UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

The anatomically preserved tripinnate frond rothwellopteris pecopteroides gen. Et sp. nov. from the latest permian of south China

Xiao-Yuan, He; Wang, Shi-Jun; Wang, Jun; Hilton, Jason

DOI: 10.1086/704946

License: None: All rights reserved

Document Version Peer reviewed version

Citation for published version (Harvard):

Xiao-Yuan, H, Wang, S-J, Wang, J & Hilton, J 2019, 'The anatomically preserved tripinnate frond rothwellopteris pecopteroides gen. Et sp. nov. from the latest permian of south China: timing the stem to crown group transition in Marattiales', *International Journal of Plant Sciences*, vol. 180, no. 8, pp. 869-881. https://doi.org/10.1086/704946

Link to publication on Research at Birmingham portal

Publisher Rights Statement: Checked for eligibility: 19/06/2019

© 2019 by The University of Chicago. All rights reserved. Accepted for publication to International Journal of Plant Sciences on 20/05/2019.

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

1	The anatomically preserved tri-pinnate frond Rothwellopteris
2	pecopteroides gen. et sp. nov. from the latest Permian of South China:
3	timing the stem to crown group transition in Marattiales
4	
5	Xiao-Yuan He, *,1 Shi-Jun Wang, † Jun Wang, ‡ and Jason Hilton $^{\$}$
6	
7	*Institute of Deep Time Terrestrial Ecology, Yunnan University, Kunming, China; [†] Institute of
8	Botany, Chinese Academy of Sciences, Beijing, 10093 PR China; [‡] State Key Laboratory of
9	Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy
10	of Sciences, Nanjing 210008, P. R. China; §School of Geography, Earth and Environmental Sciences,
11	University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
12	
13	
14	Premise of research. Fern fronds are common in Late Paleozoic and Mesozoic strata. Large, tri- or
15	multi- pinnate fronds are mainly preserved as impression-compressions while anatomically preserved
16	specimens are typically smaller and comprise dispersed petioles, rachides, ultimate pinna or pinnules.
17	Here we describe a large, anatomically preserved tri-pinnate frond from the latest Permian of SW
18	China that provides the first detailed histological information on a Cathaysian marattialean with
19	pinnule morphology of the cosmopolitan Carboniferous-Permian pecopteriod type, but with different
20	frond anatomy.
21	

Methodology. Specimens were prepared by the cellulose acetate peel technique and studied by light

23 microscopy.

24

25	<i>Pivotal results</i> . The tri-pinnate frond has a main rachis and primary pinnae rachis with many (> 70)
26	small vascular bundles arranged in cycles, and abundant tanniferous cells. Pinnules are small and
27	their bases are entirely attached to the ultimate rachis. Abundant vascular bundles in its rachises are
28	distinct from previously recognized marattialean genera justifying to the establishment of
29	Rothwellopteris pecopteroides gen. et sp. nov. Comparison of pinnule morphology with
30	compression/impression fossils demonstrates the specimen to be an anatomically preserved
31	equivalent of Pecopteris marginata Li et al. 1974.
32	
33	Conclusions. R. pecopteroides displays a novel combination of marattialean characters from the
34	extinct Paleozoic family Psaroniaceae and the extant family Marattiaceae. Its frond morphology
35	resembles Psaroniaceae including Psaronius, but differs from extant Marattiaceae that are
36	mono-pinnate, palmate or as in Angiopteris bi-pinnate, and have large pinnules with contracted bases.
37	By contrast, its anatomy with abundant vascular bundles is similar to Marattiaceae, especially
38	Angiopteris, but is distinct from members of the Psaroniaceae in which the rachis possesses one or
39	two tangentially elongate vascular bundles. P. marginata shows that by the latest Permian Marattiales
40	had already evolved frond anatomy typical of extant genera, demonstrating that the stem group to
41	crown group transition commenced prior to the Triassic.
42	

Keywords: Eusporangiate fern, Marattiales, Psaroniaceae, Marattiaceae, evolution, volcaniclastic tuff,
Xuanwei Formation, stem group, crown group

- 46
- 47

Introduction

¹ Author for correspondence: hexiaoy68@163.com

Marattiales are a clade of living eusporangiate ferns that have an extensive fossil record going 48 back into the early Pennsylvanian approximately 320 million years ago (e.g., DiMichele and Phillips, 49 1977; Liu et al. 2000; Rothwell et al. 2018). During the late Paleozoic, marattialean ferns were 50 widely distributed in the Euramerican (Morgan 1959; Mickle 1984; Millay 1997; Taylor et al. 2009), 51 Gondwanan (Herbst 1986, 1987, 1992, 1999) and Cathaysian floras (Ogura 1972a; Hill et al. 1985; 52 Gu et Zhi 1974; Li et al. 1995). In these floras fronds and pinnae are relatively commonly, with most 53 preserved as impression/compression fossils that can be identified and classified based on the 54 morphological characters including pinnule shape, size and venation. By contrast, anatomically 55 56 preserved (permineralized) marattialean leaves mainly represent isolated rachises or terminal pinna that are identified and classified based on the vasculature of rachides (Morgan and Delevoryas 1952a, 57 b; Stidd 1971). In exceptional cases, morphological features of marattialean leaves can also be 58 observed in permineralized specimens, such as Compsopteris ellipticum Chang ex Yang et Chen (see 59 Guo et al. 1992). Such fossils, preserved with morphological and anatomical characters, are key to 60 associate impression/compression taxa with permineralized fossils in order to reveal the relationships 61 between them. This is important to the development of whole-plant concepts from fragmentary fossil 62 assemblages (e.g., Rothwell 1999; Bateman and Hilton 2009). 63 In the late Paleozoic Cathaysian flora, marattialean ferns flourished until the late Permian in 64 eastern Yunnan and western Guizhou provinces in SW China where they constitute an important 65

66 component in latest Permian floras (Zhao et al. 1980). From this region Marattiales are abundant as

67	vegetative and fertile fronds as well as pinnae preserved as impression-compression fossils (Tian and
68	Zhang 1980; Zhao et al. 1980; Liu et al. 2000, 2001) and permineralizations (Guo et al. 1992; Hilton
69	et al. 2004; He et al. 2006). In addition, numerous permineralized marattialean trunks with thick root
70	mantles have also been found in this region (e.g., Sze 1942, 1947; Yang 1986; Tian et al. 1992; Li et
71	al. 1995; He et al. 2008, 2010, 2013; D'Rozario et al. 2012). Here from the latest Permian of
72	Guizhou Province in SW China we report a new kind of marattialean frond preserved with both
73	morphology and anatomy that has three orders of rachises and attached vegetative pinnules. Based
74	on its preserved morphological characters, the frond is considered to be the anatomically-preserved
75	equivalent of Pecopteris marginata Li et al. 1974 which was erected based on
76	impression/compression fossils (Li et al. in Gu et Zhi 1974).
77	
78	Material and methods
79	The permineralized marattialean frond reported in this paper was found embedded in a large
80	rock block (number YNUPB11001) collected from mine spoil from the Xuanwei Formation
81	(Lopingian Epoch, late Permian period) in Panxian mining district of western Guizhou Province, SW
82	China. The rock is a volcanic tuff that is white-grey colored but on its surface has weathered to a
83	yellow-grey color.
84	A diverse fossil plant assemblage has been previously been reported from the Xuanwei
85	Formation in the Panxian mining district including impression/compression and permineralized
86	specimens. Impression/compression fossils were primarily described by Zhao et al. (1980). The
87	assemblage includes the lycopsids Lepidodendron acutangulum (Halle), L. lepidophloides Yao,
88	Stigmaria ficoides (Sternb.), the sphenopsids Sphenophyllum koboense Kobatake, Sph.

89	sino-coreanum Yabe, Paracalamites stenocostatus Li et al., Annularia pingloensis (Sze), A. shirakii
90	Kawasaki, Lobatannularia cathaysiana Yao, L. lingulata (Halle). L. multifolia Kon'no et Asama,
91	Schizoneura brevifolia Yao, Sch. manchuriensis Kon'no, and the noeggerathialeans Plagiozamites
92	oblongifolius Halle, Discinites cf. orientalis Li et al. Fern and seed fern foliage includes Chansitheca
93	kidstonii Halle, Sphenopteris tenuis Schenk, Pecopteris echinata Li et al., P. fuyuanensis Zhang, P.
94	(Asterotheca) guizhouensis Zhang, P. lingulata Zhang, P. marginata Li et al., P. sahnii Hsu, Rajahia
95	guizhouensis Zhang, R. mirabilis (Li et al.) Zhang, R. rigida (Yabe et Oishi) Zhang, Fascipteris
96	(Ptychocarpus) densata Li et al., F. hallei (Kawasaki), F. stena Li et al., Cladophlebis ozakii Yabe et
97	Oishi, Cl. permica Lee et Wang, Cl. parapermica Zhang, Neuropteridium coreanicum Koiwai, N.
98	guizhouense Zhang, Compsopteris imparis Li et al., C. contracta Li et al., C. punctinervis Mo,
99	Gigantonoclea guizhouensis Li et al., G. hallei (Asama), G. largrelii (Halle), G. plumosa Mo,
100	Gigantopteris dictyophylloides Li et al., Taeniopteris ? rarinervis Zhao, T. crassinervis Mo,
101	Abrotopteris guizhouensis (Li et al.) Mo, Prionophyllopteris spiniformis Mo. Cycads present in the
102	flora are represented by <i>Pterophyllum eratum</i> Li et al. and Ginkgoales by <i>Rhipidopsis pani</i> Chow, <i>R</i> .
103	cf. ginkgoides Schmalh. and R. lobulata Mo, while conifers include Ullmannia cf. bronnii Goeppert
104	and U. sp. Permineralized fossils includes the sphenopsid Calamostachys sp. (Hilton et al., 2004), the
105	marattialean ferns Compsopteris elliptica Chang ex Yang et Chen (Guo et al., 1992), Eoangiopteris
106	sp. (Hilton et al., 2004), Psaronius laowujiensis He et al. (He et al., 2010), P. panxianensis He et al.
107	(He et al., 2008), <i>P. wangii</i> Tian et al. (Tian et al., 1992), <i>P. xuii</i> He et al. (He et al., 2013). Filicalean
108	ferns are rare and limited to Anachoropteris sp. (Hilton et al., 2004). Noeggerathialeans include
109	pseudo-strobili of Dorsalistachya quadrisegmentorum Wang et Spencer (Wang et al., 2017) and
110	associated foliage of <i>Plagiozamites oblongifolius</i> Halle (Guo et al., 1990). Seed ferns are represented

by *Callistophyton boysetii* (Renault) Rothwell (Seyfullah and Hilton, 2011) and ovules of

112 Cardiocarpus huopuensis Wang et al. (Wang et al., 2006), Muricosperma guizhouensis Seyfullah et

al. (Seyfullah et al., 2010). Anatomically preserved gigantopterids include Gigantonoclea

114 guizhouensis Li et al. (Li et al., 1994), Aculeovinea yunguiensis Li et Taylor (Li and Taylor, 1998),

115 Vasovinea tianii Li et Taylor (Li and Taylor, 1999), while conifers are represented by the wood

116 *Xuanweioxylon scalariforme* He et al. (He et al., 2013).

In the tuff the fossil is permineralized by calcium carbonate, with preservation occurring before 117 significant decay occurred (Neregato et al. 2016). The frond is large and consists of three orders of 118 119 branches. We follow Stidd's definition and name the three orders of branches as frond, primary pinna and ultimate pinna respectively (Stidd, 1971). Frond consists of a rachis (main rachis) and lateral 120 appendages, i.e. primary pinnae; primary pinna consists of a rachis (primary pinna rachis) and lateral 121 122 appendages, i.e. ultimate pinnae; ultimate pinna consists of a rachis (ultimate pinna rachis) and pinnules. Main rachis is partly exposed on the surface of the rock (Fig. 1a) and is robust, with a 123 diameter of up to 3 cm (Fig. 1b); primary pinna rachis has a diameter of more than 1 cm, with both 124 the main rachis and primary pinna rachis having many small vascular bundles; the ultimate pinna 125 rachis has 4–5 vascular bundles and bears vegetative pinnules. The large size and attached nature of 126 the different orders of branching in the fossil infers that it was not subjected to significant 127 taphonomic transportation and fragmentation prior to its preservation as is typical of other 128 permineralized fossil plant assemblages from tuffaceous sediments in the Xuanwei Formation (e.g., 129 Hilton et al. 2004; Neregato et al. 2016; Wang et al. 2017). 130 The specimen was prepared using the cellulose acetate peel method (Galtier and Phillips 1999), 131

as outlined by He et al. (2006, 2008, 2010, 2013) and Wang et al. (2017). The rock bearing the

133	specimen, peels and slides are deposited at the Institute of Deep Time Terrestrial Ecology, Yunnan
134	University.
135	
136	Systematic Paleobotany
137	Order – Marattiales Engler and Prantl, 1902
138	Genus – Rothwellopteris gen. nov. XY He, SJ Wang, J Wang and J Hilton
139	
140	Generic diagnosis. Vegetative frond tri-pinnate, pinnules broadly attached, parallel sided, lingulate
141	with rounded tips, veins twice forked. Main rachis and primary pinna rachis possessing numerous
142	small vascular bundles arranged in layers or concentric cycles. Protoxylem endarch.
143	
144	Etymology. The new genus is named in honor of the paleobotanical achievements of Gar W.
145	Rothwell.
146	
147	Remarks. The new genus is distinguished from all other genera by its combination of Pecopteris
148	pinnule morphology with a tri-pinnate frond with its main rachis and primary pinna rachis having
149	many (> 70) small vascular bundles arranged in cycles.
150	
151	Species – Rothwellopteris pecopteroides sp. nov. He XY, Wang SJ, Wang J and Hilton J
152	
153	Specific diagnosis. Vegetative frond. A tri-pinnate compound leaf. Rachis robust, main rachis up to 3
154	cm in diameter and primary pinna rachis up to 1 cm in diameter. Ultimate pinna rachis bears

subopposite pinnules, pinnules tongue-shaped or somewhat falcate, with length: width ratio less than 155 3:1. Lateral margin of pinnules thickened, pinnule base slightly expanding; pinnule midrib thick, 156 lateral veins forking twice and nearly perpendicular to the pinnules lateral margin. Pinnule margins 157 slightly downturned. Palisade tissue well developed, vascular bundle sheaths marked by ridges on 158 abaxial pinnule surface. Surface of the first and second order of rachis undulate. Cell walls of the 159 epidermis thick. Cortex divided into inner and outer cortex. Outer cortex further divided into inner 160 and outer zones, outer zone consisting of continuous parenchyma with uniform cell size; inner zone 161 being continuous or discontinuous sclerenchyma bands. Central part of rachis consisting of ground 162 163 tissue and many small vascular bundles or meristeles, arranged in poly-cycles. Abundant tannin cells in ground tissue. Vascular bundles in the outmost cycle possessing a well-developed sheath with its 164 thickness greater on the pinna abaxial side than that on the adaxial side. The ultimate pinna rachis 165 166 possesses two cycles of vascular bundles, each consisting of four vascular bundles.

167

Etymology. The new species is named after the distinctive pecopteroid-shape of the attachedpinnules.

170

Remarks. Rothwellopteris pecopteris gen. et sp. nov. is interpreted as being the anatomically
preserved equivalent of the compression/impression species *Pecopteris marginata* Li et al. (1974)
that occurs in the Xuanwei Formation in this region. While its pinnule morphology is assignable to *P. marginata*, the species is placed in a new genus because its main rachis and primary pinna rachis
have the distinctive anatomy of a marattialean fern, and deserve a more complete typification as a
new genus. *Rothwellopteris* fronds combine anatomical features of Marattiaceae (concentric

177	arrangement of meristeles) and the Psaroniaceae (petiolar fiber sheath, some tangentially elongate
178	vascular bundles, pinnule anatomy). We have not retained the species name from the
179	impression/compression fossil species Pecopteris marginata to avoid confusion and to keep the
180	fossil-taxa separate; we consider the different species reflect an association between different
181	preservational media of what may be the same biological species.
182	
183	Holotype. YNUPB11001
184	
185	Depository. Institute of Deep Time Terrestrial Ecology, Yunnan University.
186	
187	Locality. Panxian Mine District, Guizhou Province.
188	
189	Stratigraphy and age. Xuanwei Formation, Lopingian Epoch, Permian Period.
190	
191	Description
192	The frond is a tri-pinnated compound leaf with a preserved length for the first order rachis (main
193	rachis) up to 30 cm (Fig. 1 <i>a</i>), but is apically and distally incomplete thus preserving only the middle
194	part of the frond. The diameter of the main rachis is nearly the same at both ends (Fig. $1b-c$) with no
195	obvious tapering, inferring its entire length pre-fragmentation to have been much longer, thus
196	constituting a large frond.
197	
198	Rachis anatomy

199	The surface of the main rachis and primary pinna rachis is typically undulated (Fig. 1c, 1e; Fig.
200	2c, $2d$) and anatomically they are nearly the same, comprising a narrow cortex with many small
201	vascular bundles or meristeles within it (Fig. 1b, 1c, 1e; Fig. 2c). Epidermal cells are usually poorly
202	preserved. Their cell walls seem to be thick and are usually preserved as a thin black homogenous
203	layer (Fig. 1d; Fig. 2d, 2e). The cortex comprises an outer and inner part, with the outer cortex
204	further divided into two zones of which the outermost layer consists of continuous parenchyma (Fig.
205	1 <i>d</i> , Fig. 2 <i>d</i> , 2 <i>e</i>). In the main rachis, the outer zone of the outer cortex has a larger radial width, up to
206	10 cells or 400–500 μ m wide. Parenchymatous cells are nearly isodiametric in cross section with
207	diameters mainly from 40–60 μ m. In the primary pinna rachis, the outer zone of the outer cortex is a
208	little narrower, 3–6 cells or 200–300 μ m wide, and cells are smaller with diameters usually less than
209	50 μ m. The inner zone of the outer cortex is a continuous or discontinuous sclerenchyma band. In the
210	main rachis the sclerenchyma band is mostly discontinuous and is divided into many alternating
211	sclerenchyma and parenchyma strands (Fig. 1b-d; Fig. 2d). Sclerenchyma strands are radially
212	elongate with radial widths of 600–700 μ m and a smaller tangential width (Fig. 1 <i>d</i>). Parenchyma
213	strands are connected with the outer zone of the outer cortex. In some parenchyma strands, the cells
214	are obviously radially elongate. Parenchyma cells of the cortex are all approximately isodiametric in
215	cross section, with diameters of 20–40 μ m and thick cell walls. Secretory cavities are scattered in the
216	parenchyma and sclerenchyma, and some of them contain dark brown contents. In the primary pinna
217	rachis, the sclerenchyma band tends to be continuous (Fig. $2b$, $2c$) with a smaller radial width,
218	usually 300–500 μ m. The inner cortex is usually poorly preserved and can be found only in some
219	places (Fig. 2f). Cells of the inner cortex are similar in size to those of the outer cortex but have
220	thinner cell walls. Cells of the outer and inner cortex appear elongate in longitudinal section (Fig.

221 3*a*).

222	There are many small vascular bundles (or meristeles) in the mid part of the main and second
223	order rachis. The outermost vascular bundles are arranged in a regular ring (fig. 1e; fig. 2c). Inside
224	this ring, vascular bundles are arranged somewhat irregularly and not in obvious rings (fig. 3b),
225	probably due to taphonomic disturbance. The number of vascular bundles is more than 70. Most of
226	vascular bundles are band-like and centripetally arced (fig. 2 <i>c</i> ; Fig. 3 <i>b</i> – <i>d</i> ; fig. 4 <i>a</i>), but some are
227	nearly round in cross section (fig. 3e). The well preserved vascular bundles consist of a xylem strand
228	and sheath. The xylem strand is 1–2 tracheids thick and protoxylem is endarch, located along the
229	inner side of the strand (fig. $3c$, $3d$). Metaxylem tracheids of the main rachis are mainly polygonal in
230	cross section and with diameters mostly more than 40–50 μ m, while those of the primary pinna
231	rachis are smaller, and typically 30–40 μ m in diameter. The vascular bundles of the outermost ring
232	are different from those of the inner rings; cells of the vascular bundle sheath of the former possess
233	thicker walls that are dark brown or black colored, while cell walls of the vascular bundle sheath in
234	the inner rings are thinner and are light colored (compare fig. 3c, 3d with fig. 4a). Phloem and
235	ground tissues are poorly preserved, but many tannin cells with dark or light colored contents can be
236	seen (fig. 3c, 3e; fig. 4b). Tracheid walls possess scalariform thickenings (fig. 4b).
237	The cortex of the ultimate pinna rachis is $300-400 \ \mu m$ thick and lacks sclerenchymatous strands
238	(fig. 4 <i>e</i>). It can be roughly divided into two zones. Cells of the outer zone are smaller, $20-30 \ \mu m$ in
239	diameter and with thick walls, while cells of the inner zone are larger, up to 40–60 μ m in diameter
240	and have thinner walls. There are two rings of vascular bundles in the middle part of the ultimate
241	pinna, with each ring consisting of four vascular bundles among which the one located at the dorsal
242	side is longer than the others. Xylem strands are thin, 1–2 tracheids thick, and metaxylem tracheids

are only 20–30 µm in diameter. The vascular bundle sheath is one cell thick and consists of cells
slightly smaller than the metaxylem tracheids. These cells possess thicker walls and are dark colored.

246

Ultimate pinnae and pinnule

The ultimate pinnae are all incompletely preserved with the longest one measuring 5 cm in 247 length. The width of the ultimate pinna is up to 16–18 mm. Pinnules are tongue-shaped (fig. 5b; fig. 248 6a) or somewhat falcate (fig. 4c; fig. 5a), alternate and oriented perpendicular to the ultimate pinna 249 rachis. Pinnules are up to 9 mm long and up to 3 mm wide in their middle, with blunt tips and 250 truncate and slightly expanded bases. The midrib is up to 0.3 mm wide and decurrent on the pinna. 251 The first lateral vein of the lower side at the base diverges from the decurrent part of the pinnule. 252 Lateral veins diverge from the midrib at an acute (or lower) angle and divide once, then extend to the 253 254 margin and divide once again. Ultimate lateral vein branches are perpendicular to the margin of the pinnule (fig. 5; fig. 6b, 6c). 255

The midrib of the pinnule appears sturdy and is raised on the lower surface (fig. 6d; fig. 7a). 256 Lamina thickness varies depending on the pinnules. In some pinnules, the lamina is 350-400 µm 257 thick, while in other pinnules the lamina is only 250–300 µm thick. The lateral margin of the pinnule 258 is thicker and bends or is even involute toward the lower surface (fig. 6d; fig. 7a). Mesophyll is 259 differentiated into a palisade and spongy tissue (Fig. 7b, 7c). Palisade tissue is well developed and its 260 cells have a length reaching half of the thickness of the lamina with many of them possessing black 261 or dark brown contents. The vascular bundle of the lateral veins is located within the spongy tissue 262 and has a diameter of 110–130 µm. Vascular bundle sheaths consists of 1–2 layers of nearly round 263 cells. On the lower and upper surface of the vascular bundle sheath there is a strand of cells which 264

265	connect the epidermis and the vascular bundle sheath. The strand which connects the upper
266	epidermis and the vascular bundle sheath is slender and consists of small, thick-walled cells, while
267	the strand connecting the lower epidermis and the vascular bundle sheath is shorter, thicker, and
268	consists of large thin-walled cells. The vascular bundle sheath appears circular in section and defines
269	a ridge on the abaxial (lower) pinnule surface (Fig. 6d).
270	
271	Discussion
272	Comparisons with impression-compression species
273	The frond from the Xuanwei Formation is preserved revealing both its morphology and anatomy
274	from which information on its pinnule outline and venation enables comparisons with
275	impression-compression species. In outline pinnules are tongue-shaped or falcate with a blunt tip and
276	a truncate and slightly expanded base. These features conform to the circumscription of the genus
277	Pecopteris Brongniart, a genus for specimens preserved as impression/compression fossils. Although
278	most species of Pecopteris belong to members of the Marattiales, other species have also been
279	assigned to the Zygopteridales, "filicales" including the Tedelaceae or seed plant (e.g., Stewart and
280	Rothwell, 1993). To date, 10 species of Pecopteris have been reported from the Xuanwei Formation
281	in western Guizhou and eastern Yunnan provinces, namely: P. arcuata Halle, P. echinata Gu et Zhi,
282	P. elegantula Zhang, P. fuyuanensis Zhang, P. (Asterotheca) guizhouensis Zhang, P. lingulata Zhang,
283	P. longifolioides Zhang, P. marginata Gu et Zhi, P. qingyunensis Zhang and P. sahnii Hsu (Li et al.,
284	1974; Zhao et al., 1980; Tian et Zhang, 1980). Among these species, the present frond is comparable
285	to Pecopteris marginata Li et al. (1974) in its pinnule outline and venation pattern. However, the
286	type specimen of <i>P. marginata</i> is a bipinnately compound leaf which is distinct from the tri-pinnate

leaf of the specimen described here. P. marginata has a broad rachis and its primary pinna rachis is 287 up to 6–7 mm wide. The margin of the pinnule has a narrow thickened band, and the base of the 288 pinnule is slightly expanded. In P. marginata the pinnule midrib is thick, lateral veins fork twice and 289 are perpendicular to the lateral margin of the pinnule. *Rothwellopteris pecopteroides* also has a thick 290 rachis (rachis is up to 30 mm wide and the second order of rachis is up to 10 mm wide) and the size 291 of ultimate pinna and pinnules of the present frond are similar to those of the type specimen of P. 292 marginata. The base of the pinnules of Rothwellopteris are also slightly expanded and the lateral 293 margin bends or is involute toward the lower surface, and there is a thickened band at the margin of 294 295 the pinnule. In the new genus, the midrib is also prominent and lateral veins mostly forked twice and are perpendicular to the lateral margin of the pinnule. Differences between the present frond and the 296 type specimen of *P. marginata* is that the new frond is tri-pinnately compound leaf, while the type 297 298 specimen of *P. marginata* is a bi-pinnately compound leaf, but this may be the result of fragmentation and incomplete preservation in the type specimen of P. marginata. Furthermore, the 299 present frond and the type specimen of P. marginata were both collected from the same locality and 300 same stratigraphic interval making it additionally probable that they belong to the same species, with 301 the Rothwellopteris specimen being a permineralized example of P. marginata. The discovery of the 302 new frond specimen establishes that P. marginata is a tri-pinnately compound leaf, and not a 303 bi-pinnately compound leaf. 304

305

306

Comparison with permineralized fossil and living Marattiales

The discovery of the present frond is important as it presents an opportunity to study the
anatomy of a Cathaysian species of *Pecopteris* for the first time. The rachis of the tri-pinnate frond

from the Xuanwei Formation has numerous anatomical features that allow it to be placed within the Marattiales including (1) the presence of abundant vascular bundles that are roughly arranged in concentric rings, (2) individual vascular bundles being short, band-like and bend internally, (3) protoxylem distributed along the innermost side of the vascular bundle, and (4) abundant tannin cells dispersed throughout the tissues (Ogura 1972b).

Existing Paleozoic records of anatomically preserved vegetative marattialean fronds have 314 mainly been found from in the Euramerican and Cathaysian floras. Those from the Euramerican flora 315 occur in the Pennsylvanian and Cisuralian (lower Permian) from which petioles and rachises are 316 317 placed in the genera Stewartiopteris Morgan and Delevoryas and Stipitopteris Grand'Eury (Morgan and Delevoryas 1952a, b; Stidd 1971; Table 1). Those from Cathaysia occur in the Cisuralian and 318 Lopingian (upper Permian) where anatomically preserved petioles or rachises are also assigned to 319 320 Stewartiopteris and Stipitopteris (Xiang et al. 2008). However, the rachises of the present frond possess abundant small vascular bundles, which clearly distinguish it from both of these genera that 321 have only one or two long and continuous vascular bundles (Table 1). 322

Compsopteris elliptica was established by Yang and Chen (1979) for impression-compression 323 fossils of mono-pinnate compound marattialean leaves from the Longtan Formation in Guangdong 324 Province that they considered to most likely represent the frond of a seed fern. Anatomical 325 preservation of C. elliptica was later identified by Guo et al. (1992) who also assigned a 326 permineralized rachis from the same Formation to Compsopteris sp., considering both to represent 327 marattialean fronds. While Stewartiopteris and Stipitopteris each possess only 1-2 tangentially 328 elongate vascular bundles, both C. elliptica and C. sp. possess more bundles, at least 4–5 in C. 329 elliptica and many more in C. sp. (Guo et al. 1992), as does the present frond (Table 1). However, the 330

331	rachises of C. elliptica and C. sp. are obviously ventral-dorsal in cross section and vascular bundles
332	are arranged in regular rings which are depressed at the ventral side (or upper side) and consists of
333	short vascular bundles, while at the dorsal side (or lower side) the rings consists of much longer
334	vascular bundles (fig. 7 <i>d</i>). Unlike <i>C. elliptica</i> and <i>C.</i> sp., rachises of the present frond are not
335	ventral-dorsal in cross section and are not depressed at the ventral side and the vascular bundles of
336	the present frond are all short or small throughout the frond (compare fig. $2c$ and fig. $3b$ with fig. $7d$).
337	Further differences include C. elliptica and C. sp. having large cells containing dark colored contents
338	within the outer zone of cortex, and the thickness of the vascular bundle sheath is large and cells are
339	arranged more tightly at the inner side than at the outer side where the thickness of vascular bundle
340	sheath is small and cells are arranged loosely. In the present frond, large cells with dark colored
341	contents within the outer zone of the cortex are absent, and the thickness of vascular bundle sheath is
342	large and consists of thicker-walled cells at the outer side, but the thickness of the vascular bundle
343	sheath is small and consists of thinner-walled cells at the inner side (compare fig. 7e with fig. 7f).
344	The present species is thus also distinct from Compsopteris (Table 1).
345	In certain living marattialean plants, the petiole or main rachis also possess abundant short or
346	small vascular bundles that are arranged in concentric rings, for example, up to 4–5 rings in
347	Angiopteris (Stidd 1971; Ogura 1972b). In this regard, the anatomy of the present frond is more
348	comparable to living crown group members of the Marattiales within the family Marattiaceae rather
349	than to extinct members of the Marrattialean stem group placed in the family Psaroniaceae (Rothwell
350	et al. 2018). Obvious differences between the present frond and extant marattialean plants occur in
351	terms of their morphology (Table 1). The Rothwellopteris frond is tri-pinnate with small pinnules that
352	are basally truncate, while fronds in Marattiaceae are mostly mono-pinnate or palmate (only

Angiopteris is bi-pinnate) and pinnules are large and their base is contracted and petioled (Stidd
1971).

As well as being distinct from Paleozoic members of the Marattiales within the Psaroniaceae 355 based on its anatomy, the new frond is also distinct from living Marattiales based on its frond 356 morphology, leading us to establish the genus Rothwellopteris gen. nov. based on its unique 357 combination of characters. We consider Rothwellopteris pecopteroides to represent the 358 permineralized equivalent of the compression/impression fossil species Pecopteris marginatus. New 359 anatomical information allows moving P. marginata from the genus Pecopteris that is restricted to 360 361 compression/impression specimens, and recognizes its distinct anatomy that has features of both the Marattiaceae and Psaroniaceae. 362

We consider that *Rothwellopteris* represents an intermediate between the Paleozoic Psaroniaceae and the stratigraphically younger Marrattiaceae (see Rothwell et al. 2018), constituting a stem group member of the lineage leading to Marratiaceae. *Rothwellopteris* demonstrates that by the end of the Permian period the ancestral Psaroniaceae had started to diversify and that the stem to crown group transition within Marattiales was already underway.

368 It is known that up to now most of marattialean fronds with *Pecopteris*-type pinnules were

produced by the *Psaronius* Cotta plant, a marattialean tree fern that was common during the

370 Pennsylvanian and Permian periods and possessed petioles and rachises assignable to either

371 Stewartiopteris or Stipitopteris (e.g., Stidd 1971). The discovery of the present frond enriches the

diversity of the petiole and rachis of marattialean plants with *Pecopteris*-type pinnules.

373 *Rothwellopteris* in demonstrating the first anatomical preservation of a pecopterid marattialean frond

from China shows that at least some Cathaysian species were distinct from those from Euramerica,

and presumably were not produced by the Psaronius plant. However, to date no whole-plant species 375 of Cathaysian marattialean fern has been reconstructed from stems or fertile foliage to further assess 376 the organization of the Cathaysian members of the Psaroniaceae with pectoperid pinnules. 377 The co-existence of *Rothwellopteris pecopteroides*, *Compsopteris elliptica* and *Compsopteris* sp. 378 in the Lopingian (upper Permian) flora of eastern Yunnan and western Guizhou shows that the type 379 of petiole and rachis which possess multiple vascular bundles typical of living marattialean plants 380 had diverged from the ancestral marattialean Psaroniaceae by this stratigraphic interval of time. 381 Although the rachis of *R. pecopteroides*, *C. elliptica* and *C.* sp. each possess multiple vascular 382 bundles, they are each different from each other. The vascular bundles of *R. pecopteroides* are 383 smaller and more numerous, being closer to living marattialean plants than the other species, but in 384 terms of its morphology, it has tri-pinnate compound leaves and its pinnules are small and have a 385 386 truncated base, characters that may be interpreted as more primitive. Although also different from the frond of *Rothwellopteris*, *C. elliptica* and *C.* sp. also appear more primitive than living marattialean 387 plants in the anatomy of the rachis because it can have long vascular bundles. However, in other 388 regards, the morphology of C. elliptica and C. sp. are closer to living marattialean plants than 389 Rothwellopteris because it has a mono-pinnate compound leaf, its pinnules are large and their base is 390 contracted and petioled. What is now required to further assess the systematic and phylogenetic 391 relationships of *Rothwellopteris* is the development of a whole-plant concept, associating fertile 392 organs and trunks to the same plant species. Such research is currently in progress. 393

394

Acknowledgements

396	This work was supported by the National Natural Science Foundation of China (Awards No.
397	41162001, 41472021, 41530101, U1702242) and the Strategic Priority Research Program of Chinese
398	Academy of Sciences (XDB26000000).
399	
400	Literature Cited
401	Bateman RM, J Hilton 2009 Palaeobotanical systematics for the phylogenetic age: applying
402	organ-species, form-species and phylogenetic species concepts in a framework of reconstructed
403	fossil and extant whole-plants. Taxon 58:1254–1280.
404	DiMichele WA, TL Phillips 1977 Monocyclic Psaronius from the Lower Pennsylvanian of the
405	Illinois Basin. Can J Bot 55:2514–2524.
406	D'Rozario A, B Sun, J Galtier, SJ Wang, WY Guo, YF Yao, CS Li 2011 Studies on the Late Permian
407	permineralized tree fern Psaronius housuoensis sp. nov. from Yunnan Province, southwest China.
408	Rev Palaeobot Palynol 163:247–263.
409	Galtier J, TL Phillips 1999 The acetate peel technique. Pages 67–71 in TP Jones, NP Rowe, (Eds)
410	Fossil plants and spores: modern techniques. London: Special Publication of the Geological
411	Society.
412	Guo YT, BL Tian DX Han 1990 The anatomical study of <i>Plagiozamites oblongifolius</i> and the
413	systematic position of <i>Plagiozamites</i> . Acta Bot Sin 30:799-804 (in Chinese with English
414	abstract).
415	Guo YT, BL Tian, DX Han 1992 Anatomical study of the rachis of Compsopteris elliptica and the
416	systematic position of Compsopteris. Acta Bot Sin 34:630-633 (in Chinese).
417	He J, SJ Wang, J Hilton, L Shao 2013. Xuanweioxylon gen. nov.: novel Permian coniferophyte stems

- and branches with scalariform bordered pitting on secondary tracheids. Rev Palaeobot
 Palynol 197:152–165.
- 420 He XY, SJ Wang, J Hilton, YL Zhou 2006 A new species of the marattialean fern Scolecopteris
- 421 (Zenker) Millay from the uppermost Permian of Guizhou Province, southwestern China. Bot J

422 Linn Soc 151:279–288.

- He XY, SJ Wang, J Hilton, BL Tian, YL Zhou 2008 Anatomically preserved marattialean plants from
 the Upper Permian of southwestern China: the trunk of *Psaronius panxianensis* sp. nov. Pl Syst
 Evol 272:155–180.
- 426 He XY, JH Jin, SJ Wang, XP Fu, N Li, Y Li 2010 Anatomically preserved marattialean plants from
- 427 the Upper Permian of southwestern China: the trunk of *Psaronius laowujiensis* sp. nov. Inter J
 428 Plant Sci 171:662–678.
- 429 He XY, SJ Wang, J Hilton, J Galtier, YJ Li, L Shao 2013 A unique trunk of Psaroniaceae
- 430 (Marattiales)—*Psaronius xuii* sp. nov., and subdivision of the genus *Psaronius* Cotta. Rev

431 Palaeobot Palynol 197:1–14.

- 432 Herbst R 1986 Studies on Psaroniaceae. I. The family Psaroniaceae (Marattiales) and a redescription
- 433 of *Tietea singularis* Solms-Laubach; from the Permian of Brazil. Actas IV Congr Argentino

434 Paleontol y Bioestratigrafia 1:163–171.

Herbst R 1987 Studies on Psaroniaceae. II. *Tuvichapteris solmsi* nov. gen. et sp. from the Permian of

436 Paraguay and Uruguay. Actas IV Congr Latinoamer Paleont, Santa Cruz de la Sierra, Anais

437 Bolivia 1: 267–282.

438 Herbst R 1992 Studies on Psaroniaceae. III, Tietea derbyi n.sp., from the Permian of Brazil. Cour

439 Forsch Senck 147:155–161.

- Herbst R 1999 Studies on Psaroniaceae. IV. Two species of *Psaronius* from Araguaina, State of
 Tocantins, Brazil. Facena 15:9–17.
- 442 Hill CR, RH Wagner, AA El-Khayal 1985 Qasimia gen. nov., an early Marattia-like fern from the
- 443 Permian of Saudi Arabia. Scripta Geol 79:1–50.
- 444 Hilton J, SJ Wang, J Galtier, I Glasspool, L Stevens 2004 A Late Permian permineralized plant
- 445 assemblage in volcaniclastic tuff from the Xuanwei Formation, Guizhou Province, China, and its
 446 palaeofloristic significance. Geol Mag 141:661–674.
- Li HQ, BL Tian, EL Taylor, TN Taylor 1994 Foliage anatomy of Gigantonoclea guizhouensis Gu et
- Zhi (Gigantopteridales) from the Upper Permian of Guizhou Province, China. Amer J Bot 81:
 678–689.
- 450 Li HQ, DW Taylor 1998 Aculeovinea yunguiensis gen. et sp. nov., a new taxon of gigantopterid axis
- 451 from the Upper Permian of Guizhou province, China. Inter J Plant Sci 159:1023–1033.
- Li HQ, DW Taylor 1999 Vessel-bearing stems of *Vasovinea tianii* gen. et sp. nov. (Gigantopteridales)
- from the Upper Permian of Guizhou province, China. Amer J Bot 86:1563-1575.
- 454 Li XX (Ed.) 1995 Fossil floras of China through the geological ages. Guangdong Sci Tech Press, pp
- 455 695, pls 144. Guangzhou, China. (English edition)
- 456 Liu ZH, J Hilton, CS Li 2000 Review of the origin, evolution and phylogeny of Marattiales. Chinese
- 457 Bull Bot 17:39–52.
- Mickle JE 1984 Taxonomy of specimens of the Pennsylvanian-age marattialean fern *Psaronius* from
 Ohio and Illinois. Ill State Mus Sci Pap 19:1–64.
- 460 Millay MA 1997 A review of permineralized Euramerican Carboniferous tree ferns. Rev Palaeobot
- 461 Palynol 95:191–209.

- Morgan J 1959 The morphology and anatomy of American species of the genus *Psaronius*. Ill. Biol
 Monogr 27:1–108.
- 464 Morgan J, T Delevoryas 1952a An anatomical study of *Stipitopteris*. Amer J Bot 39:474–478.
- Morgan J, T Delevoryas 1952b *Stewartiopteris singularis*: a new psaroniaceous fern rachis. Am J Bot
 39:479–484.
- 467 Neregato R, C D'Apolito, I Glasspool, SJ Wang, L Feng, P Windslow, J Lu, L Shao, J Hilton 2016
- 468 Palynological constraints on the provenance and stratigraphic range of a Lopingian (late Permian)
- 469 inter-extinction floral lagerstätte from the Xuanwei Formation, Guizhou Province, China. Int J
- 470 Coal Geol 62:139–150.
- 471 Ogura Y 1972a *Psaronius* from Linggiu, Johore, Malaya. Geol Paleontol SE Asia 10:117–124.
- 472 Ogura Y 1972b Comparative anatomy of vegetative organs of the pteridophytes (2nd edition).
- 473 Gebruder borntraeger, Berlin.
- 474 Rothwell GW 1999 Fossils and ferns in the resolution of land plant phylogeny. Bot Rev 65:188–218.
- 475 Rothwell GW, MA Millay, RA Stockey 2018 Resolving the overall pattern of marattialean fern
- 476 phylogeny. Amer J Bot 105:1304–1314.
- Seyfullah LJ, J Hilton, MM Liang, SJ Wang 2010 Resolving the systematic and phylogenetic
 position of isolated ovules: a case study from a new genus from the Upper Permian of China.
 Bot J Linn Soc 164:84–108.
- Seyfullah LJ, J Hilton 2011 Callistophytalean pteridosperms from the Permian floras of China.
 Palaeontology 54:287–302.
- 482 Stewart WN, GW Rothwell 1993 Paleobotany and the evolution of plants (2nd edition) Cambridge
- 483 Univ Press, New York. 521 p.

484	Stidd BM 1971 Morphology and anatomy of the frond of <i>Psaronius</i> . Palaeontogr Abt B 134:87–123.
485	Sze HC 1942 Über ein neues Exemplar von Psaronius aus dem Omeishan Basalt in Weining
486	(Kueichou) mit besonderer Berücksichtigung des Alters des Basaltes in Südwest China. Bull
487	Geol Soc China 22:105–131.
488	Sze HC 1947 On the structures of Psaronius sinensis from the Omeishan Basalt Series in
489	southwestern China. Geol J Amer 55:160–167.
490	Taylor TN, Taylor EL, Krings M 2009 The biology and evolution of fossil plants (2nd edition).
491	Elsevier, Amsterdam, Netherlands.
492	Tian BL, YJ Li, YT Guo 1992 On the study of Psaronius wangii (sp. nov.) from Xuanwei Formation
493	of Pan Xian, Guizhou. pp 74–78, 3 pls in ZL Li (Ed.), Collected works for memory of the 100 th
494	anniversary of the Birthday of Dr. Wang Zhu-Quan. Coal Industry Press, Beijing, (in Chinese).
495	Tian BL, Zhang LW 1980. Fossil atlas of Wangjiazhai mine region in Suicheng, Guizhou. Coal Ind
496	Press, Beijing (In Chinese).
497	Wang SJ, J Hilton, MM Liang, L Stevens 2006 Permineralized seed plants from the Upper Permian
498	of southern China: a new species of Cardiocarpus. Int J Plant Sci 167:1247–1257.
499	Wang SJ, RM Bateman, ART Spencer, J Wang, LY Shao, J Hilton 2017 Anatomically preserved
500	"strobili" and leaves from the Permian of China (Dorsalistachyaceae fam. nov.) broaden
501	knowledge of Noeggerathiales and constrain their possible taxonomic affinities. Amer J Bot 104:
502	127–149.
503	Xiang N, SM Ma, BL Tian, SJ Wang, MS Zhang 2008 New species of the isolated psaroniaceous
504	rachis from the Early Permian in China. J Integra Plant Biol 50:119–127.
505	Yang ZC 1986 A new species of the genus Psaronius Cotta from Yunnan Province, China. Geol

506 China 21:30 (in Chinese).

507	Yang GX, F Chen 1979 Palaeobotany. Pages 104–139 in HF Hou et al. (Eds). The coal-bearing strata
508	and fossils of Late Permian from Guangdong. Geol Publ House, Beijing (in Chinese).
509	Zhao XH, ZG Mo, SZ Zhang, ZQ Yao 1980 Late Permian flora from western Guizhou and eastern
510	Yunnan. pp 70–122 in Nanjing Inst Geol Palaeont, Acad Sinica (Eds.), Late Permian coal bearing
511	strata and biota from western Guizhou and eastern Yunnan. Science Press, Beijing, pp 1-277 (in
512	Chinese).
513	
514	Figure captions
515	
516	Fig. 1. <i>a</i> , Main rachis, partly exposed on the surface of the rock. Scale bar = 2 cm. b –c, Cross section
517	of the two ends of the main rachis with a second order of rachis (SOR) diverging from the upper side
518	of the main rachis (MR) in c. Scale bars = 0.5 cm. Slides YH-0220, YH-0221. d, Detail of the cross
519	section of the main rachis showing the outer cortex that consists of an outer continuous parenchyma
520	zone (OZ) and an inner discontinuous sclerenchyma zone (IZ). Scale bar = $100 \mu m$. Slide YH-0220.
521	e, Cross section of a primary pinna rachis. Arrow indicates an ultimate pinna with two pinnules

523 Scale bar = 0.5 cm. Slide YH-0224. *f*, Cross section of a primary pinna rachis (SOR) to which

ultimate pinnae (UP) are attached. Scale bar = 0.5 cm. Slide YH-0229

525

Fig. 2. *a*, Primary pinna rachis in tangentially longitudinal section (at 1) and the cross sections of two ends (at 2 and 3). Scale bar = 5 mm. Slide YH-0230. *b*, Part of a cross section through a primary pinna rachis (SOR) and longitudinal section of an ultimate rachis (UR). Scale bar = 5 mm. Slide YH-0226. *c*, Cross section through a primary pinna rachis. Note outermost ring of vascular bundles (arrows) and vascular bundles in the mid region (VB). Scale bar = 2 mm. Slide YH-0229. *d–f*, Cross section through cortex of primary pinna rachis; epidermis (E), outer zone (OZ) and inner zone (IZ) of the outer cortex, inner cortex (IC). Scale bars for $d, f = 200 \mu m, e = 100 \mu m$. Slide YH-0230.

533

Fig. 3. *a*, Longitudinal section of the cortex of a primary pinna rachis; epidermis (E), outer zone (OZ) and inner zone (IZ) of outer cortex. Scale bar = 200 μ m. Slides YH-0230. *b*, Enlargement of boxed area from fig. 1*e*, showing many small vascular bundles in the mid region of the primary pinna rachis. Scale bar = 1 mm. Slide YH-0224. *c*–e, Individual vascular bundles of the mid region of rachis. Scale bars = 100 μ m. Slide YH-0221.

539

Fig. 4. a, Cross section of a primary pinna rachis showing cortex and vascular bundles of the 540 outermost ring. Scale bar = 1 mm. Slide YH-0224. b, Oblique section of vascular bundle of a primary 541 pinna rachis showing scalariform thickenings on the tracheid walls. Scale bar = $100 \mu m$. Slide 542 YH-0226. c. Paradermal section through an ultimate pinna, showing the slightly falcate pinnules. 543 Scale bar = 2 mm. Slide YH-0222. d, Cross section through an ultimate pinna rachis and an attached 544 pinnule. Scale bar = 1 mm. Slide YH-0228. e, Enlargement of the ultimate pinna rachis from fig 4d. 545 Scale bar = 0.5 mm. f, Oblique cross section of the pinnule lamina showing palisade tissue and vein 546 sheath. Scale bar = $100 \,\mu\text{m}$. Slide YH-0230. 547

548

549 Fig. 5. Paradermal section through adjacent pinnules, showing pinnule outline and venation (drawn

550 from fig. 6*b*).

551

Fig. 6. *a*, Paradermal section through an ultimate pinna, showing tongue-shaped pinnules. Scale bar
= 5 mm. Slide YH-0223. *b*, Paradermal section through two slightly falcate pinnules, showing the
venation. Scale bar = 1 mm. Slide YH-0222. *c*, Paradermal section through the lower lobe of a
pinnule, showing lateral veins. Scale bar = 0.5 mm. Slide YH-0225. *d*, Cross section though a
pinnule, showing midrib (Mr) and thickened lateral margin (arrow). Scale bar = 0.5 mm. Slide
YH-0230.

558

Fig. 7. a, Cross section through a pinnule showing thick midrib, U-shaped vascular bundle, 559 thickened lateral margin (arrows) and possible hydathodes. Scale bar = 0.5 mm. Slide YH-0230. *b*-*c*, 560 561 Part of a cross section through a pinnule, showing palisade tissue, spongy tissue and veins. Scale bars = 0.5 mm. Slides YH-0230, YH-0228. d, Cross section of Compsopteris elliptica rachis showing 562 tangentially elongate vascular bundles near the dorsal surface. Scale bar = 1 mm. Slide WP2-0193. e_{1} 563 Enlargement of specimen in Fig.7d, showing large cells with brown content (arrows) in the outer 564 zone of the outer cortex (OZ); note the thick inner vascular bundle sheath (1), thin outer vascular 565 bundle sheath (2), xylem strand (XS). Scale bar = $200 \,\mu\text{m}$. f, Cross section of a second order rachis 566 of Rothwellopteris pecopteroides, with no large cells with brown content in outer zone (OZ) of the 567 outer cortex. The inner vascular bundle sheath (1) is thin and the outer vascular bundle sheath (2) is 568 slightly thicker. Scale bar = $200 \,\mu m$. Slide YH-0229. 569

570

	Rothwellopteris	Compsopteris	Compsopteris	Stewartiopteris	Stipitopteris	Angiopteris
		elliptica	sp.			
Number of	Numerous	Numerous	Numerous	One	Two	Numerous
vascular						
bundles						
Frond	Tri-pinnate	Mono-pinnate	Unknown	At least	At least	Bi-pinnate
morphology				tri-pinnate	tri-pinnate	
Pinnule	Broad attachment	Narrow attachment	Unknown	Broad attachment	Broad	Narrow
					attachment	attachment

Table 1. Comparison of key generic features of *Rothwellopteris* gen. nov. with other Marattiales.