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Abstract
Functional MRI at ultra-high field (UHF, ≥7 T) provides significant increases in BOLD contrast-to-

noise ratio (CNR) compared with conventional field strength (3 T), and has been exploited for

reduced field-of-view, high spatial resolution mapping of primary sensory areas. Applying these high

spatial resolution methods to investigate whole brain functional responses to higher-order cognitive

tasks leads to a number of challenges, in particular how to perform robust group-level statistical ana-

lyses. This study addresses these challenges using an inter-sensory cognitive task which modulates

top-down attention at graded levels between the visual and somatosensory domains. At the individ-

ual level, highly focal functional activation to the task and task difficulty (modulated by attention

levels) were detectable due to the high CNR at UHF. However, to assess group level effects, both

anatomical and functional variability must be considered during analysis. We demonstrate the

importance of surface over volume normalisation and the requirement of no spatial smoothing when

assessing highly focal activity. Using novel group analysis on anatomically parcellated brain regions,

we show that in higher cognitive areas (parietal and dorsal-lateral-prefrontal cortex) fMRI responses

to graded attention levels were modulated quadratically, whilst in visual cortex and VIP, responses

were modulated linearly. These group fMRI responses were not seen clearly using conventional

second-level GLM analyses, illustrating the limitations of a conventional approach when investigat-

ing such focal responses in higher cognitive regions which are more anatomically variable. The

approaches demonstrated here complement other advanced analysis methods such as multivariate

pattern analysis, allowing UHF to be fully exploited in cognitive neuroscience.

KEYWORDS

fMRI, 7 T, attention modulation, directed attention, MRI, multi-sensory domain,

somatosensory, ultra-high field, visual

1 | INTRODUCTION

The development of ultra-high field (UHF, ≥ 7 T) MRI scanners has pro-

vided new opportunities for functional MRI (fMRI). Increasing the field

strength results in the intrinsic increase in image signal-to-noise ratio

(SNR) (Pohmann, Speck, & Scheffler, 2016; Vaughan et al., 2001) and this,

coupled with an increased blood oxygenation level-dependent (BOLD)

signal change, results in increased BOLD contrast-to-noise ratio (CNR).

This can be exploited to improve the spatial resolution of fMRI data or to

enhance the sensitivity, enabling the detection of weaker responses.Karen J. Mullinger and Susan T. Francis contributed equally to this study.
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To date, the majority of UHF fMRI studies have used reduced

field-of-view (FOV) 2D-and 3D echo planar imaging (EPI) acquisitions

to study chosen primary sensory areas, such as the visual and sensori-

motor cortices (Fracasso, Luijten, Dumoulin, & Petridou, 2017;

Puckett, Bollmann, Barth, & Cunnington, 2017; Reithler, Peters, &

Goebel, 2017; Schluppeck, Sanchez-Panchuelo, & Francis, 2017), thus

overcoming a number of challenges of B0 and B1 inhomogeneities

associated with larger FOV acquisitions (Polimeni, Renvall, Zarets-

kaya, & Fischl, 2017; Uludag & Blinder, 2017). For example, the

increase in BOLD CNR of UHF experiments has been used to provide

detailed maps of individual subjects’ visual (Goncalves et al., 2015;

Kemper, De Martino, Emmerling, Yacoub, & Goebel, 2017; Poltoratski,

Ling, McCormack, & Tong, 2017; Rua et al., 2017) and somatosensory

functional responses (Puckett et al., 2017; Sanchez Panchuelo et al.,

2016; Sanchez Panchuelo, Schluppeck, Harmer, Bowtell, & Francis,

2015) and how these relate to individual brain anatomy (Besle,

Sanchez-Panchuelo, Bowtell, Francis, & Schluppeck, 2014; Sanchez-

Panchuelo et al., 2012; Sanchez-Panchuelo et al., 2014). These func-

tional maps have been shown to spatially vary across subjects,

highlighting inter-subject variability, whilst the reproducibility of these

maps has been shown to be high within subjects across sessions

(Goncalves et al., 2015; Sanchez-Panchuelo et al., 2012). Imaging at

the sub-millimetre level has allowed mapping of cortical columns and

‘layers’ of cortex (e.g., De Martino et al., 2015; Kok, Bains, van Mourik,

Norris, & de Lange, 2016; Muckli et al., 2015; Olman et al., 2012; Yacoub,

Shmuel, Logothetis, & Ugurbil, 2007; Zimmermann et al., 2011), providing

a novel method by which to distinguish bottom-up and top-down neural

processes (Kok et al., 2016; Muckli et al., 2015; Olman et al., 2012).

The challenges of full FOV acquisitions at UHF have resulted in

there being a limited number of studies of whole brain function at

high spatial resolution to date (e.g., Boyacioglu et al., 2014; Goodman

et al., 2017; Mestres-Misse, Trampel, Turner, & Kotz, 2017; Vu et al.,

2016). In particular there are few studies of cognitive function, as

highlighted in a recent review article (De Martino et al., 2017).

Although full FOV functional acquisitions are now included in the

Human Connectome Project 7 T protocol (http://protocols.

humanconnectome.org/) for resting state assessment. However, large

inter-individual differences in anatomy can arise (Geyer, Weiss,

Reimann, Lohmann, & Turner, 2011; Gu & Kanai, 2014; Kanai & Rees,

2011) which results in challenges in the data analysis of group func-

tional responses, meaning responses might be lost at the group level

due to lack of spatial congruency. To date, to our knowledge, only

three studies have used whole brain UHF fMRI to map responses to

complex cognitive tasks in higher-order cortical regions (Goodman

et al., 2017; Torrisi et al., 2018; Vu et al., 2016). Goodman

et al. (2017) exploited 7 T to investigate the neural basis of consumer

buying motivations. This study maximised the increased BOLD CNR

of UHF, but did not realise the full potential of 7 T as a 6 mm full-

width-at-half-maximum (FWHM) smoothing kernel was applied to

GE-EPI data acquired at 2 mm isotropic to reveal the group activity.

Vu et al. (2016) exploited the benefits of high 500 ms temporal reso-

lution to show the improved sensitivity of capillary responses at 7 T

compared with 3 T allowing the decoding of fine-grained temporal

information for word classification. Torrisi et al. (2018) compared the

benefits of using 7 T over 3 T fMRI in a go no-go task. This study had

a particular focus on increased statistical power at UHF, and showed

that high power can be gained with fewer subjects, but as in Goodman

et al., the 6 mm Gaussian smoothing applied meant the acquisition did

not realise the full activation spatial resolution achievable at 7 T.

UHF provides the potential to study cognitive processing with

high BOLD CNR to enable the detection of more subtle cognitive

responses and/or the precise characterisation of responses on an indi-

vidual subject level. However, it is expected that the spatial location

of brain function in higher cortical regions may be more variable

between subjects than in primary sensory cortex due to the combina-

tion of inter-individual anatomical differences in brain structure

and/or spatial differences in functional responses. Thus a method by

which brain structure and function can be studied on an individual

subject basis and linked to behaviour would be highly beneficial to the

advancement of cognitive neuroscience.

Here, we investigate whole brain higher-order cognitive function

to an adapted Posner paradigm, a classic paradigm in cognitive neuro-

science, using high spatial resolution UHF (7 T) fMRI. This adapted Pos-

ner, visual/somatosensory top-down attention modulation task is used

to assess brain regions involved in varying the degree of attention

directed to the somatosensory and visual domains. We explore the

effect of inter-subject structural and functional differences in higher-

order cortical regions, and assess the effect of normalisation and

smoothing pre-processing steps on the resultant group functional

maps. Typically, a Posner paradigm is used to modulate visual spatial

attention (e.g., Corbetta, Kincade, Ollinger, McAvoy, & Shulman, 2000;

Gitelman et al., 1999; Gould, Rushworth, & Nobre, 2011; Posner,

1980), but has been less commonly used to modulate spatial attention

in the somatosensory domain (e.g., Haegens, Handel, & Jensen, 2011;

Haegens, Luther, & Jensen, 2012; Wu et al., 2014). In electroencepha-

lography (EEG), these attention modulations have been associated with

increased hemispheric lateralisation of the power of alpha-frequency

(8–13 Hz) oscillations over sensory-specific areas with increased spatial

attention to a location (i.e., a contralateral decrease and ipsilateral

increase in alpha power relative to the attention location) (Gould et al.,

2011; Haegens et al., 2011; Haegens et al., 2012; Rihs, Michel, & Thut,

2007; Worden, Foxe, Wang, & Simpson, 2000; Zumer, Scheeringa,

Schoffelen, Norris, & Jensen, 2014). This alpha modulation has been

associated with a decrease in inhibition/increase in cortical excitability

in the relevant cortical areas when attention is directed to its corre-

sponding spatial location (Gould et al., 2011; Haegens et al., 2011; Hae-

gens et al., 2012; Rihs et al., 2007; Worden et al., 2000; Zumer et al.,

2014). In fMRI studies, Posner paradigms have been widely used to

identify brain regions involved with visual spatial attention (Carrasco,

2011; Corbetta et al., 2000; Gitelman et al., 1999 ; Martinez et al.,

1999), identifying modulations across a number of cortical regions

including the frontal eye fields (FEF), posterior parietal, cingulate, stri-

ate and extrastriate cortex (Gitelman et al., 1999; Martinez et al.,

1999), with the intraparietal sulcus (IPS) recruited specifically during

the cued attention period prior to stimulus presentation (Corbetta

et al., 2000). Whilst tactile spatial attention has been studied less com-

monly with EEG and fMRI, the inferior parietal lobule and secondary

somatosensory cortex (SII) have been shown to be recruited (Gomez-

Ramirez, Hysaj, & Niebur, 2016; Wu et al., 2014). To our knowledge,

only one previous fMRI study has investigated the brain activity
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underlying manipulation of spatial attention across two sensory modali-

ties in a single task using a Posner-style paradigm (Macaluso, Eimer,

Frith, & Driver, 2003). The authors showed that directing attention spa-

tially to the right or left side of the visual domain or tactile (somatosen-

sory) domain generated two forms of attentional brain response,

termed ‘unimodal’ and ‘multimodal’. Unimodal effects were found in

regions where responses were only seen for attention to that specific

modality; with the superior occipital and fusiform gyrus recruited by

vision and the post-central gyrus by touch. Multimodal effects were

independent of the attended sensory modality, and even observed

when no stimulus was presented (only attention directed); these

effects were strongest in superior premotor areas and the left inferior

parietal lobule, but also seen in posterior parietal and prefrontal corti-

ces. These previous studies illustrate that these paradigms recruit top-

down attentional modulation and involve higher cortical frontal–

parietal areas as well as primary sensory regions, thus providing an ideal

paradigm for testing and developing the utility of UHF fMRI for cogni-

tive studies. To our knowledge, the areas involved in both directing and

modulating attention between sensory modalities, such that attention

is divided between the modalities, are currently unknown and provide

an excellent test of UHF fMRI in the identification of the higher-order

cognitive areas, where only subtle differences in the amplitude of the

BOLD response between conditions are expected.

In summary, the benefits and challenges of performing a group

analysis of a large FOV, whole brain study of higher-order cognition at

7 T are presented. We aim to demonstrate the optimal analysis methods

to study whole brain focal, higher-order cortical responses at the group

level, where differences in BOLD response between conditions are sub-

tle and individual anatomical and functional variability are evident. fMRI

data are analysed on the cortical surface at both the individual subject

and group level. At the group level, normalisation using both volume

and surface registration is assessed, along with the dependency on spa-

tial smoothing. We hypothesise that using optimised analysis methods

we will observe: (1) linear modulations of BOLD signal by attention in

primary sensory regions (akin to modulation of EEG alpha power with

the direction of spatial attention; Gould et al., 2011); (2) sensory modal-

ity independent modulations of BOLD signal (i.e., only dependent on

how attention is split between modalities) in higher-order cortical

regions, such as parietal cortex and FEF (Macaluso et al., 2003).

2 | METHODS

2.1 | Subjects

This study was conducted with approval from the local ethics commit-

tee and complied with the Code of Ethics of the World Medical Asso-

ciation (Declaration of Helsinki). All subjects gave written informed

consent. Data were acquired from 10 experienced fMRI subjects (age

28 � 5 years [mean � SD], 4 female).

2.2 | MRI acquisition procedures

All MR data were acquired on a 7 T Philips Achieva MR scanner

(Philips Medical Systems, Best, Netherlands), with head-only transmit

coil and 32-channel receive coil (Nova Medical, Wilmington). Foam

padding was used to minimise head movement.

2.2.1 | Attention modulation scan session

To ensure whole brain coverage with high temporal and spatial resolu-

tion a multiband (MB) [or simultaneous multi-slice (SMS)] (GyroTools

Ltd, Zurich, Switzerland) gradient echo echo-planar imaging (GE-EPI)

sequence was employed (TR = 1.9 s, TE = 25 ms, 1.5 mm isotropic

resolution, 128 ×× 131 matrix, multiband factor 2, 75� flip angle (FA),

SENSE factor 2.5, receiver bandwidth 1,172 Hz/pix, phase encoding

(PE) direction: anterior–posterior). 58 contiguous axial slices covering

visual, somatosensory and attention-related regions (parietal cortex,

dorsal-lateral prefrontal cortex [DLPFC]) were collected in the given

TR period. B0-field maps were acquired (TR = 26 ms, TE = 5.92 ms,

ΔTE = 1 ms, 4 mm isotropic resolution, 64 × 64 matrix, 40 slices, FA

=25�, SENSE factor 2) and local image-based (IB) shimming performed,

thus limiting field perturbations in B0 over the whole brain FOV in the

fMRI acquisitions.

A total of 210 fMRI volumes were acquired per run, with

30 s/80 s of baseline data collected at the start/end of each run

whilst subjects fixated on a dot. MB data were reconstructed offline

(CRecon, GyroTools Ltd). During all fMRI scans, cardiac and respira-

tory traces were recorded for physiological correction due to the

known increase in physiological to thermal noise ratio at 7 T

(Triantafyllou et al., 2005; Triantafyllou, Hoge, & Wald, 2006). A

peripheral pulse unit (PPU) on the subject’s left ring finger was used

to record the cardiac trace, and a pneumatic belt placed around the

chest was used to record respiration.

In the same scan session, a high-resolution whole brain phase-

sensitive inversion recovery (PSIR) sequence (Mougin et al., 2016)

[0.7 mm isotropic resolution, 288 × 257 matrix, 98 slices, TI =

785/2,685 ms, SENSE factors: 2.2 (right–left, phase encode), 2 (foot-

head, slice selection)] was also acquired for segmentation and cortical

flattening.

2.2.2 | Retinotopic mapping scan session

To explore inter-subject differences in the structure of higher-order

cortical regions as compared with primary visual areas, and its likely

contribution to inter-subject differences in the spatial location of acti-

vation, a retinotopic mapping task was performed on all subjects. This

provided functional boundaries in primary visual cortex, allowing com-

parison of functional and anatomically defined boundaries in a primary

sensory region. Retinotopy GE-EPI fMRI data were acquired in a sepa-

rate scan session (TR = 2 s, TE = 25 ms, 1.5 mm3 isotropic resolution,

124 × 121 matrix, 85� FA, SENSE factor 2.5, receiver bandwidth

1,089 Hz/pix, PE direction: foot-head). About 32 coronal oblique

slices were acquired to cover the entire visual stream (V1 to IPS), with

IB shimming performed over this target region, and 120 volumes col-

lected per run.

2.3 | Paradigm

2.3.1 | Attention modulation paradigm

Subjects viewed a projector screen through prism glasses whilst lying

supine in the scanner bore. A variant of the Posner paradigm (Posner,
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1980) was used to modulate attention between visual [V] and somato-

sensory [S] domains, as shown in Figure 1a. This comprised of a

250 ms duration visual cue at the start of each trial to indicate the

certainty (0, 40, 60, or 100%) of the target appearing in the visual

domain (Figure 1a, cues panel). This was followed by a blank screen

with a central white fixation dot, which was presented for an

asynchronous inter-stimulus-interval (aISI) of variable length of

1.3–1.6 s prior to stimulus presentation. During this aISI subjects were

instructed to allocate their attention between the visual and somato-

sensory domains, according to the cue certainty. A target stimulus

(high or low frequency) was then presented in either the visual or

somatosensory domain, with a distractor stimulus (middle frequency)

presented concurrently in the other sensory domain. The visual stimuli

comprised a Gabor grating presented for 66.7 ms with spatial fre-

quency of 3.2 (low), 6.4 (middle) or 12.8 (high) degrees/cycle which

filled a visual angle of 2.1� in the lower left visual field (at 5.2/2.6� of

visual angle in the horizontal/vertical planes). The somatosensory

stimuli were delivered at 4, 16 or 52 Hz for 250 ms to the tip of left

index finger using a 7 T compatible piezoelectric stimulator (Dancer

Design, St. Helens, United Kingdom, http://www.dancerdesign.co.uk).

The different stimulus durations between the visual and somatosen-

sory stimuli were required to ensure comparable task behaviour

responses across sensory domains (validated prior to the fMRI study).

Subjects were required to respond as quickly as possible after stimu-

lus presentation, with a button press of the right index or middle fin-

ger to indicate if the target stimulus was delivered at low or high

frequency, providing accuracy scores and reaction time measures. An

850 ms period was allowed for subjects to respond to the stimulus

presentation before the visual cue for the next trial was presented.

Trials were presented in blocks to ensure high sensitivity to the

attention modulation. About 25 trials of a given cue condition (S/V:

100/0, 60/40, 40/60, 0/100) were presented in a block before switch-

ing to a different attention condition. Within one fMRI run, blocks of

each of the four attention conditions were presented in a pseudo ran-

dom order. A total of four fMRI runs were acquired in a single scan ses-

sion giving a total of 100 trials per condition over all runs (see schematic

in Figure 1b). The stimulus paradigm was controlled by Psych-toolbox

(ptb v3 – http://psychtoolbox.org/overview/). At the end of each fMRI

run the subject was given visual feedback to inform them of their per-

formance (accuracy of target classification). Approximately 10 min rest

was allowed between runs with no fMRI acquisition, providing a break

for subjects. The total time to collect the four runs was 27 min, disre-

garding the 10 min rest periods between runs.

Prior to entering the MR scanner, subjects performed one run of

the fMRI paradigm (i.e., 25 trials of each condition) to minimise learn-

ing effects during the fMRI acquisition and ensure they could perform

the task well.

2.3.2 | Retinotopic mapping paradigm

Eccentricity and polar angle maps were measured using standard retino-

topic mapping procedures comprising an expanding annulus and rotating

wedge to define visual areas (V1, V2, V3, V4) for each subject, akin to

(Gardner, Merriam, Movshon, & Heeger, 2008). These are standard reti-

notopic stimuli provided in the mgl toolbox (version 2.0 https://github.

com/justingardner/mgl). Eccentricity was measured using an expanding

annulus that started from a fixation point at the fovea and moved out to

the periphery to map visual eccentricity. To measure polar angle in visual

cortex, a wedge rotated clockwise. Both the annulus and wedge stimuli

(a) (b)

FIGURE 1 Schematic showing the attention paradigm. (a) Illustration of a single trial, inserts show all possible cue and stimulus presentations

within a trial. The hand indicates which hand underwent the somatosensory stimulus, and the box is a schematic representation of the
piezoelectric stimulator. (b) Schematic showing full fMRI experiment. Trials (a) were presented in blocks of 25 of the same cue condition
(e.g., 100% V) before switching to another cue condition (e.g., 40% V, as shown in run 1). Cues were presented in a pseudo-random order across
runs. A 10 min rest period (not shown) was provided between runs [Color figure can be viewed at wileyonlinelibrary.com]
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were textured with a checkerboard with alternating chromatic contrast.

One period of stimulation (i.e., a full expansion from fovea to the periph-

ery or a complete clock-wise rotation of the wedge) took 24 s, with

10 repeats collected per scan. For both annuli and wedges, a second

scan was collected with reverse order (i.e., from expansion to contrac-

tion, or clock-wise to counter-clockwise) to control for the spatiotempo-

ral haemodynamic response function (Aquino, Schira, Robinson,

Drysdale, & Breakspear, 2012). For all conditions subjects fixated on a

central cross which flickered between red and grey.

3 | ANALYSIS

3.1 | Behaviour

To test the efficacy of the paradigm in modulating attention, three-

way repeated measures ANOVAs were performed on the accuracy

and reaction time measures acquired during the fMRI task. Data were

tested for significant effects of cue (i.e., 0/100% compared with

40/60% attention), modality (i.e., attending to the somatosensory or

visual modality) and subject (i.e., whether behaviour was the same for

all subjects). When significant interactions were found, post-hoc ana-

lyses using paired t-tests were performed to identify the conditions

driving the observed differences.

3.2 | MRI pre-processing

3.2.1 | Functional MRI data

fMRI data were first corrected for physiological noise to remove cardiac

and respiratory associated noise using retrospective image correction

(RETROICOR) (Glover, Li, & Ress, 2000). Images were motion corrected

(SPM12, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) to the first

GE-EPI volume within each fMRI run, and then between fMRI runs by

registering all data to the mean GE-EPI image of the second fMRI run.

The functional images were then corrected for scanner drift by regressing

out a linear drift between the initial and final rest periods of each run.

3.2.2 | Anatomical MRI data

PSIR data were processed to derive a bias-field corrected PSIR image

(Mougin et al., 2016) by polarity restoring (using the phase) the first

inversion time (785 ms) and dividing by the sum of the modulus of the

two inversion time images (785 and 2,685 ms). The PSIR images were

then automatically segmented into grey and white matter using Free-

surfer V6.0 [freesurfer.net], taking care to manually correct any seg-

mentation errors. The two interfaces between grey/white matter and

grey matter/cerebral spinal fluid (CSF) generated the white and pial

surfaces, respectively.

The mean GE-EPI image across all runs of a paradigm (attention

or retinotopy) was then used to co-register from fMRI data space to

PSIR data space using a linear affine transform (mrTools, http://gru.

stanford.edu/doku.php/mrtools/overview).

3.3 | Subject normalisation

Subjects’ fMRI data were normalised into a standard space for

group analyses. Both volume and surface based registration

techniques were performed for comparison. These steps are sum-

marised in Figure 2, with the processing pipelines described in

detail below.

3.3.1 | Volume normalisation

For volume normalisation, subjects’ PSIR data were registered to

the Montreal Neuroimaging Institute (MNI) 152 space using a

‘symmetric normalisation’ algorithm employed in the advanced nor-

malisation tools [ANTS http://stnava.github.io/ANTs/, (Avants

et al., 2011; Avants, Tustison, & Song, 2009; Klein et al., 2009)].

This has been shown to provide a superior method for nonlinear

registration, outperforming other volume-level normalisation such

as SPM12’s ‘unified segmentation’. Warping parameters were then

applied to the pre-processed fMRI data (see Figure 2, solid

lines path).

3.3.2 | Surface normalisation

For surface normalisation, subjects’ PSIR data were registered to a

surface generated from MNI 305, Freesurfer’s average subject tem-

plate fsaverage, described in Fischl, Sereno, and Dale (1999). In brief,

registration was performed in two steps. First, the PSIR segmentations

were inflated and the vertices from the individual subject surface

were mapped onto an individual subject spherical representation of

the brain and curvature information regarding the folding patterns of

the gyri and sulci for the individual subjects derived (standard proce-

dure in Freesurfer). The individual subject folding patterns were then

used to register these surfaces to the normalised fsaverage surface,

which had been mapped onto a sphere, as previously described

(Fischl, Sereno, Tootell, & Dale, 1999). Second, fMRI data were inter-

polated onto the individual subject cortical surface and a ‘white’ layer,

pial layer and mid-layer (at 50% of the surface normal between the

white and pial layer) were defined using mri_vol2surf in Freesurfer.

This resulting fMRI data was then normalised to fsaverage using the

transform defined from the PSIR data (see Figure 2, dashed

lines path).

3.3.3 | Visualisation of normalised data

Note, for visualisation of volume normalised data, we utilised an opti-

mal MNI 152 to fsaverage mapping strategy (Wu et al., 2018). Data

from both normalisation streams were additionally displayed on a flat-

tened representation of fsaverage, calculated by making cuts to the

cortical surface and using a cost function to metrically optimise

(in terms of distance) the flattened representation (available as stan-

dard in Freesurfer). A tool to aid visualisation of the flattened maps,

used in this manuscript, is freely available at (https://github.com/

KevinAquino/freesurferFlatVisualization.git).

3.4 | Smoothing of functional data

fMRI data in both volume and surface normalised space, were spatially

smoothed (Figure 2, smoothed [S] shown by red lines) using a kernel

of FWHM of 4.5 mm. In the volume stream, this is equivalent to

applying a 3D Gaussian kernel; in the surface stream, the data were

smoothed across the surface over a ring that corresponds to a kernel

of 4.5 mm diameter at each vertex.
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3.5 | Functional MRI post-processing

3.5.1 | Individual subject general linear model design

Since the main focus of this work was to localise brain regions

recruited by top-down modulation, the attention period (aISI) during

each trial was modelled in the general linear model (GLM) for each

subject. All trials were modelled as all subjects showed performance

greater than 70% accuracy in all conditions and we wanted to maxi-

mise statistical power in BOLD analyses. For each of the four condi-

tions (i.e., one combination of S/V), the aISI time periods of each trial

were set up as blocks and convolved with the standard

FIGURE 2 Schematic showing the main processing pipelines of fMRI data using volume normalisation (left stream) and surface normalisation

(right stream). It should be noted that in both streams, there is a trilinear interpolation from volume to surface space. Clusters shown are those in
response to the task for a single subject using a standard GLM, p < .05 FWE. Note, that in the figure N denotes normalised EPI data and S
denotes smoothed data [Color figure can be viewed at wileyonlinelibrary.com]
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haemodynamic response function for each relevant software package

(SPM or Freesurfer), Figure 1b, bottom panel. Although the standard

HRFs differ slightly between packages, since we used a block design

task, the convolution results in the predicted responses being invari-

ant to any such small differences in HRF shape. This was repeated

across the four fMRI runs resulting in 16 model estimates as regres-

sors in a first level design matrix. In addition, the motion parameters

were included as covariates of no interest and a constant term for

each run to model differences in baseline GE-EPI signal between runs.

3.5.2 | Functional contrasts

Contrasts were assessed in a first level analysis and individual subject

beta-weight (β) values computed. The contrasts assessed are sum-

marised in Figure 3. They comprised: (i) a task contrast (Figure 3b)

weighting all attentional conditions equally – to probe any brain

regions recruited by the task independent of attentional cue; (ii) a pos-

itive linear contrast (Figure 3c) – to identify regions whose BOLD

response linearly co-varied with increasing visual attention; (iii) a neg-

ative linear contrast (Figure 3d) – to identify regions whose BOLD

response linearly co-varied with increasing somatosensory attention;

and (iv) a task difficulty contrast (Figure 3e), using an ‘n’ shape to

weight the ‘hard’ conditions (S/V 40/60 or 60/40) more than the

‘easy’ conditions (S/V 100/0 or 0/100) – to identify regions whose

BOLD response was modulated by the division of attention between

modalities, independent of where the attention was directed.

A one-sample t-test was used to threshold the maps for each

functional contrast, which were then corrected for multiple compari-

sons. For volume normalised data, this correction was calculated using

random field theory via the formulation of resolution elements

(RESEL), as implemented in SPM12 (Worsley et al., 1996). For surface

normalised data, RESELS are not simply described analytically (Hagler,

Saygin, & Sereno, 2006), thus Monte Carlo simulations were used to

generate an equivalent estimation (Hagler et al., 2006), as implemen-

ted in Freesurfer v.6.0.

3.5.3 | Atlas definition

To interrogate functionally specific regions, two functional cortical

atlases were used. The Glasser atlas (as shown in Figure 4) comprising

180 regions per hemisphere, based on data from multimodal imaging

(HCP-MMP 1.0) (Glasser et al., 2016), and the Freesurfer Destrieux

Atlas (2009) (Destrieux, Fischl, Dale, & Halgren, 2010). These two

atlases were applied to the normalised fsaverage brain (Freesurfer v

6.0) (see ‘Subject normalisation’) and on individual subject surface

reconstructions for spatial interrogation of fMRI responses. Figure 4

(a)

(b)

(c)

(d)

(d)

FIGURE 3 Schematic showing the different contrast conditions used in the first level GLM analysis. (a) The % of trials in the somatosensory/

visual domain for each of the conditions. (b–e) The different contrasts used in the GLM analysis to interrogate the effects of attention [Color

figure can be viewed at wileyonlinelibrary.com]
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shows the flattened representation, with region labels, that is used

throughout the results and discussion sections.

3.6 | Group level fMRI analyses

One of the key benefits of UHF fMRI is the ability to extract highly

sensitive and focal functional responses; however, this means that

care must be taken to ensure optimal normalisation methods and

smoothing is performed when grouping together subjects. Hence,

here functional results are analysed at the group level using three dif-

ferent methods to demonstrate these issues and provide an optimal

solution.

Method 1 was performed in both volume and surface normalised

space, for both unsmoothed and smoothed data (see Figure 2). This

method combined the corrected (p < .05, FWE corrected) one-sample

t-test maps from each individual subject to form functional inter-

subject conjunction maps. First, surviving voxels/vertices in the first

level maps were used to form binary maps for each subject. These

binary maps were then summed resulting in functional inter-subject

conjunction maps ranging from 0 to 10 (representing each subject).

This method was used to interrogate the spatial overlap for different

normalisation methods (volume vs. surface), as well as the ability of

spatial smoothing to increase subject overlap.

Method 2 involved analysis of the surface normalised,

unsmoothed data (the winning pipeline from Method 1 – see Figures 8

and 9) using the 180 parcellated regions defined by the Glasser atlas

(Glasser et al., 2016) to address the issue of poor subject overlap of

higher-order cognitive regions (see Figure 8). Within each parcel and

for each subject, the vertices with the top 5% of t-statistical values in

response to the ‘all’ task condition were found to create the region of

interest for that subject. The average β values for each condition for

the vertices within the region of interest computed. These β values

were then normalised across conditions (using the maximum β value

of any condition) for each subject. Performing this analysis in surface

normalised space ensured that the same number of data points was

used per subject for a given region. The dependence of the normalised

β values on visual attention (or decreasing somatosensory attention)

was then modelled for each of the 180 parcellated regions. Three can-

didate models were tested to match contrasts used in the GLM ana-

lyses (as shown in Figure 3): a constant model (task), a linear model

(modality specific attention) and a negative quadratic (task difficulty)

model. The ‘winning’ model was selected to be that which minimised

the Bayesian Information Criterion (BIC) – a metric that ‘rewards’

model fit and ‘punishes’ model complexity (Schwarz, 1978). This met-

ric was used to relatively compare model performance, as is per-

formed in model fitting routines such as Dynamic Causal Modelling

(Penny, 2012). The resulting analysis in the Glasser atlas regions

within a given hemisphere were then corrected for false discovery

rate (FDR) at a q-factor 0.1, thus allowing issues related to poor sub-

ject overlap to be explored with this sample size.

Method 3 performed a standard second level group GLM analysis

on the volume normalised smoothed data (see Figure 2, red solid

lines). The summary statistic from each contrast for the first level

GLM analysis was used to perform a one-sample t-test in a conven-

tional second level mixed effects GLM analysis. Finally, this method

was used to demonstrate the manifestation of poor subject overlap –

which can be predicted from the results of Method 1.

3.7 | Overlap metrics

In order to quantify the level of overlap in group-wise conjunction

maps we compute an aggregate Dice coefficient. This was calculated

by taking the Dice similarity index between two subjects i and j:

Di, j ¼
2 Ci \Cj

�
�

�
�

Cij j+ Cj

�
�

�
�

where, C is the binarized threshold map (computed for Method 1 and

2) projected onto the surface template, \ indicates set intersection and

FIGURE 4 The relationship between the whole inflated brain (top row) and the Glasser atlas overlaid on the flattened patches (bottom row) –
Note colours on the inflated brains correspond with the line colours on the flattened patches demarcating anatomical boundaries. Labels written
on the flattened patches are taken from the Glasser atlas (Glasser et al., 2016) [Color figure can be viewed at wileyonlinelibrary.com]
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| | indicates cardinality. The average of the upper triangle matrix Dij is

used as a measure of the average subject overlap and is referred to as

D. In this formulation, a Dice coefficient of 1 indicates perfect overlap,

and 0 indicates no overlap.

3.8 | Retinotopy analysis

Retinotopic maps were derived and visualised on surface and flat-

tened representations (as detailed in the ‘Normalisation’ section) in

order to validate the functional relationship to the structural, atlas

based, cortical parcellation used. The data from the two retinotopic

paradigms: the rotating wedges and the expanding/contracting annuli,

were analysed to map visual polar angle and eccentricity, respectively.

The data were processed with standard retinotopic analyses using

mrTools. Following motion correction and co-registration, the scans

from the wedge paradigm were combined: first, scans from both the

clockwise and counter-clockwise condition were shifted by 2 frames,

then the order of the volumes of the scans from the counter-

clockwise condition were reversed prior to averaging with the scans

form the clockwise condition. This reversal and shift was used to can-

cel out the effects from the spatiotemporal haemodynamic response

function (Aquino et al., 2012). Following this average, the time series

at each point were correlated with a cosine function with frequency

that matched the stimulus delivery. The analysis provides a correlation

– which indicates model fit, and a phase angle – which was correlated

to the phase when the stimulus was presented and thus visual polar

angle. Voxels that survived a correlation threshold of 0.4 were ana-

lysed for their phase. Half the visual hemifield contained phases that

ranged from [0,π] whereas the other half ranged from [π,2π]. Bound-

aries where the phase reversed were interpreted as borders of visual

areas (Engel et al., 1994; Schira, Tyler, Breakspear, & Spehar, 2009). A

similar procedure was repeated for the annuli paradigm, where the

phase maps [0,2π] were used as additional validation of a visual area.

4 | RESULTS

4.1 | Subject behavioural performance

Figure 5 shows the group mean behavioural responses to the task and

indicates clear modulation of task performance, both accuracy and

reaction time, across cue conditions. We show a significant (p < .05,

three-way repeated measures ANOVA) effect of the cue condition on

both accuracy (p = 9 × 10−9; F = 400.1) and reaction time (p = 4.9 ×

10−10; F = 771.5). Lower accuracy (Figure 5a) and longer reaction

times (Figure 5b) were observed for the trials when subjects divided

their attention (40/60 and 60/40 cue conditions) compared with

when subjects focused their attention on one modality (0/100 and

100/0 cue conditions). We also observed a significant effect of modal-

ity on accuracy (p = 1.9 × 10−4; F = 36.5) and reaction time (p = 5 ×

10−9; F = 456.1), such that somatosensory attention modulated reac-

tion times by a greater amount than visual attention. This was

reflected by a significant cue × modality interaction for reaction time

(p = 1.4 × 10−8; F = 362.2), with significantly shorter reaction times

to somatosensory stimuli than visual stimuli (Figure 5b). In addition, a

significant difference between subjects (p = .014; F = 4.8 and p = 5.5

× 10−4; F = 4.8, repeated measures ANOVA) in behavioural measures

(accuracy and reaction time) was observed, demonstrating that all sub-

jects did not perform the task equally, with some finding the paradigm

more difficult than others.

4.1.1 | Anatomical variance

Figure 6 illustrates the greater inter-subject anatomical variability in

both size and location of higher-order cognitive areas such as the IPS

(Figure 6a), compared with the primary sensory regions such as the

primary visual cortex (Figure 6b). Figure 6a,b show the atlas defini-

tions of IPS and V1 on individual surfaces respectively, and the sur-

face registered folding patterns (as indicated by the signed mean

curvature K – a proxy for Sulci and Gyri as shown on the colour bar of

Figure 6a,b). Across subjects, for the atlas defined IPS region, differ-

ences can be seen in the pattern of gyri (blue) and sulci (red) included

with the region (highlighted with arrows in Figure 6a, bottom row). In

particular, differences of the folding patterns inside, and in the neigh-

bourhood of, the automated definition. The high quality of the surface

normalisation procedure for all subjects in the primary visual cortex

(V1), where there is less anatomical variability, can be verified by our

retinotopy data (Figure 6c). This provided a functional map of visual

region boundaries which showed strong spatial agreement with the

Glasser atlas defined anatomical ROIs. Thus, these results implied two

expectations for group functional analyses of focal responses (i) that

primary sensory areas will have the highest overlap in functional maps

(ii) higher order cortical areas – such as IPS and dorsal lateral prefron-

tal cortex (DLPFC) will have significantly lower functional overlap.

4.1.2 | Individual response to attention task

At the individual level, all subjects showed a significant (p < .05, FWE

corrected) response to the task contrast condition (Figure 3b) and

modulation to the cue condition, with the largest and most extensive

responses generally seen for the task difficulty contrast condition

(Figure 3e) with greater activation observed for the 40/60 conditions

than the 0/100 conditions. However, the extent and location of the

functional activation for each of the contrasts varied spatially across

subjects relative to the structural information defined by the Glasser

FIGURE 5 Group mean behavioural responses for (a) accuracy and

(b) reaction time. A significant (three-way repeated measures ANOVA,
p < .05) effect of cue, modality and subject on both accuracy and
reaction time was observed. An interaction of cue and modality was
observed for the reaction time, post-hoc t-test analyses reveal the
differences (marked on b). Error bars indicate SEM
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atlas (Figure 4), even when surface normalisation was used. Figure 7

illustrates this in two representative subjects, showing that whilst acti-

vation clusters to a given contrast were observed in approximately

the same region, there was not exact spatial agreement across sub-

jects, likely due to anatomical differences as well as the degree of

functional response to the task.

It is worth noting that these individual responses contain focal

units and have high statistical power using 4 runs of the experimental

paradigm. Together, these results exemplify the power of using UHF

for cognitive studies as the statistical power is high enough at the

single subject level. The increased specificity however, means that

variability in the anatomical location of functional activations is more

FIGURE 6 (a) Right IPS on native individual subject (S1–S4) surfaces (upper row, purple region shows IPS delineated by Freesurfer’s registration
method and Freesurfer Destrieux atlas), and on normalised space (lower row, IPS outlined in purple) where the individual subject curvature has
been mapped into this space. Note the variability in the spatial pattern of sulci and gyri across subjects: There are clear differences in the
anatomy (sulci shown in red, gyri shown in blue – Colour bar scales mean curvature) within the IPS boundary (purple line) between subjects, as
highlighted by the arrows. (b) Data as for a shown for primary visual cortex (V1) demarcated in blue. Note the greater agreement of the sulci

(shown in red) within V1 area across subjects in the normalised images. (c) Individual retinotopy on normalised flattened surface with the Glasser
atlas overlaid. Note the retinotopy phase-reversals (corresponding to the left visual hemifield shown in the semicircle) denoting functional
boundaries map onto the anatomically defined visual regions (V1–V3) [Color figure can be viewed at wileyonlinelibrary.com]
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significant at UHF than 3 T and this presents a challenge for group

analyses.

4.1.3 | Surface versus volume normalisation

The effect of the spatial variability in functional responses is

highlighted when analysing the data using Method 1 when considering

the normalisation of responses to a standard template and the effect

of smoothing the data. Figure 8 compares the effect of volume and

surface normalisation on the spatial agreement of significant areas of

activation in response to the attention task paradigm across subjects.

The importance of the choice of normalisation method can be seen by

comparing the spatial overlap conjunction map of frontal-eye-field

(FEF) and intraparietal sulcus 1 (IPS1) activations for volume

(Figure 8b,d) and surface (Figure 8f,h) normalisation (see Figure 4 for

region definitions). Volume normalisation results in poor inter-subject

spatial agreement, with the overlapping activity in three or less sub-

jects in FEF (Figure 8b) and IPS1 (Figure 8d), due to the focal nature

of the responses combined with the observed anatomical variability in

higher order cognitive areas (Figure 6a). A much greater spatial

overlap was observed for surface normalisation (Figure 8a,f,h), with

overlapping activity in up to seven subjects in the FEF (Figure 8f ) and

five in the IPS1 (Figure 8h). These differences are quantified in the

region-specific Dice coefficient of spatial overlap (Figure 8j).

Spatial smoothing – a method to increase subject overlap as well

as statistical power – also has profound effects on the inter-subject

overlap of activations. The Dice coefficient computed over the entire

right hemisphere is generally larger with spatial smoothing for both

volume and surface normalisation methods, with the exception of task

difficulty using surface normalisation (Figure 9a). However, it is

important to understand the overlap in focal regions, and this is

shown by comparing Figure 8b,d with Figure 8c,e for volume normali-

sation, and Figure 8f,h with Figure 8g,i for surface normalisation, and

quantified in Figure 8j. Applying spatial smoothing to the volume nor-

malised data (Figure 8c,e) helped compensate for anatomical variabil-

ity, especially in the FEF, but the resultant spatial agreement was still

lower than for surface normalisation alone. Spatial smoothing of the

surface normalised data reduced the spatial overlap in some areas

such as the IPS1 and V3 (Figure 8g,i), since focal responses will be

reduced when a smoothing kernel of greater extent than the activity

is used. These differences are quantified by the region specific Dice

coefficient (Figure 8j) which highlights that in most cases smoothing

increased this overlap but not for regions that have focal activity –

specifically regions in the early visual stream V1–V4, and higher order

visual (an attention) areas V7, PEF, LIPv and LIPd. Similar effects were

observed for the task difficulty contrast. Figure 9 illustrates the advan-

tage of surface normalisation (Figure 9b) over volume normalisation

(Figure 9a) for the detection of both the task contrast and task diffi-

culty contrast across a group (see Supporting Information Figure S1

for inferior views of Figure 9). Figures 8 and 9 show that in general,

response to task was observed in the visual stream from V1 to V4 and

into the lateral intraparietal (LIP) region as well as in the FEF, whilst

task difficulty correlated with activity of the IPS and dorsal lateral pre-

frontal cortex (also see Supporting Information Figure S2 top).

In addition, activations to the positive linear contrast (attention to

visual domain) were observed, but these were far more focal than the

task condition or task difficulty condition, resulting in little inter-

subject spatial overlap (Supporting Information Figure S2 bottom),

even when using the optimal pipeline of surface normalisation and no

FIGURE 7 Maps showing regions of significant (p < .05, FWE corrected) activation to the task contrast (a) and task difficulty (b) contrast (see

Figure 3b,e) for two subjects (top and bottom row, respectively). Individual subject maps have been surface normalised to the fsaverage template.
Lines demarking anatomical regions are derived from the Glasser atlas, as shown in Figure 4. Arrows highlight variability of activity maps between
subjects [Color figure can be viewed at wileyonlinelibrary.com]
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spatial smoothing. No significant activations to the negative linear

contrast (attention to somatosensory domain) were seen consistently

over the group, regardless of analysis stream.

4.1.4 | Assessment of attentional contrasts

To address the issue of poor subject overlap Method 2 was employed

using the optimal normalisation method (surface-registered and

FIGURE 8 Comparison of group conjunction of individual subject T-stat maps (p < .05, FWE corrected) for the task contrast between different

pre-processing pipelines using method 1. (a) Group conjunction map for the whole right hemisphere, created from the surface normalisation and
no smoothing stream (see Figure 2, grey dashed line). Pink box includes frontal-eye-field area shown in Panels (b,c + f,g) whilst blue box includes
the intraparietal cortex shown in Panels (d,e + h,i). Panels (b,d) show volume normalisation without spatial smoothing. Panels (c,e) show the
volume normalisation with 4.5 mm FWHM spatial smoothing. Panels (f,h) show surface normalisation without smoothing, whilst Panels (g,i) show
surface normalisation with 4.5 mm FWHM surface smoothing. Circles in Panels (b–i) draw attention to regions where conjunction of T-stat maps
varies greatly dependent on the processing pipeline employed. (j) Region-specific Dice coefficients (D) of spatial overlap in selected key areas
involved in the task. For similar maps for task difficulty condition and visual attention condition see Supporting Information Figure S2 [Color
figure can be viewed at wileyonlinelibrary.com]
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unsmoothed). Figure 10 shows the result of performing model fits

(constant, linear or quadratic) to the individual subject normalised β

values, across all four conditions, for each anatomical region of the

Glasser atlas. This provided an alternative method to investigate those

areas which showed a significant linear (i.e., increased visual or

somatosensory domain attention) or ‘n’-shape modulation (i.e., task

difficulty) in response to the attention task. For a given anatomically

defined region, statistical tests were performed only on voxels that

responded to the task contrast (Figure 3b) in that parcel for each indi-

vidual subject. A significant ‘n’-shape correlation was found in a

number of regions (Figure 10a,b, blue), with large clusters of parcel-

lated regions seen in the parietal and dorsal lateral prefrontal cortex.

Significant linear correlations all showed a positive gradient

(i.e., increased visual attention) and were seen in the visual cortex and

VIP (Figure 10a,b, red-orange). The most robust linear modulations

were seen in the Fusiform face complex (FFC) (p = .008, FDR cor-

rected) with the strongest linear modulations of the lower-order visual

areas (V1–V4) found in V4 (p = .06, FDR corrected) [V3: p = .09, FDR

corrected]. The strongest ‘n’-shaped modulation was seen in area 7 m

(p = .002, FDR corrected) of parietal cortex and in Area 44 (p = .005,

FIGURE 9 Group conjunction of individual subject T-stat maps (FWE p < .05) showing number of subjects with overlapping activation using the

different processing pipelines of method 1. (a) Volume normalisation and (b) surface normalisation. For (a) and (b) results are shown for
unsmoothed (left) and smoothed (4.5 mm FWHM kernel) data (right). The numbers in grey represent the mean dice overlap for both hemispheres
for each contrast and processing stream. For inferior views, see Supporting Information Figure S1 [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 10 (a) The winning models (linear or quadratic, assessed with BIC) calculated across cortical regions using method 2 (FDR adjusted and

threshold at p < .1); highlighting the regions showing linear modulation (red/orange, i.e., increased visual or somatosensory domain attention) and
quadratic modulation (blue, i.e., ‘n’-shape task difficulty). (b) Inflated views of the data shown in a. (c) Selected region of interest (V3) with group
conjunction of response to task (akin to Figure 8a). (d) An example of a model fit (top panel) to the top 5% of b values from region V3, and the BIC
calculated for the three candidate models, showing a linear fit clearly ‘winning’ in this region [Color figure can be viewed at
wileyonlinelibrary.com]

1310 AQUINO ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FDR corrected) of dorsal lateral prefrontal cortex. An example region

of interest, V3, and its model fit are shown in Figure 10c,d,

respectively.

4.1.5 | Standard group analysis

The poor subject overlap, implied that group effects using standard

analyses as described by Method 3 will be weak, and this is shown in

Figure 11 using a standard mixed effects group analysis results for the

attention task. This highlights that standard methods do not readily

reveal the modulations of the functional responses to this cognitive

task even when using a relatively lenient threshold of p < .001, uncor-

rected. Focusing on the right hemisphere responses, as stimuli were

presented to the left; we observed that, whilst some areas showed

the response to task regardless of the attentional cue (Figure 10, dark

blue), only very small disparate areas showed activation to the task

difficulty (quadratic, shown in pale blue) or attention to a modality (lin-

ear, positive – shown in red, negative – shown in green) across the

conditions. This lack of response was due to lack of spatial agreement

across subjects (see Figures 6, 8 and 9) and highlights the need for

optimal analysis pipelines to investigate such responses in high spatial

resolution fMRI data. Additional activations observed in the left hemi-

sphere are related to the button press response and the response to

the task, rather than the direction of attention and therefore were not

the focus of this study.

5 | DISCUSSION

We explored the feasibility of using high spatial resolution UHF fMRI

to interrogate the BOLD response to a cognitive task across the

whole brain. We show high quality whole brain data is achievable (see

Supporting Information Material for magnetic field inhomogeneity

[ΔB0] and temporal SNR data). We then explored the inter-subject

differences in brain structure in both primary visual areas and higher-

order cortical regions and its likely contribution to inter-subject

differences in the spatial location of functional responses. We showed

that considerable differences in anatomy are present in higher order

cortical areas, whilst primary visual regions showed good anatomical

agreement, as published previously (Fischl et al., 2008).

Given the observed inter-subject structural and functional differ-

ences, we investigated the effect of normalisation and smoothing pro-

cedures on the spatial agreement of the functional response to the

cognitive task, in particular in higher order areas. We show that the

choice of normalisation and smoothing procedures employed is critical

when the fMRI response of interest is focal and/or in higher-order

cortical regions. We demonstrate a novel group fMRI analysis for

assessing attentional modulation to the cognitive task, by fitting β

weights derived from first level GLM analysis to different models

within each parcellated region. We reveal areas which show quadratic

and linear modulations of BOLD signal in response to the attention

conditions of the task, findings which are not clearly observed using

standard second level mixed effects GLM analysis due to the large

inter-subject spatial variability and difference in amplitude of func-

tional response modulations.

5.1 | Data quality, anatomical variability and
parcellation of brain regions

When considering whole brain functional responses, it is important to

first consider the GE-EPI data quality. We used IB-shimming and B0

mapping to provide good global B0 homogeneity for the attention

fMRI data acquisition, this ensured a subvoxel shift of pixels in the

GE-EPI data in the phase encode direction compared with the ana-

tomical data (Supporting Information Figure S3 and Supporting Infor-

mation Text). In future we will improve this further with the use of

dynamic distortion correction techniques (Visser, Poser, Barth, &

Zwiers, 2012). tSNR was also relatively homogeneous over the cortex

(Supporting Information Figure S4 and Supporting Information Text),

though there was a noticeable reduction in the temporal lobes,

regions known to be most greatly affected by physiological noise

(Hutton et al., 2011) and to be the greatest distance from the receive

coils, and the central gyrus driven by a reduced mean signal caused by

heavy myelination in this region (Glasser & Van Essen, 2011).

FIGURE 11 Second level GLM analyses of the volume normalised, smoothed attention data using method 3. Mixed effects analysis (p < .001,

uncorrected) activation maps. Colours denote regions where the t-statistics for each of the contrasts exceeded the stated threshold, and were
classified as ‘activated’ regions to that contrast, with different contrast and associated colours shown in right hand panel [Color figure can be
viewed at wileyonlinelibrary.com]
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Group analysis of fMRI data typically requires data normalisation

to interrogate all subjects’ data in the ‘same space’ and to allow the

study of responses in equivalent regions. Given the known anatomical

variability between subjects (Geyer et al., 2011), it is questionable

whether normalisation of data to a standard template is appropriate

using any transformation (i.e., volume or surface normalisation). How-

ever, a method of parcellating the brain, or defining anatomical struc-

tures, is necessary to form group comparisons. In the absence of

individual subject sub-millimetre anatomical scans of multiple MR con-

trasts for parcellation of brain structures (Tardif et al., 2015), surface

normalisation with a detailed anatomical atlas, such as the Glasser

atlas (Glasser et al., 2016), may be the best approach.

Surface normalisation approaches match the curvature of the

sulci and gyri of individual subjects to a template. In a recent study,

Tardif et al demonstrate that surface based methods can be refined to

improve spatial normalisation based on such curvature (Tardif et al.,

2015). However, they also highlight that it may not be beneficial to

maximise normalisation based on curvature and cortical folds, since in

higher cortical areas, the curvature may not reflect the functional

boundaries of regions (Tardif et al., 2015). Instead, they suggest infor-

mation is required to allow alignment of individual brains based on

functional boundaries. These functional boundaries are commonly

believed to be reflected by cytoarchitecture, but it is not possible to

interrogate cytoarchitecture directly in vivo. Instead, T1 maps may

provide additional information on myelination, which is believed to

closely relate to cytoarchitecture, to inform group normalisation

(Tardif et al., 2015; Turner & Geyer, 2014) or allow parcellation of

individual brain regions (Geyer et al., 2011; Turner & Geyer, 2014).

However, the success of this form of normalisation has primarily been

assessed on myelin rich primary sensory cortices. Whilst some gains

have been highlighted in higher order regions, FEF and ventral intra-

parietal area (VIP) (Tardif et al., 2015), it remains to be assessed as to

how useful this normalisation is for other higher cortical regions,

where myelination is generally lower with less contrast between

regions. Indeed, it is unclear whether whole brain normalisation based

on T1 maps may bias warping of the brain to correctly align regions of

high myelin at the expense of functional areas with low myelin. Our

data highlights the importance of future developments to map

functional boundaries in individual subjects in vivo, to enable subject-

specific structural and functional parcellation (Geyer et al., 2011;

Robinson et al., 2017). Such boundary alignment may also take

account of boundaries identified from robust fMRI tasks, such as indi-

vidual subject resting state and visuotopic maps, as employed by Glas-

ser et al. (2016). With such subject specific parcellations, β weights

could be extracted from individual subject anatomical/functional

regions and fed into a fitting process as used here (Turner & Geyer,

2014). Alternatively, the landmarks of individual subject borders may

be used to provide a more accurate normalisation, as suggested by

Tardif et al. (2015), subsequently allowing more standard GLM

approaches to be employed. However, it should be noted that such

additional measures to define structural or functional boundaries in an

individual subject come at the expense of considerable addition scan

time. Further, it should be noted that although surface-based normali-

sation techniques are optimal for maximising cortical activation

overlap, volume normalisation is still necessary when studying subcor-

tical structures.

5.2 | Spatial smoothing

Spatial smoothing of fMRI data is widely adopted at lower field

strength to blur inter-subject structural differences in brain anatomy

for group analyses, increase statistical power (Turner & Geyer, 2014),

and ensure data meets Gaussian Random Field theory assumptions

for statistical analysis (Worsley & Friston, 1995). Until recently, many

UHF whole brain studies have employed considerable spatial smooth-

ing (Boyacioglu et al., 2014; Goodman et al., 2017; Mestres-Misse

et al., 2017). In a recent study,(Torrisi et al., 2018) showed there is a

substantial benefit for smoothing the data at 7 T using the same

smoothing kernel at 3 T.

However, recent articles (e.g. Stelzer, Lohmann, Mueller,

Buschmann, & Turner, 2014; Turner & Geyer, 2014; Turner, 2016])

highlight that the use of large smoothing kernels negates the benefits

of the high spatial resolution of fMRI achievable at UHF. In addition,

they highlight that smoothing is not required for False Discovery Rate

correction (Turner & Geyer, 2014) due to the inherent smoothness of

fMRI data due to the point-spread function of the BOLD response

(Polimeni et al., 2017; Stelzer et al., 2014). Turner (Turner & Geyer,

2014) provides a detailed critique of the problems associated with

spatial smoothing (Stelzer et al., 2014; Turner, 2016; Turner & Geyer,

2014). Here, we show the limitations of spatially smoothing high reso-

lution fMRI data, highlighting that focal responses in higher-order

areas can be diluted by smoothing to the point that these responses

no longer survive statistical analyses, resulting in reduced overlap of

activations across subjects (compare Figure 9h,i).

Without spatial smoothing, methods to best deal with differences

in brain anatomy become vital to minimise inter-subject spatial variabil-

ity, especially for higher-order cognitive areas for which anatomical vari-

ability is greater than for primary sensory areas (Turner & Geyer, 2014).

Minimal anatomical variability in primary sensory cortex may, in part,

explain the successes of UHF high spatial resolution studies of sensori-

motor and visual cortex (Goncalves et al., 2015; Kemper et al., 2017;

Poltoratski et al., 2017; Rua et al., 2017; Sanchez Panchuelo et al.,

2015; Sanchez Panchuelo et al., 2016; Sanchez-Panchuelo et al., 2012).

Indeed, our data confirmed this observation, showing good inter-

subject correspondence of V1 (Figure 6b) and excellent correspondence

of the anatomical and functional boundaries of V1–V3 (Figure 6c).

However, anatomical agreement of higher-order areas, such as the IPS,

was much poorer, with considerable variability across subjects observed

even with the use of surface normalisation (Figure 6a).

5.3 | Limitations of group GLM analyses for
cognitive tasks

Stelzer et al. (2014) have previously highlighted conceptually that fun-

damental differences in spatio-temporal representations of brain func-

tion leads to potential pitfalls when using a mixed effects GLM group

analysis. They highlight that if the spatio-temporal pattern of response

does not overlap completely across subjects, only a subset of the true

activation for each individual will be present in the group analysis, that
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is, the region where there is spatial agreement over subjects. This is

due to both inter-subject anatomical differences and differences in

functional brain activity due to the subjects’ response to the task

(i.e., relationship to the canonically modelled response) which is likely

to be particularly prevalent in cognitive tasks where individual subject

strategy may differ. As such, a standard second level mixed effects

GLM can only ever provide a partial picture of the true functional

response to a cognitive task, as has also previously been shown from

ICA and MVPA analysis (Etzel, Zacks, & Braver, 2013; Xu, Potenza, &

Calhoun, 2013).

Our results (Figure 11) corroborate the concerns raised in Stelzer’s

thought experiment, demonstrating that a standard second level GLM

analysis results in little common activation observed to any contrast

(response to task, attention to visual stimuli, attention to somatosen-

sory stimuli or task difficulty). This is due to the lack of precise spatial

agreement between subjects (Figures 8 and 9; Supporting Information

Figure S1), despite use of a liberal p < .001 uncorrected threshold and

spatial smoothing. Whilst the extent of responses are increased using a

fixed effects analysis, with a response to both the task contrast and task

difficulty contrast observed (dark blue and pale blue), no linear modula-

tions are seen. Therefore we propose that standard GLM approaches

are not best suited to studies where functional responses are likely to

vary across subjects due to task complexity and different task comple-

tion strategies.

5.4 | Functional interpretation of responses to
attention paradigm

Tasks focussed on the direction of spatial attention to somatosensory

stimuli have previously elicited responses in the inferior parietal lobe

(IPL), FEF and SII (Wu et al., 2014). Similarly the FEF and IPS, as well as

posterior parietal cortex, cingulate, striate and extrastriate cortex

(Corbetta et al., 2000; Martinez et al., 1999) have been shown to be

active in response to visual spatial attention (Corbetta et al., 2000; Mar-

tinez et al., 1999). The attention related activations in the parietal and

DLPFC regions (Figure 10) to sensory modality that we report using our

optimised analysis pipeline are in line with previous observations. Here,

we advance previous studies by varying the relative direction of atten-

tion between the visual and somatosensory domain, creating four con-

ditions, whereas previous fMRI work has only directed attention in a

binary fashion: from one location to another (spatial or modality). Such

BOLD signal modulations between graded levels of attention are more

subtle, requiring the higher CNR afforded by UHF fMRI.

We show that in parietal and DLPFC regions (Figure 10) the modu-

lation related to attention level is quadratic, such that the fMRI BOLD

response during the attention period is larger when attention is split

between the two modalities (40/60 conditions) than when the attention

is directed purely to one modality (0/100 conditions). This suggests that

this attention effect is independent of the modality to which attention

is to be directed and is instead related to task difficulty. This concept

agrees with Macaluso et al. (2003), who report modality independent

modulations in superior premotor areas, left inferior parietal lobule, pos-

terior parietal and prefrontal cortices, and Corbetta et al. (2000) which

attributes activity in the IPS to be purely related to the top-down pro-

cess of attention, rather than the response to a stimulus.

The quadratic response to the direction of attention between

modalities has been documented in our parallel EEG-study using the

same paradigm (Sokoliuk et al. (2018)). In our four conditions we linearly

increase visually-directed-attention with condition number (1–4,

Figure 3c) whilst simultaneously linearly decreasing somatosensory-

directed-attention with condition number (1–4, Figure 3d). Analysing

these two contrasts is aimed at mapping the attentional changes within

these two modalities. However in the Hard (40/60,60/40) > Easy tasks

(0/100,100/0) this contrast resembles a quadratic function when for-

mulated over the 4 conditions (Figure 3e) [as in Sokoliuk et al., 2018]

with the shape reflecting variation in total attentional load.

Our paradigm also allows us to differentiate regions that are inde-

pendent of the modality to which attention is directed, from those

regions where the modulation of the BOLD response is dependent on

the modality that attention is directed to. We observe a linear modu-

lation, increasing BOLD fMRI signal with increasing visual attention,

within extrastriate visual cortex areas of V3, V4, V3b, area Parietalis

(temporo-occipital) Basalis (PH, [Von Economo & Koskinas, 1925;

Triarhou, 2007; Glasser & Van Essen, 2011]), Fusiform face complex

(FFC) and VIP. Previously, analogous linear modulations of brain activ-

ity with attention have been reported in EEG data where alpha power

has been shown to linearly decrease in the occipital/parietal regions

of the hemisphere to which increasing spatial visual attention has

been paid (Gould et al., 2011). However, EEG does not have the spa-

tial resolution to identify the precise anatomical region in which the

alpha power modulation is observed.

Of the lower order visual areas (V1–V4), V4 showed the most

robust linear modulation with attention. Invasive animal electrophysi-

ology recordings provide compelling supporting evidence that our

analyses are identifying neuronal modulation by attention, since in

these studies spike–spike coherence in the alpha and gamma bands

has been shown to be significantly modulated by directed spatial

attention in V4, but not in V1 (Buffalo, Fries, Landman, Buschman, &

Desimone, 2011). These invasive recordings showed that alpha power

decreased when attention was directed to the visual area from which

neuronal responses are measured. This report of a reduction in alpha

power (Buffalo et al., 2011), negatively correlates with the observed

increase in V4 BOLD response with increasing visual attention that

was observed in this study, a finding supported by many previous

electrophysiology reports of anti-correlation between alpha power

and BOLD signals (e.g., Goldman, Stern, Engel, & Cohen, 2002; Laufs

et al., 2006; Mayhew, Ostwald, Porcaro, & Bagshaw, 2013; Mullinger,

Mayhew, Bagshaw, Bowtell, & Francis, 2014). It should be noted that

the invasive recordings (Buffalo et al., 2011) also showed a concor-

dant increase in gamma power in V4 but no significant gamma power

change in V1. Previous reports show that gamma oscillations are gen-

erally thought to be most closely coupled to the BOLD response

(Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; Magri,

Schridde, Murayama, Panzeri, & Logothetis, 2012), suggesting that

gamma changes could be driving the observed BOLD modulations we

report. To our knowledge there are only reports of linear modulation

of alpha with the graded manipulation of attention during a pre-

stimulus cue period (e.g., Gould et al., 2011) but equivalent studies of

gamma responses have not yet been performed.
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Interestingly, we observed no negative linear modulations of BOLD

responses across conditions (reflecting increased attention to the

somatosensory domain), contrary to what might have been expected in

the secondary somatosensory system (Wu et al., 2014). Modulations in

reaction time for attending 100% compared with 60% were larger when

subjects attended to the somatosensory domain, than when attention

was directed to the visual domain. Furthermore, the modulation of the

accuracy measure between 100 and 60% was similar for both domains

(no significant cue × modality interaction). Therefore the behavioural

results strongly suggest it is unlikely that the subjects’ attention to the

somatosensory domain was not modulated by this task, despite the lack

of BOLD response in the somatosensory brain area. Modulation of

modality specific alpha power with spatial attention have previously

been reported for both the visual and somatosensory system

(e.g., Gould et al., 2011; Haegens et al., 2011; Haegens et al., 2012;

Zumer et al., 2014), suggesting the processes behind directing spatial

attention are not different for the two systems (visual and somatosen-

sory). Further investigation is required to clarify the lack of responses in

the somatosensory system to this type of attention paradigm where

attention is divided between two modalities, rather than spatially.

5.5 | Study limitations and future work

We note that our small sample size influenced the strength of some of

the statistics (FDR correction at q = 0.1 in Figure 10, p < .001 uncor-

rected maps in Figure 11); however, the responses on the individual

level were strong and demonstrate the potential of UHF fMRI for sub-

ject specific brain mapping (see Figure 7). Future modelling and/or

concurrent analyses of EEG responses will provide better models to

probe activations.

Future studies may also benefit from the use of multi-variate pat-

tern analysis (MVPA), which, by using spatial pattern recognition, has

the potential to overcome some of the limitations of group GLM ana-

lyses (Turner & Geyer, 2014). The optimal strategies presented here,

that is, surface normalisation and no spatial smoothing, should be con-

sidered to be complementary, providing an initial method to identify

regions of interest on which MVPA can be performed. Furthermore,

the methods presented in this study allow analyses on a smaller data

set without the requirement for training and subsequent test data sets

which can be challenging to obtain for complex cognitive tasks.

6 | CONCLUSION

This study shows the potential of 7 T to study whole brain individual

subject BOLD fMRI responses to a cognitive task. The optimal strategy

of surface normalisation, no spatial smoothing and the analysis of

responses within defined parcellations is demonstrated to assess cogni-

tive processing involved in directing attention between sensory domains.
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