using ‘bold’ font
in Fig. 2). A toy example of WordDecomp follows. If the
polynomial a(x) = 43 + 39x + · · · with 6-bit coefficient

size is decomposed in base w = 24, then it outputs a vector
consisting of two polynomials a0(x) = −5 + 7x + · · · and
a1(x) = 3 + 2x + · · · , where a(x) = a0(x) + 24 · a1(x).
Hence WordDecomp is a cheap operation as it requires only
bit-level manipulation. ReLin takes the vector of polynomials
generated by WordDecomp as input and uses a special
‘relinearization’ key rlk = (rlk0, rlk1) which is a fixed
vector of polynomials, and computes a relinearised ciphertext
c = {c0, c1} ∈ {Rq, Rq}, where c0 = c̃0 +SoP(c̃2, rlk0) and
c1 = c̃1 + SoP(c̃2, rlk1). Here SoP stands for summation of
products.

III. SYSTEM SETUP

A. Parameter set

The multiplicative depth, i.e., the maximum number of
homomorphic multiplications in the critical path that can be
performed before the noise crosses the threshold value, is
determined by the parameter set of the implementation. Larger
parameter set implies greater multiplicative depth. In this
paper we design our domain specific processor architecture
to support applications with small multiplicative depth, say up
to 4. This multiplicative depth is enough to support several
statistical applications such as privacy-friendly forecasting for
the smart grid [4], evaluation of low-complexity block cipher
such as Rasta [25] on ciphertext, private information retrieval
or encrypted search in a table of 216 entries, encrypted sorting
etc. To achieve a multiplicative depth of four and at least 80-
bit security [26], we set the size of modulus q to 180-bit,
the length of polynomials to 4096 coefficients, the standard
deviation of the error distribution to 102 and the width of the
larger modulus Q to at least 372-bit.

B. Residue number system

Designing a high-performance domain specific processor
architecture that supports polynomial arithmetic having 4096
coefficients, each of size 180 or 372-bit is indeed very chal-
lenging. The best performance can be achieved in hardware if
we could leverage the hardware’s inherent parallelism. Among
different levels of abstractions, parallelism at the algorithm-
level leads to the best performance and eases the implemen-
tation of a parallel architecture. A Residue Number System
(RNS) offers algorithm-level parallelism in long modular
arithmetic. Let the modulus q a product of coprimes q =

∏
qi.

RNS represents a large integer modulo q using a set of
smaller integers modulo qi. Arithmetic on the large integer gets
mapped into multiple smaller arithmetic operations modulo qi
which can be computed in parallel. RNS relies on the Chinese
Remainder Theorem (CRT) which follows.

Theorem 1: Given pairwise coprime positive integers qi and
arbitrary integers ai, the system of simultaneous congruences
{x ≡ ai mod qi} has a solution, and the solution is unique
modulo q =

∏
qi.

The general way to construct the solution is to compute
x ≡

∑
ai · q̃i · q∗i mod q, where q∗i = q

qi
and q̃i = (q∗i)−1

mod qi are constants. On the other hand, given an integer a
mod q, we can get a representation in RNS just by computing

the residues a mod qi. We use 30-bit primes to construct the
RNS for our implementation. The modulus q is taken as a
product of six 30-bit primes, thus q is 180-bit. The larger
modulus Q is taken as a product of q and additional seven
30-bit primes and thus Q is a 390-bit integer. Let p = Q/q is
the product of the last seven primes. A polynomial in Rq (or
RQ) is represented using six (or 13) residue polynomials in
Rqi . In the FV scheme, polynomial arithmetic operations such
as additions or multiplications can be performed efficiently by
processing the residue polynomials in parallel.

Though the application of RNS speeds up computation,
it has a major bottleneck. In the FV scheme, Liftq→Q and
ScaleQ→q operations require switching from one RNS to
another as the coefficients are moved from modulo q to
modulo Q or vice versa. This requires ‘merging’ of the parallel
residue polynomials using the general method described for
Theorem 1.

IV. APPROACH AND ALGORITHMS

The unique challenges that we faced while constructing the
high-performance architecture and the design decisions that
we took to address them are described here. As described
in Sec. II, an application computes on encrypted data us-
ing homomorphic addition (Add) and multiplication (Mult)
operations. Implementation of Add is easy as it requires
only coefficient-wise addition of the ciphertexts. The actual
challenge lies in the implementation of Mult which performs a
set of costly modular arithmetic operations as shown in Fig. 2.

A. HW/SW codesign and task partition.

To design our domain specific architecture, we follow a
hardware-software (HW/SW) codesign approach since it offers
the flexibility of software and the efficiency of hardware. As
the target platform, we chose the heterogeneous Xilinx Zynq
UltraScale+ MPSoC ZCU102 Evaluation Kit which has an
FPGA coupled with Arm processors. HW/SW partitioning is
performed after analyzing the requirement of flexibility, cost of
computation and overhead of communication. We introduced
domain-specific programmability in the FPGA to accelerate
costly polynomial operations. This gives flexibility to the Arm
processor to support various cloud computing applications.
In [4] it was shown that the maximum time is spent on
computing Mult in the privacy-friendly prediction application
for smart grids. Hence, we focused on accelerating the Mult
using the FPGA. Add can be implemented in either software
or hardware since it is both a basic and fixed operation. We
actually implement the Add in hardware as we found the
software to be slow by an order of magnitude.

B. Polynomial multiplication.

In our parameter set, the polynomials consist of 4096
coefficients. For such large polynomials, computation time is
significantly determined by the complexity of the polynomial
multiplication algorithm. A survey of fast polynomial multipli-
cation algorithms can be found in [27]. Fast Fourier Transform
(FFT) based polynomial multiplication has the lowest time

Algorithm 1 Iterative NTT [28]
Input: Polynomial a(x) ∈ Zq[x] of degree n− 1 and n-th primitive
root ωn ∈ Zq of unity
Output: Polynomial A(x) ∈ Zq[x] = NTT(a)

1: A← BitReverse(a) . permutation of coefficients
2: for m = 2 to n by m = 2m do
3: ωm ← ω

n/m
n

4: ω ← 1
5: for j = 0 to m/2− 1 do . butterfly loop
6: for k = 0 to n− 1 by m do
7: t← ω ·A[k + j +m/2]
8: u← A[k + j]
9: A[k + j]← u+ t

10: A[k + j +m/2]← u− t
11: end for
12: ω ← ω · ωm

13: end for
14: end for

complexity of O(n log n). During a polynomial multiplication,
Fourier transform is applied on the input polynomials to bring
them to the Fourier domain. In the Fourier domain, multiplica-
tion is a coefficient-wise operation. Finally, an inverse Fourier
transform is required to bring the result back to polynomial
representation. FFT and inverse-FFT are fast methods that
compute the transformations in O(n log n). More information
about FFT-based polynomial multiplication can be found in
[28]. However, FFT and inverse-FFT perform arithmetic using
real numbers and thus suffer from approximation errors, which
are not desired in cryptographic applications. Instead of FFT,
we use the Number Theoretic Transform (NTT) which is a
generalization of FFT and performs only integer arithmetic. An
iterative version of the NTT algorithm is shown in Alg. 1. The
coefficients of the input polynomial are permuted first using
the BitReverse() function; then there are three nested
loops. Inside the inner-most loop, the ‘butterfly operation’,
which consists of a modular multiplication by constants ω
followed by modular addition and subtraction, is performed.

C. Lift q→Q

In this step a polynomial in Rq is lifted to the ring RQ with
the larger modulus Q. If RNS is not used, i.e., if traditional
180-bit big-integer representation is used, then this lifting
is free of cost as a coefficient which is in Zq is also in
ZQ. However, we use the RNS representation and represent
each coefficient using six 30-bit residues (as described in
Sec. III-B) to leverage parallel processing. The RNS basis
of Q is an extension of the RNS basis of q by seven more
primes. Thus, to lift a coefficient from the RNS of q to the
RNS of Q, we need to compute the additional residues. In
the following we describe two ways to compute Liftq→Q. We
design hardware architectures for both methods and compare
performances.

Using traditional CRT: Let a coefficient a in Zq is repre-
sented in the RNS using the residues ai where the RNS-base
is composed of the primes qi.

The first step is to construct the simultaneous solution
modulo q from the RNS representation applying the CRT
(Theorem 1) as shown below.

a ≡
5∑
0

ai · q̃i · q∗i − v · q (1)

Here v is the rounded quotient after dividing the sum
of products

∑
ai · q̃i · q∗i by q. This computation involves

long-integer multiplications by q∗i , followed by long integer
additions, and finally one long-integer division. After this
reconstruction, the extended RNS basis (in modulus Q) is
obtained by computing the additional residues a mod qj for
6 ≤ j ≤ 12. Again, these reductions by qj require costly
multi-precision arithmetic.

Using approximate CRT: This is a new algorithm proposed
by Halevi, Polyakov and Shoup in 2018 [29]. From now on
we refer this optimized method as the ‘HPS method’. The
algorithm avoids long integer arithmetic by introducing ap-
proximation in the calculation of the quotient v. The algorithm
computes the simultaneous solution in a way different than in
Eq. 1.

a ≡
∑(

ai · q̃i mod qi
)
· q∗i − v′ · q (2)

Here v′ =
⌈
(
∑

(ai · q̃i mod qi) · q∗i)/q
⌋

and after a
simplification [29] it becomes v′ =

⌈∑ ai·q̃i mod qi
qi

⌋
. Note

that, each of ai, qi and q̃i is a 30-bit integer. The approximation
is introduced during the division by qi. Using IEEE 754 double
floats data type, one can bound the approximation error to
2−53 [29]. This negligible error has in practice no impact on
the correctness of HE.

D. Scale Q→q

In this step the coefficients of a polynomial in RQ are
scaled down and the result is a polynomial in Rq with smaller
modulus q. This scaling down operation takes a coefficient,
say a ∈ ZQ, and performs a division followed by a rounding
operation to get an intermediate scaled coefficient d t·aq c where
t is the plaintext modulus (e.g., 2 for binary messages). Finally
a modular reduction by q is performed to get the corresponding
coefficient of the result polynomial in Rq . As we represent
the input coefficients using RNS, we need to compute the
simultaneous solution modulo Q to perform the division
operation. We have two approaches. The first approach uses
long integer arithmetic to compute these steps. The second
approach [29] shows an ingenious way to compute the result
without using long integer arithmetic in the following two
major steps.

1) First d t·aq c is computed in the RNS of p using arithmetic
of small numbers. This step computes d t·aq c mod qj =⌈∑5

0 ai ·
tQ̃ip
qi

⌋
+ aj · tQ̃jq

∗
j mod qj for 6 ≤ j ≤ 12.

Here Q̃k = (Q/qk)−1 mod qk for k = i and k = j.
In the actual computation, the constants are also 30-bit

integers as the computation is performed modulo 30-bit
primes qj .

2) Finally, a basis switching from the RNS of p to the RNS
of q is performed using Liftq→Q.

We design two architectures for the two approaches for com-
puting ScaleQ→q and compare their performances.

V. ARCHITECTURE DETAILS

At the highest level of abstraction, our architecture for com-
puting on ciphertext is composed of two parts: a software part
running on the multi-core Arm processor, and an instruction-
set coprocessor on the FPGA. The coprocessor accelerates
custom homomorphic operations. It is composed of three main
components: polynomial arithmetic unit, lifting-and-scaling
unit and memory file.

A. Polynomial arithmetic unit

This unit is responsible for computing addition, subtraction
and multiplication on the residue polynomials. It has been
designed to achieve maximum parallel processing capability.
The first level of parallelism is achieved using dedicated
‘Residue Polynomial Arithmetic Unit’ (RPAUs) leveraging the
parallelism inherently in the RNS representation. Another level
of parallelism is obtained by instantiating multiple parallel
residue arithmetic cores within each RPAU.

1) Choice for number of RPAUs: The RNS of q and Q
are composed of six and thirteen primes respectively. If we
keep one RPAU dedicated to each prime, then we achieve the
maximum parallelism. But, computation is performed most of
the time in the RNS of q and as a consequence the seven
RPAUs for the last seven primes would remain idle most of
the time. We keep only d13/2e = 7 RPAUs in the architecture
where each one (except the last) is resource-shared by two
primes. E.g., the first RPAU is shared by q0 and q6, the second
by q1 and q7, and so on. The last RPAU is used only by q12
as the total number of primes used in our implementation is
13 which is an odd integer. With this configuration, arithmetic
in the RNS of q is computed in a single batch using the first
six RPAUs. Arithmetic in the RNS of Q is computed in two
batches: the first batch is for the primes q0 to q5 and the last
batch is for the primes q6 to q12.

2) Choice for number of cores in RPAU: It is easy to
observe that the NTT computation in Alg. 1 is amiable to
parallel processing. It appears that using c number of cores
we could reduce the computation time roughly by a factor
c. However, the algorithm level parallelism is bottlenecked
by memory access. Block RAMs (BRAMs) are ideal for
storing large arrays of coefficients in FPGAs. In our target
Zynq FPGA [24], each BRAM36K slice can store an array
of 1024 elements where each element is of size 36 bits. A
BRAM36K comes with two ports for memory access and
thus we can read/write two coefficients per cycle. In our
implementation, a residue polynomial (4096 coefficients) is
stored using four BRAM36K slices. During NTT, one port of
a BRAM36K slice is used for reading and the another port is
used for writing. Since a residue polynomial is distributed in

four BRAM36K slices, the maximum memory access rate is
eight coefficients per cycle. In Alg. 1, the butterfly operation
consumes a pair of coefficients and produces another pair of
coefficients. Hence, we set the number of butterfly cores to
two to achieve maximum efficiency in the read-compute-write
stream: four coefficients (two pairs) are read, then they are
processed using the two butterfly cores, and finally the output
four coefficients are written back every cycle.

We like to remark that the number of parallel RPAUs and
the number of butterfly cores are also dependent on the amount
of resources available in the target hardware platform. In our
FPGA we could fit the above mentioned numbers and thus
achieve a heavily parallel coprocessor architecture.

3) Memory access scheme for parallel NTT: NTT has a
complex memory access pattern due to loop-dependent index
gap between the two coefficients that are processed in the
butterfly steps (see Alg. 1). When parallel butterfly cores are
used, memory access pattern becomes even more complex and
this might lead to memory access conflicts; e.g., two cores are
trying to read or write simultaneously in the same BRAM.
Furthermore, if the two coefficients A[k+j] and A[k+j+m/2]
in line 9 and 10 of Alg. 1 reside in the same BRAM, then
their reads must be performed sequentially over the single read
port. Hence, a special memory access scheme is needed to
tackle these two issues. In [20] a single core memory-efficient
NTT algorithm was constructed that overcomes the second
bottleneck by keeping the two required coefficients (A[k + j]
and A[k+ j +m/2]) together in a same word of the memory.
Thus, a single read operation brings the paired coefficients to
the arithmetic unit. In our implementation we store the paired
coefficients in the same memory word [30] and construct a
dual core NTT algorithm that overcomes the first bottleneck,
i.e., access conflict.

As two coefficients are stored in the same word, the virtual
depth of the memory becomes 2048 and the virtual word size
becomes 60 bits. The memory unit is composed of two blocks
(vertical brown rectangles in Fig. 3), each containing 1024
words of 60-bit size. The lower block is accessed for the
address range 0 to 1023 and the upper block is accessed for
the address range 1024 to 2047. Within each brown block,
two BRAM36Ks are aligned, i.e., they have a common read
address bus, a common write address bus and a common write
enable signal. These brown blocks can be accessed in parallel.

The pattern of memory reads during the execution of our
dual core NTT algorithm is shown in Fig. 3. Write operations
during NTT have the same pattern, and hence they are not
shown in the figure. Read requests by the first and the second
butterfly cores are indicated using R and R′ respectively with
the sequence numbers. The access pattern changes depending
on the outer-most loop variable m in Alg. 1.

From m = 2 (start of NTT) till m = 1024, the maximum
index-gap between two consecutive read/write addresses is
512. Hence, the memory addresses requested by the first and
the second butterfly cores are exclusively within the ranges
[0, 1023] and [1024, 2047] respectively. Naturally, the first
core reads/writes the lower memory block and the other core

R0

R1

R1022

R1023

R’0

R’1

R0

R1

R1022

R1023

R’0

R’1
R’1022

R’1023

R’1022

R’1023

R0

R1

R1022

R1023

R’0

R’1

R’1022

R’1023

Iteration m = 1024

Index gap = 512

Iteration m = 2048

Index gap = 1024

R0

R1023

R’0

R’1023

Iteration m = 4096

2047

2046

1536

1535

1025

1024

1

1022

512

0

1023

1

1022

512

0

1023

511

2047

2046

1536

1535

1025

1024

2047

2046

1536

1535

1025

1024

1

1022

512

0

1023

511

1

1022

512

0

1023

511

2047

2046

1536

1535

1025

1024

Index gap = 1

Iteration m = 2

511

Fig. 3. Memory access during two-core NTT.

reads/writes the upper memory block without causing any
conflict.

For m = 2048, the index-gap is 1024. As a consequence,
each core now reads/writes both memory blocks. We eliminate
memory access conflicts by inverting the order of address
requests generated by the second core. This is explained
as follows. The first core reads addresses in the sequence
0 (lower memory block), 1024 (upper memory block), 1
(lower memory block), 1025 (upper memory block), and so
on; whereas the other core reads addresses in the sequence
1536 (upper memory block), 512 (lower memory block), 1537
(upper memory block), 513 (lower memory block), and so on.
The first sequence accesses the lower memory first whereas
the second sequence accesses the other. This allocation avoids
memory access conflicts.

The last loop in the NTT (m = 4096) is executed ‘one
memory word at a time’ following [30] and hence the two
cores exclusively read/write the lower and upper memory
blocks respectively.

4) Architecture of NTT core: Our NTT algorithm applies
parallel processing on top of the single thread memory-
efficient NTT algorithm presented by Roy et al. [30], so our
architecture for the NTT computation has some similarities
with their architecture. One difference is that [30] designs
the architecture for computing public-key encryption where
the polynomials are typically 256 or 512 coefficients long.
Since our target is to speedup homomorphic multiplications,
where polynomials are much larger, instead of computing the
constant twiddle factors, we store them using on-chip memory
to save cycles. This decision also eliminates bubble-cycles in
the pipeline data-path of NTT computation. Pipeline bubbles
are caused due to the data dependencies of the butterfly steps
on the twiddle factors. Previous work [20] reports that 20%
cycles are lost as bubble-cycles during NTT computation.
Hence, our choice of storing the twiddle factors is reasonable
for speeding up the slow homomorphic multiplication.

1H

H2

L1

L8

L2

H3

HL1 HL2

HL1 L8 HL2

H
1

H
2

H
3

L
2

L
1 ...

L
8

q
i

Input Buffer

Output Buffer

Integer

Multiplier

NTT Core

C
o

e
ff

.
fr

o
m

 B
R

A
M

C
o

e
ff

.
to

 B
R

A
M

T
w

id
d

e
l

fa
c
to

rs
 f

ro
m

 R
O

M

Modular

Reduction by

Fig. 4. Architecture of NTT Core.

In Fig. 4 we show the architecture diagram of a single NTT
arithmetic core. The integer multiplier is a 30x30 multiplier,
implemented using DSP slices. The result from the multiplier,
which is a 60 bit integer, is reduced by a prime qi using the
modular reduction block.

Among all the computation blocks in Fig. 4, the modular
reduction circuit is the costliest one. It can be designed in
several ways and selection of the right algorithm is a key to
the best performance. In our implementation, each NTT core
should support arithmetic modulo two primes as explained
in Sec. V-A1. Hence, we need a ‘generic’ modular reduction
algorithm. ‘Barrett reduction’ [31] is one such algorithm and
is used in [20]. However a Barrett reduction circuit is costly
as it requires computation of several multiplications.

In our implementation we use a sliding window method that
reduces the input integer step-by-step. With a sliding window
size of 6-bits, a table called ‘reduction table’ containing 64
integers w · 230 mod qi for w = 0 to w = 63 is used.
At a time, the sliding window selects the most significant
6 bits of operand integer and reduces them with the help
of the reduction table. This iterative process continues until
the intermediate result becomes a 31-bit integer. Obtaining
the final reduced result might require a subtraction of qi or
2qi from the intermediate result. In our implementation, these
sequential steps are fully unrolled to achieve a bit-parallel
modular reduction. Pipeline registers are inserted in between
several of these steps to achieve a high clock frequency.

A pipeline strategy is also applied in the other arithmetic
circuits (multiplier, adder and subtractor). The pipelined cir-
cuits are shown in green border in Fig. 4.

B. Architecture of Lift q→Q

In Sec. IV-C we described two ways to compute the
Liftq→Q. We implement architectures for both ways.

1) Architecture for traditional Lift q→Q: The first archi-
tecture uses long integer arithmetic and follows the design
methodology presented in [20]. The flow of sequential and
parallel computation steps is shown using block diagrams in

a’12

a’6 .
.

.

q
i
*q

i

~ q
6

0

5

ai
. . mod

q
i
*q

i

~ q
12

. ..66 6 6
a = a’ − v’ mod q

12
a = a’ − v’ mod q

12 12 12

q
i
*q

i

~sop =

0

5

ai
. . sop

q
v =

v’ = v’ q mod q.
66

v’ = v’ q mod q.
12 12

. ..

=

=

0

5

ai
. . mod

Block 1

Block 2 Block 3 Block 4

Block 5

Fig. 5. Architecture of Lift q→Q using multi-precision arithmetic.

Fig. 5. Long integer arithmetic is performed in the lower
two blocks that compute sop and division by q respectively.
Though shown in the flow diagram, the constant computations
such as q̃i · q∗i are not performed in the actual implementation
as these values are stored in tables to minimize the time
requirement. Following [20] the division by q is performed
by multiplying sop with the reciprocal of q.

We apply a block-level pipeline strategy to improve through-
put. In such an architecture, the maximum throughput is de-
termined by the slowest component in the pipeline processing.
The division block is the slowest among all blocks and hence
it determines the throughput. Other blocks in the Fig. 5 have
been designed to match the throughput of the division block.

2) Architecture for new HPS [29] Lift q→Q : We pro-
pose the first hardware implementation of Liftq→Q using the
new HPS [29] method that does not perform long integer
arithmetic. The flow of its sequential and parallel steps are
identified in Fig. 6. From the flow diagram we see that the
best processing time can be obtained if all the blocks are com-
puted in pipeline. Hence, we implement a block-level pipeline
architecture and achieve high-level parallel processing.

The HPS optimization replaces costly long-integer arith-
metic by multiple small-integer operations. This gives us the
opportunity to introduce additional within-block parallel pro-
cessing. We design the individual blocks to have a processing
time of seven cycles at most, since the output is a set of seven
residues. ‘Block 2’ is the most expensive since it computes
seven summation-of-products, where each summation involves
six products. Hence to speedup ‘Block 2’, we keep seven
parallel Multiply-and-Accumulate (MAC) circuits in it.

The other blocks have less computation load and hence they
process the input operands sequentially. For e.g., ‘Block 1’
multiplies the input ai by qi one by one taking six cycles; the
last block computing the result residues one by one in total
seven cycles.

In ‘Block 3’ the divisions by qi are performed. The original

a’6 =

.
.

.

0

5

mod q
6

*a’i q
i

.

0

5

mod q
12

*a’i q
i

.a’12=

a’i (1/q)
 i

v’ = v’ q mod q.
66

v’ = v’ q mod q.
12 12

. ..

.=a’ a ~q
0

mod q
000

.=a’ a ~q
5

mod q
555

. ..

v’ =

0

5

.

. . .

a = a’ − v’ mod q

12
a = a’ − v’ mod q

12

66 6 6

1212

Block 1

Block 2

Block 3
Block 4

Block 5

Fig. 6. Architecture of Lift q→Q using small number arithmetic.

HPS paper [29] uses floating point divisions for this purpose.
We do not use any costly floating point unit and compute the
divisions as multiplications by the reciprocals 1/qi. This leads
to simplified architecture and faster processing. The constant
reciprocals are stored in the ROM memory with a precision of
89-bits after the decimal point. Actually the first 29 bits after
the decimal point in each reciprocal 1/qi are all-zeros. Hence,
the multiplications are actually computed between 30-bit a′i
and 60 non-zero bits of 1/qi. The probability of getting an
approximation error in this way is less than 2−80, whereas it
is 2−53 in the original HPS paper [29].

Integer
Multiplier

Integer
Adder

q
j

Modular

Reduction by

accconstants

coefficients

Fig. 7. Generic architecture for multiplication based building blocks used in
Fig. 6.

Fig. 7 shows a generic architecture for the building blocks
used in Fig. 6 to multiply with or without accumulation.
Two optional data-paths with or without accumulation are
shown in blue and red color respectively. The constants are
kept in on-chip memory. We also apply low-level pipeline
strategy to improve the clock frequency of the basic arithmetic
circuits namely, integer multiplier, modular reduction, modular
adder/subtractor etc. In this way, two levels of pipeline strate-
gies (i.e., block and low-level) are applied to achieve the best
performance. Buffer registers are placed in between blocks
when needed for synchronizing the flow of computation.

C. Architecture of Scale Q→q

We describe two architectures to implement the ScaleQ→q

operation. The first architecture uses multi-precision arithmetic
and follows the design methodology of [20]. The flow of
sequential and parallel computation steps is shown in Fig. 8.
‘Block 3’ is the costliest, computing division by q. Here t is
the plaintext modulus (e.g., 2 for binary messages). Again,
the division is performed by multiplying the dividend by the
reciprocal of q. Since, a is 390 bit large, the precision of the
reciprocal should be larger than 571. Note that division by q is
also performed in Fig. 5 during the Liftq→Q operation. Since
Liftq→Q and ScaleQ→q are not computed simultaneously, the
division architecture is resource-shared by the both operations.
The cycle count of the division operation during ScaleQ→q

is almost four times larger than the division operation during
Liftq→Q as the precision of the reciprocal and the width of
the dividend both are two times larger. The other blocks have
been designed to have similar cycle count as Block 3. We
apply block-level pipeline strategy to increase the throughput.

Now we propose the first hardware implementation of
ScaleQ→q using the HPS [29] method. The flow of its
sequential and parallel steps are identified in Fig. 9. Similar to
the previous optimized Liftq→Q architecture, we apply block-
level pipeline strategy to achieve high-level parallelism. ‘Block
1’ and ‘Block 2’ compute summation of products using MAC

q
i

~ q
i

*q
i a = sop mod Q

Block 2
t a

q

.
v’ =

Block 3

q
0

b = v’ mod
0. ..

q
5

b = v’ mod
5

Block 4

= .

0

12

ia mod (

(.sop

Block 1

WordDecomp

Fig. 8. Architecture of Scale Q→q using multi-precision arithmetic.

sop =
R ia iR.

0

5

ia iIsop =
I

p q v’ =
j

t Q qj j
q

j

.

0

5

for j=6 to j=12

RNS

Block 1

Block 2

Block 3

Block 4 Block 5

R

for j=6 to j=12

jI

ja’ = .
ja mod

j
sop + sop + a’ mod q

Fig. 9. Architecture of Scale Q→q using small number arithmetic.

circuits (without modular reduction in Fig. 7). The constants
Ii and Ri in these two blocks stand for the integer and real
parts of the constants tQ̃ip

qi
respectively. The reals Ri are stored

with 60-bit precision after the decimal point. ‘Block 3’ uses
the circuit of Fig. 7 with the red data-path. The final block in
the flow diagram receives seven residues in the RNS of p. It
then reuses the Liftq→Q architecture of Fig. 6 to compute the
residues in the RNS representation of q. As the block-level
pipelined architecture of Fig. 6 computes in seven cycles, the
remaining blocks of the ScaleQ→q architecture in Fig. 9 have
been designed to compute in seven cycles.

Since several of the building blocks in the Liftq→Q and
ScaleQ→q architectures use ‘multiplication and accumulation’
type operations, one design option is to realize a resource-
shared architecture so that the similar or somewhat similar
operations can be executed. This approach would reduce the
area requirement and increase the computation time signifi-
cantly. In our architecture we keep the building blocks separate
to apply block-level pipeline processing.

Block diagram of the instruction-set coprocessor showing
the connections of the seven RPAUs, two parallel cores for
Liftq→Q and ScaleQ→q and the memory file (shown using
rectangles M) is shown in Fig. 10.

Fig. 10. Block diagram of coprocessor for computing homomorphic
operations

Application 0
ARM Core

Application 1
ARM Core

Networking
ARM Core

Memory
Controller

DMA

Interfacing UnitInterfacing Unit

Coprocessor 1Coprocessor 0

Processing System

Programmable Logic

Fig. 11. The high-level architecture and interfacing of hardware and software

D. Hardware Software Interface

The high-level architecture of our HW/SW codesign is
shown in Fig. 11. We enable parallel processing with two
coprocessor instances in the FPGA, and reserve one Arm core
for each. We also used a third Arm core for managing the
network connection to clients, and distributing the work load
among the application cores.

Our software runs ‘baremetal’ i.e. without any operating
system, and uses light-weight IP stack for client-server com-
munication. For the data transfer between the DDR memory
and hardware, it uses Direct Memory Access (DMA) placed
between the memory and interfacing units shown in Fig. 11.
The hardware could also access the DDR memory for inter-
mediate computation results, but that would add a significant
data transfer overhead. Hence, BRAM-based on-chip memory
is used.

In the software side, we apply efficient memory manage-
ment. The coefficients of a ciphertext are kept in contiguous
memory locations. Using this strategy, we could transfer large
data very fast in a continuous DMA. In Sec. VI we will show
that the use of this strategy indeed reduces the data transfer
overhead significantly.

Working with parallel executing cores increases the perfor-
mance significantly in both software and hardware, but also re-
quires a complex design as it requires access synchronization.
The ‘Networking Arm Core’ in Fig. 11 is chosen to manage
the DDR memory allocation. DMA access conflicts, i.e., two
simultaneous DMA requests, are avoided using Xilinx’ mutual
exclusion HW IP Core.

VI. RESULTS

We implemented our domain specific programmable ac-
celerator for homomorphic computations on ciphertext on a
single Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation
Kit [24]. We coded the software in C and compiled it

TABLE I
PERFORMANCE OF HIGH-LEVEL OPERATIONS USING ONE COPROCESSOR.

Operation Speed
(cycles) (msec)

Mult in HW 5,349,567 4.458
Add in HW 31,339 0.026
Add in SW 54,680,467 45.567

Send two ciphertexts to HW 434,013 0.362
Receive result ciphertext from HW 215,697 0.180

with GCC (available through the Xilinx SDK). Our cus-
tom hardware modules were described with Verilog. During
design-space exploration, we implemented two hardware ar-
chitectures. One of them uses traditional CRT-based Liftq→Q

and ScaleQ→q operations, performing multi-precision integer
arithmetic. The other applies the HPS optimization tech-
niques [29] and achieves the best performance. From now on,
if not exclusively mentioned, performance and area reports
are presented only for the faster architecture. Results for the
slower are presented briefly in a subsection.

A. Timing results

The hardware-based coprocessor runs at 200 MHz and the
Arm processors run at 1.2 GHz. The DMA module is clocked
at 250 MHz, aiming to minimize the data transfer overhead.
Cycle counts for various operations are measured from the
software side reading the Arm processors’ cycle-count register.
As our coprocessor implements an instruction-set architecture,
we report timing requirements for high-level operations and
the low-level instructions used for them. In Table I perfor-
mances of the high-level operations are presented. The timings
for Add and Mult in HW exclude the overhead of transferring
the operand and result ciphertexts. Computing the simple Add
operation in SW using a single Arm core requires 80 times
more time than the same computation in HW, including the
overhead of sending and receiving ciphertexts. The compu-
tation time for Mult includes the overhead of intermediate
data transfers (roughly 30%) during the relinearization steps.
If larger FPGAs are used, this overhead could be reduced or
eliminated by storing the relinearization keys in the HW at the
cost of additional ROM memory.

In our FPGA we place two coprocessors in parallel and
achieve 2x throughput. E.g, two Mult operations take roughly
the same time as one Mult operation. We can compute 400
Mult operations per second.

The performance of each instruction of our instruction-
set architecture is shown in Table II. The table also shows
how many times each instruction is called for computing
one Mult operation. The Add operation requires executing
the Coefficient-wise-Addition instruction twice as a ciphertext
in the FV scheme is composed of two polynomials in Rq .
The Liftq→Q instruction lifts a polynomial from Rq to RQ

in less than 0.1ms, using two parallel cores. The ScaleQ→q

instruction first scales the input polynomial and computes the

TABLE II
PERFORMANCE OF INDIVIDUAL INSTRUCTIONS.

Instruction # of Speed per Call
Calls (cycles) (µ sec)

NTT 14 87,582 73.0
Inverse-NTT 8 102,043 85.0
Coeff. wise Multiplication 20 15,662 13.1
Coeff. wise Addition 26 16,292 13.6
Memory Rearrange 22 25,006 20.8
Liftq→Q (2 cores) 4 99,137 82.6
ScaleQ→q (2 cores) 3 99,274 82.7

TABLE III
COMPARISON OF DATA TRANSFER TECHNIQUES.

Data Transfer Type Speed
(cycles) (µ sec)

Single Transfer of 98,304-bytes 90708 76
Transfers with 16,384-byte chunks 130686 109
Transfers with 1,024-byte chunks 242771 202

intermediate result in the RNS of p. Then it uses the data-
path of Liftq→Q to map this result to the RNS representation
of q. Hence, ScaleQ→q performs more computation than
Liftq→Q. But, benefiting the block-level pipeline strategy in the
sequential execution of the two steps, the overall computation
time for ScaleQ→q remains almost equal to the computation
time of Liftq→Q.

We put significant effort in minimizing the overhead of data
transfer. The first decision we took was to keep enough internal
memory to avoid frequent access to the external DDR memory
during the execution of Mult. Only during the relinearization
steps, data transfer is needed to load the large relinearization
keys. The second decision is using the optimum data transfer
size, as mentioned in Sec. V-D. In Table III costs for three
types of data transfers are shown. In our implementation, we
use single transfer to achieve the minimum overhead.

B. Resource Requirements

Table IV shows the resource utilization in the target FPGA.
It shows that the design is constrained on memory size.
Besides the two coprocessors, the DMA and Interfacing Unit
contributes to utilization. On the software side, three Arm
cores of the target Zynq are used.

C. Performance without HPS optimization

The other coprocessor architecture uses slower Liftq→Q and
ScaleQ→q architectures. At 225 MHz clock, using only one
core we can compute the Liftq→Q and ScaleQ→q operations
in 1.68 and 4.3 msec respectively. To speedup computation,
we keep four parallel cores for computing Liftq→Q and
ScaleQ→q . The polynomial arithmetic unit in the faster and
slower architectures are similar. At 225 MHz clock frequency,
this coprocessor architecture requires 8.3 msec (including
all data transfer overhead) to compute one Mult operation.
Though the Liftq→Q and ScaleQ→q are much slower, the time

TABLE IV
RESOURCE UTILIZATION.

(FOR ZYNQ ULTRASCALE+ ZCU102 EVALUATION KIT)

LUTs Registers BRAMs DSPs
(# of used instances)

(% utilization)

Two coprocessors 133692 60312 815 416
& interface 49% 11% 89% 16%

Single 63522 25622 388 208
coprocessor 23% 5% 43% 8%

TABLE V
ESTIMATED RESULTS FOR DIFFERENT PARAMETER SETS

CONSIDERING A SINGLE PROCESSOR.

Parameter Resources Mult time
(n, log q) LUT/Reg./BRAM/DSP Comp./Comm./Total

212, 180 64K/25K/0.4K/0.2K 4.46/0.54/5.0 msec
213, 360 128K/50K/1.6K/0.4K 9.68/2.16/11.9 msec
214, 720 256K/100K/6.4K/0.8K 21.0/8.64/29.6 msec
215, 1, 440 512K/200K/25.6K/1.6K 45.6/34.6/80.2 msec

for Mult is less than 2x slower in comparison to the faster
coprocessor architecture. This difference is due to a difference
in the relinearization operation. In the faster architecture, each
relinearization key is a vector of six polynomials. Traditional
CRT-based ScaleQ→q offers the flexibility to choosing the
number of polynomials in the relinearization key. The slower
coprocessor uses three times smaller relinearization key in
comparison to the faster architecture. If both use relineariza-
tion keys of length six, then the slower processor would
become another 30% slower.

We measures the power consumption of our design using the
Power Advantage Tool. The static power consumption is 5.3
W. The continuous execution of a homomorphic multiplication
operation including the input and output data transfers requires
2.2W dynamic power consumption on a single core execution.
In the concurrent double core execution of the same, the
dynamic power consumption reaches 3.4W.

D. Estimates for other parameter sets

For estimating performance for larger parameter sets, we
assume that the sizes of target FPGAs also scale appropriately.
We assume that for every doubling of both the polynomial
degree and coefficient size (≈ 4.34× increase in overall
computation) in the parameter set, we double the number of
RPAUs and Lift/Scale cores (≈ 2× increase in logic-area).
Consequently, the net computation increases by ≈ 2.17×.
The overhead of off-chip data transfer increases by ≈ 4×. In
Table V we apply this estimation model iteratively to estimate
area, memory and performances for various parameter sets.

E. Comparisons with Related Works

In the literature there are several reported implementations
of somewhat homomorphic encryption (SHE) schemes. A

totally fair comparison between the implementations is not
always possible, firstly because there are several SHE schemes,
secondly because there are differences in the choice of pa-
rameters, and finally because the implementation platforms
vary. The most fair comparison is with the NFLlib [22] based
software implementation of the FV scheme presented in [4].
The implementation uses a similar parameter set. The highly
optimized single threaded software implementation spends 33
milliseconds and 0.1 milliseconds for computing one Mult and
Add respectively on an Intel Core i5-3427 processor running
at 1.8 GHz. Using two coprocessors in the FPGA, we achieve
more than 13x throughput with respect to the NFLlib-based
software implementation. Latest generation Intel i5 reaches
up to 40W on heavy load operations [32]. In comparison, our
processor has a peak power consumption of 8.7 W.

A very recent implementation [33] by Badawi et al. presents
performances of the FV scheme for various parameter sets on
CPUs and GPUs. They also use HPS optimization for faster
Liftq→Q and ScaleQ→q operations. Their single-threaded soft-
ware implementation for a parameter set n = 4096 and 60-
bit q requires around 10 msec to compute one homomorphic
multiplication for 30-bit moduli size (which we also use) on
Intel(R) Xeon(R) Platinum running at 2.1 GHz. Using 26
threads in multi-threaded experiments, they could reduce the
time to 4 msec only. Their highly optimized GPU implementa-
tions on Tesla K80 (2496 cores, 0.82 GHz, 12 GB RAM) and
Tesla V100 (5120 cores, 1.38 GHz, 16 GB RAM) require 1.98
and 0.86 msec respectively at the cost of humongous power
consumption. We estimate that for 180-bit q, computation
times of their implementations would increase at least three
times. In a fair comparison (i.e., n = 4096 and 180-bit q),
their fastest implementation on Tesla V100 performing 388
homomorphic multiplications per second is slower than our
implementation achieving 400 multiplications.

Pöppelmann et al. [14] implemented the YASHE [8] scheme
in the Catapult [34] architecture which is an FPGA-based
domain specific accelerator for cloud computing applications.
Their implementation for the parameter set with polynomial
size of 4,096 (same as ours) and ciphertext coefficient size 128
bits (smaller than ours) run at 100 MHz clock frequency and
require 6.75 msec. The YASHE scheme is computationally
three to four times faster than the FV scheme and has
roughly half memory requirement. Even with a faster SHE
scheme and a smaller parameter set, their implementation is
slower than ours. Achieving two times higher clock frequency
(200 MHz) as well as computation using parallel coprocessor
cores are major advancements towards making homomorphic
encryption practical. The YASHE scheme is not considered
secure anymore and hence is not used due to an attack by
Albrecht et al. [35] in 2016.

Next we compare our results with the hardware implemen-
tation by Roy et al. [20]. They implement the FV scheme
for a much larger parameter set (polynomial size 32,768
and ciphertext coefficient size 1,228 bits). Due to such a
large parameter set, only one residue polynomial arithmetic
unit could fit in their target platform that has a medium

size Xilinx Virtex 6 FPGA. Their architecture suffers from
a massive data transfer overhead as they need to continuously
read and write DDR memory. We designed our programmable
architecture for supporting less complex cloud computing
applications (thus smaller parameter set). We use sufficient
on-chip memory (implemented using BRAMs) to store the
two operand ciphertexts and in this way we minimize data
transfer overhead. We estimate that a hypothetical architecture
following our design steps (explained in Sec. VI-D) would be
able to compute homomorphic multiplication in less than 0.1
sec (Table V) when implemented on a sufficiently large FPGA.
This significant difference is mostly due to the fact that our
design methodology avoids costly long integer arithmetic and
frequent off-chip data transfer and at the same time applies
more parallel processing.

VII. CONCLUSIONS

In this paper we presented a programmable and high-
performance domain specific architecture for computing
homomorphic operations on ciphertext. We applied the
recent arithmetic optimization techniques proposed by
Halevi, Polyakov and Shoup to avoid costly multi-precision
arithmetic, and designed a parallel polynomial multiplication
algorithm with an efficient memory access scheme to speedup
the homomorphic multiplication operation. In the hardware
architecture, we used parallel computation cores to minimize
cycle count, and applied circuit-level and block-level pipeline
strategy to benefit parallel processing and reach a clock
frequency of 200 MHz. Further, we utilized the on-chip
memory optimally to avoid frequent off-chip data transfers.
Using highly optimized building blocks, we constructed
our multi-core multi-processor architecture. Finally we
implemented our optimized domain specific programmable
architecture on a single Xilinx Zynq UltraScale+ MPSoC
ZCU102 Evaluation Kit and demonstrated that it can achieve
a throughput of 400 homomorphic multiplications per second,
which is 13x faster than a heavily optimized software
implementation on an Intel i5 processor. Our results make
homomorphic encryption practical in several cloud computing
applications.

Discussions. FPGAs are becoming more and more popular
in cloud computing applications. The Amazon offers FPGA-
accelerated cloud for accelerating performance critical appli-
cations [36]. An Amazon EC2 F1 instance offers either one or
eight Xilinx Virtex UltraScale+ FPGAs attached to a server-
grade Intel Xeon processor. These FPGAs have five times
more resources than our Zynq platform. Our instruction-set
coprocessor architecture has a very modular structure. Most
of the building blocks, excluding the IP Cores, have been
described using behavioral Verilog. Hence, the source codes of
our accelerator can be easily ported to these powerful FPGAs.
We estimate that each Amazon F1 instance could run at least
ten coprocessors in parallel.

Our coprocessor architecture offers trade-offs between hard-
ware cost and performance. Therefore, we would like to

remark that the utilization and performance results reported
in this paper are not the definite numbers, but only belongs to
the configuration used in this paper. The design decisions can
be tweaked to meet different requirements. For e.g., by using
more computation cores we could achieve a lower latency
or by reducing the number of memories we could lower the
hardware cost.

ACKNOWLEDGMENT

This work was supported in part by the Research Council
KU Leuven: C16/15/058. In addition, this work was supported
by the European Commission through the Horizon 2020
research and innovation programme under grant agreement
Cathedral ERC Advanced Grant 695305, by H2020-ICT-2014-
644209 HEAT, by EU H2020 project FENTEC (Grant No.
780108) and by the Hercules Foundation AKUL/11/19.

REFERENCES

[1] IBM, “Top 7 most common uses of cloud computing,”
2014. https://www.ibm.com/blogs/cloud-computing/2014/02/06/
top-7-most-common-uses-of-cloud-computing.

[2] J. W. Bos, K. Lauter, and M. Naehrig, “Private predictive analysis on
encrypted medical data,” Journal of Biomedical Informatics, 2014.

[3] N. Peng, G. Luo, K. Qin, and A. Chen, “Query-biased preview over
outsourced and encrypted data,” Scientific World Journal, 2013.

[4] J. W. Bos, W. Castryck, I. Iliashenko, and F. Vercauteren, “Privacy-
friendly forecasting for the smart grid using homomorphic encryption
and the group method of data handling,” in Progress in Cryptology -
AFRICACRYPT 2017, 2017.

[5] T. Graepel, K. Lauter, and M. Naehrig, “Ml confidential: Machine
learning on encrypted data,” in Information Security and Cryptology
– ICISC 2012, 2012.

[6] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and
privacy homomorphisms,” Foundations of secure computation, 1978.

[7] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the 41st ACM Symposium on Theory of Computing
(STOC 2009), pp. 169–178, 2009.

[8] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved security for
a ring-based fully homomorphic encryption scheme,” in Proceedings of
the 14th IMA International Conference on Cryptography and Coding
(IMACC 2013), 2013.

[9] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption.” Cryptology ePrint Archive, Report 2012/144, 2012. http:
//eprint.iacr.org/.

[10] A. Badawi, B. Veeravalli, C. Mun, and K. Aung, “High-performance FV
somewhat homomorphic encryption on GPUs: An implementation using
CUDA,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2018.

[11] W. Wang and X. Huang, “FPGA implementation of a large-number
multiplier for fully homomorphic encryption,” in IEEE International
Symposium on Circuits and Systems (ISCAS 2013), 2013.

[12] Y. Doröz, E. Öztürk, and B. Sunar, “Evaluating the hardware perfor-
mance of a million-bit multiplier,” in Proceedings of the 16th Euromicro
Conference on Digital System Design (DSD 2013), 2013.

[13] W. Wang and X. Huang, “VLSI design of a large-number multiplier for
fully homomorphic encryption,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2014.

[14] T. Pöppelmann, M. Naehrig, A. Putnam, and A. Macias, “Accelerating
homomorphic evaluation on reconfigurable hardware,” in Cryptographic
Hardware and Embedded Systems - CHES, 2015.

[15] X. Cao, C. Moore, M. O’Neill, E. O’Sullivan, and N. Hanley, “Opti-
mised multiplication architectures for accelerating fully homomorphic
encryption,” IEEE Transactions on Computers, 2016.

[16] D. Cousins, K. Rohloff, and D. Sumorok, “Designing an FPGA-
accelerated homomorphic encryption co-processor,” IEEE Transactions
on Emerging Topics in Computing, to appear.

[17] E. Öztürk, Y. Doröz, E. Savaş, and B. Sunar, “A custom accelerator for
homomorphic encryption applications,” IEEE Transactions on Comput-
ers, 2017.

[18] Y. Doröz, E. Öztürk, E. Savas, and B. Sunar, “Accelerating LTV based
homomorphic encryption in reconfigurable hardware,” in Cryptographic
Hardware and Embedded Systems - CHES, 2015.

[19] S. S. Roy, K. Järvinen, F. Vercauteren, V. Dimitrov, and I. Verbauwhede,
“Modular hardware architecture for somewhat homomorphic function
evaluation,” in Cryptographic Hardware and Embedded Systems -
CHES, 2015.

[20] S. S. Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede,
“HEPCloud: An FPGA-based multicore processor for FV somewhat
homomorphic function evaluation,” IEEE Transactions on Computers,
2018.

[21] V. Migliore, M. M. Real, V. Lapotre, A. Tisserand, C. Fontaine, and
G. Gogniat, “Hardware/software co-design of an accelerator for FV
homomorphic encryption scheme using Karatsuba algorithm,” IEEE
Transactions on Computers, 2018.

[22] CryptoExperts, “FV-NFLlib,” 2016. https://github.com/CryptoExperts/
FV-NFLlib.

[23] M. Research, “Simple Encrypted Arithmetic Library (SEAL),” 2016.
https://www.microsoft.com/en-us/download/details.aspx?id=56202.

[24] Xilinx, ZCU102 Evaluation Board User Guide, 2017. v1.3.
[25] C. Dobraunig, M. Eichlseder, L. Grassi, V. Lallemand, G. Leander,

E. List, F. Mendel, and C. Rechberger, “Rasta: A cipher with low AND-
depth and few ANDs per bit,” 2018. https://eprint.iacr.org/2018/181.

[26] M. R. Albrecht, “Complexity estimates for solving LWE.” https:
//bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py.

[27] D. Bernstein, “Fast multiplication and its applications,” Algorithmic
Number Theory, 2008.

[28] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms. McGraw-Hill Higher Education, 2001.

[29] S. Halevi, Y. Polyakov, and V. Shoup, “An improved RNS variant of
the BFV homomorphic encryption scheme,” 2018. https://eprint.iacr.
org/2018/117.

[30] S. Sinha Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Ver-
bauwhede, “Compact ring-LWE cryptoprocessor,” in Cryptographic
Hardware and Embedded Systems CHES 2014, Springer Berlin Hei-
delberg, 2014.

[31] P. Barrett, “Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor,” in Advances
in Cryptology — CRYPTO’ 86: Proceedings, 1987.

[32] “Intel Kaby Lake Core i7-7700K, i7-7700, i5-7600K,
i5-7600 Review.” URL: www.tomshardware.com/reviews/
intel-kaby-lake-core-i7-7700k-i7-7700-i5-7600k-i5-7600,4870-10.
html, last checked on 2018-08-15, 2017.

[33] A. A. Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, and
K. Rohloff, “Implementation and performance evaluation of RNS vari-
ants of the BFV homomorphic encryption scheme,” 2018. https:
//eprint.iacr.org/2018/589.

[34] A. P. et al., “A reconfigurable fabric for accelerating large-scale data-
center services,” in 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), 2014.

[35] L. D. Martin Albrecht, Shi Bai, “A subfield lattice attack on over-
stretched NTRU assumptions: Cryptanalysis of some FHE and Graded
Encoding Schemes,” 2016. http://eprint.iacr.org/2016/127.

[36] A. W. Instances, “Amazon EC2 F1 Instances.” URL: https://aws.amazon.
com/ec2/instance-types/f1/, last checked on 2018-08-03.

https://www.ibm.com/blogs/cloud-computing/2014/02/06/top-7-most-common-uses-of-cloud-computing
https://www.ibm.com/blogs/cloud-computing/2014/02/06/top-7-most-common-uses-of-cloud-computing
http://eprint.iacr.org/
http://eprint.iacr.org/
https://github.com/CryptoExperts/FV-NFLlib
https://github.com/CryptoExperts/FV-NFLlib
https://www.microsoft.com/en-us/download/details.aspx?id=56202
https://eprint.iacr.org/2018/181
https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py
https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py
https://eprint.iacr.org/2018/117
https://eprint.iacr.org/2018/117
www.tomshardware.com/reviews/intel-kaby-lake-core-i7-7700k-i7-7700-i5-7600k-i5-7600,4870-10.html
www.tomshardware.com/reviews/intel-kaby-lake-core-i7-7700k-i7-7700-i5-7600k-i5-7600,4870-10.html
www.tomshardware.com/reviews/intel-kaby-lake-core-i7-7700k-i7-7700-i5-7600k-i5-7600,4870-10.html
https://eprint.iacr.org/2018/589
https://eprint.iacr.org/2018/589
http://eprint.iacr.org/2016/127
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/

	Introduction
	Background
	Homomorphic encryption
	FV SHE scheme

	System Setup
	Parameter set
	Residue number system

	Approach and Algorithms
	HW/SW codesign and task partition.
	Polynomial multiplication.
	Lift TEXT
	Scale TEXT

	Architecture Details
	Polynomial arithmetic unit
	Choice for number of RPAUs
	Choice for number of cores in RPAU
	Memory access scheme for parallel NTT
	Architecture of NTT core

	Architecture of Lift TEXT
	Architecture for traditional Lift TEXT
	Architecture for new HPS lift

	Architecture of Scale TEXT
	Hardware Software Interface

	Results
	Timing results
	Resource Requirements
	Performance without HPS optimization
	Estimates for other parameter sets
	Comparisons with Related Works

	Conclusions
	References

