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We experimentally demonstrate a dynamic process of effective Parity-Time (PT)-symmetry 

breaking through eigen-polarization variation in a hybridized metasurface. The metasurface 

consists of two coupled resonators made from metal and type II superconductor niobium nitride, 

respectively. By varying the temperature from 2 to 13 K, the hybridized system is able to pass 

through the effective PT-symmetry phase transition point, providing a feasible way to investigate 

the dynamic PT-symmetry transition. 
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Parity-Time (PT)-symmetric Hamiltonians, first proposed by Bender in 1998,1 describe a class of 

non-Hermitian quantum systems obeying parity-time requirements. Even being non-Hermitian 

systems, the PT-symmetric Hamiltonians can still possess a real and complete eigen-spectrum 

due to critical requirement of PT symmetry, and therefore satisfy the necessary physical 

constraints for measurable quantities. Since then, such Hamiltonians have attracted tremendous 

interest in the past two decades, and have led to many interesting developments in theoretical 

physics.2 Due to difficulties in engineering complex PT-symmetric potentials, experimental 

observation of the PT-symmetric systems in quantum mechanics has been very scarce.1,2 As 

electromagnetic and quantum waves obey similar mathematical forms of wave equations, the 

concept of PT symmetry has been introduced in optical systems with spatially balanced 

refractive index profiles.3,4 Spontaneous PT-symmetry breaking separated by the transition point, 

i.e., exceptional point, has been experimentally demonstrated in various optical systems, in 

which a complex conjugate refractive index profile is usually employed to construct analog 

PT-symmetric quantum potentials. Many intriguing optical phenomena related to the PT 

symmetry have been observed, such as loss-induced transparency, asymmetric light propagation, 

one way invisibility, etc.4-9 In most of the demonstrations, discrete optical elements such as 

waveguides and resonators with mutual coupling have been employed, and the system can be 

mathematically described by an effective Hamiltonian of matrix representation with off-diagonal 

elements representing the coupling coefficients.4 A transition between PT symmetry and 

PT-symmetry breaking can be observed by carefully tuning the relative strength between the loss 

contrast and the coupling coefficient. 

Instead of generating the complex refractive index profiles under the requirement of PT 

symmetry, metasurfaces consisting of coupled resonators with contrasting quality factors have 
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been employed to generate effective Hamiltonians satisfying PT symmetry.10, 11 In one case, the 

effective PT symmetry of the Hamiltonian was built by two coupled dipole antennas with the 

same resonance frequency and scattering loss rate, but different dissipation loss rates. The 

orthogonality between the two antennas not only ensures a real coupling constant between them, 

but also, under such a requirement, the eigen-polarization states in transmission can directly 

indicate the signature of transition at the exceptional point. The coupling strength between the 

two dipoles, which is determined by their separation, was usually selected as the tuning 

parameter. In order to reveal the process of the PT-symmetry phase transition, a series of samples 

with different separations between the two antennas need to be fabricated and measured. Due to 

the fixed structure, each sample thus has a fixed optical response without any dynamical 

modulation.  

To be able to continuously control the transition through the exceptional point dynamically, 

here, we incorporate superconducting material into the PT-symmetry metasurface design. The 

unit cell of the hybridized metasurface also consists of two resonators, one made from Au, while 

the other from type II superconductor niobium nitride (NbN). Due to the presence of the type II 

superconductor, the dissipation loss of the NbN resonator can be actively controlled by tuning 

the temperature, the strength of the magnetic or electric field.12-16 With the proper design of the 

metasurface, dynamic tuning of the dissipation loss of NbN can lead the system to continuously 

pass through the effective PT- symmetry phase transition point in the fabricated sample. By only 

changing the temperature from 2 to 13 K, we experimentally observed such a phase transition 
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manifested in the measured eigen-polarization variation in transmission. A coupled mode 

analysis is used to explain the experimental results.   

Similar to our previous work,11 the metamaterial implementing PT-symmetry phase 

transition also contains two split-ring resonators (SRRs) acting as effective dipoles 

 , ,ˆ i t
x y x yp p e    with the same resonance frequency 0  and their gaps are orthogonal to each 

other, as shown in Fig. 1(a). Although the SRRs also support magnetic dipole moments in the 

vertical direction, they do not make the far-field contribution under normal incidence. These 

dipoles are excited by the incoming electric field  0
ˆ , i t

x yE E E e    , as given by the following 

equation 10,11 
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where , , ,
s d

x y x y x y     is the total decay rate for each dipole,   ,
s
x y  is the scattering loss rate 

considered to be approximately the same for the two SRRs here, and ,
d
x y  is the dissipation 

loss, which is different in the two SRRs due to their different geometries and constituent 

materials. The frequency deviation   satisfies the requirement of 0 0     � , and   

denotes the coupling between the resonators and should be real since the coupling between the 

two dipoles only interact via quasi static electric field. These dipoles reradiate the EM wave to 

the far-field as: 
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Thus, the transmitted and incident fields can be related by the transmission matrix, T:  

                   

1
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  

 
   

.                                    (3) 

Under the requirement of the same scattering loss rate and the same resonance frequency, 

the eigenvalue problem of the transmission matrix T of the metasurface is equivalent to that of 

the response matrix . Since that, instead of investigating the eigenvalues of the response matrix, 

we can directly investigate the eigenvalue problem of the matrix T by spectral measurement to 

reveal the PT-symmetry breaking process. Solving the eigenvalues of T reveals the constraint of 

phase transition, which depends on the value of  224 d d
x y      .  Hence by carefully 

tuning the dissipation loss rate of the type II superconductor NbN, d
x , while keeping the other 

parameters constant, the effective PT- symmetry breaking point 0   can be reached. Ideally, 

above the transition point, 0  , the eigen-polarizations of the transmission matrix T are two 

ellipses with major axes oriented along 45 in the form of ix e y , where 

 1sin / 2d d
x y        . When 0  , i.e., at the exceptional point, the eigen-polarizations are 

collapsed to a single circularly polarized state, either left-handed or right-handed circular 

polarization, which is determined by microscopic parameters. When   is purely imaginary, the 

eigen-polarizations are two ellipses with major axes oriented along 0 and 90 with the form of 

x ie y , where  1cosh / 2d d
x y        . These eigen-polarization states originated from the 

effective PT-symmetry transition can be adjusted by directly tuning d
x , and reveal the phase 

transition at the same time. 
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To experimentally verify such an effective PT phase transition, we fabricate the 

metasurface with carefully designed parameters by photolithography. We first etch the 50 nm 

NbN film grown on 1 mm MgO substrate into an array of SRRs, and then the other metal dipole 

is steamed with Au to 200 nm. The unit cell has a period of 120 μm in both directions, and the 

overall sample area is 10 mm by 10 mm. The detailed geometry of the resonators is shown in Fig. 

1. A series of samples with slightly different geometric parameters are fabricated to identify the 

best candidate. In order to obtain both the amplitude and phase information of the metamaterial 

response, we measure the transmission spectrum of our samples with terahertz time-domain 

spectroscopy coupled with a He-bath cryostat (Oxford Instruments Spectromag). The liquid 

helium circulation in the cryostat provides adjustable temperature from 1.5 to 250 K and ensures 

an accuracy of 0.01 K during the measurement. As shown in Fig. 2, the two terahertz antennas 

are oriented to measure the horizontally polarized terahertz wave in our experiment setup, and 

the samples are placed 45 relative to the horizontal direction. Four polarization plates are used 

in the experiment to measure each element of the transmission matrix T. The transmission 

coefficients are normalized by the transmissions of the MgO substrate. By carefully tuning the 

temperature, the transmission of the sample at different temperatures can be measured, and the 

transmission coefficients can be theoretically fitted according to Eq. 3. Figure 3 shows the 

experimental and fitted transmission matrix elements at 7 K. The near-field coupling between 

these SRRs generally leads to polarization state change through the sample due to the non-zero 

crossed linear polarization components. Since the geometry of the dipoles and the distance 
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between them do not change with temperature, the fitted scattering loss rate and the coupling 

strength are assumed to be constant. Furthermore, the dissipation loss of Au is not sensitive to 

temperature and can also be assumed to be constant. To ensure a sharp change in dissipation of 

NbN, the investigated temperature here is chosen to be around 10 K, which lies in the 

temperature-sensitive region of NbN. The parameters can be obtained by numerically fitting the 

measured transmission spectra at each temperature based on Eq. 3. According to the 

transmissions at different temperatures, the dependence of the fitted dissipation loss rate of the 

NbN resonator on temperature is plotted in Fig. 4(a), where a sharp change occurs around 10 K. 

We find that the resonance frequency of the NbN resonator is also slightly changed in the 

temperature-sensitive region, as shown in Fig. 4(b). The slightly changed resonance frequency 

leads to deviation from the PT symmetry requirement above 9 K.  In the temperature-sensitive 

region of the NbN resonator, the microscopic parameter, namely, the dissipation loss rate, shows 

an obvious change.   

Based on the measured elements of the transmission matrix T (including amplitude and 

phase), we can directly obtain its eigen-polarization states at each temperature. As shown in Fig. 

5, we plot the fitted and measured eigen-polarization states of the transmission matrix T from 7 

to 12 K. Below 9 K, the major axes of the eigen-polarization states are close to  45 directions, 

which reveal that the hybridized system falls into the PT-symmetry phase region. However, the 

major axes of the eigen-polarization states are rotated and close to 0 and 90 directions when 

the temperature is above 9 K, which directly indicates the breaking of the PT symmetry. Around 
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9 K, the eigen-polarization states are approximately going to collapse to circular polarization, 

indicating proximity to the exceptional point. Due to the resonant frequency deviation of the 

NbN resonator above 9 K, the major axes of the eigen-polarization states show slight deviation 

from 0 and 90 directions. Further, in Fig. 5(k) we plot the experimentally measured 

eigen-polarization states on the Poincare sphere, where the process of transition can be 

represented by the approaching and leaving the EP point located at the north pole of the Poincare 

sphere. The two coloured longitudes represent the coordinate with a bit of shift for legibility 

which corresponds to a rotation of transmission matrix T. It must be noted that the 

eigen-polarization states of the transmission matrix are elliptically-polarized states with the same 

chirality due to the critical requirement of mirror symmetry along the propagation direction for 

the response matrix.17, 18  

In conclusion, we have designed and experimentally fabricated a hybridized metasurface 

exploring effective PT-symmetry phase transition. To avoid the requirement of a series of 

samples, the dissipation loss rate of one dipole is selected as the tuning parameter, and can be 

continuously tuned by changing the environmental temperature. To realize the tuning process in 

concrete metamaterial design, a temperature-sensitive type II superconductor resonator is 

implemented. By changing the environmental temperature from 7 to 12 K, phase transition in the 

polarization space is experimentally observed. The proposed structure may be used in the 

low-noise terahertz receiver system, such as the NbN hot electron bolometer (HEB), and the 

thermal-control strategy also could be extended to other thermo-responsive materials.  
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Figures  

 

 

 

 

FIG. 1. (a) Schematic of a unit cell of the proposed metasurface. The parameters used in 

simulation are a = 42 μm, b = 30 μm, g = 6 μm, G = 10 μm. (b) Microscopy image of the sample 

measured in experiments. 
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FIG. 2. Experimental diagram for the terahertz transmission matrix measurements. 
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FIG. 3. Experimental (dash lines) and fitted (solid lines) transmission spectra at 7 K. The fitted 

microscopic parameters are 0.6x yf f   THz, 0.015s   THz,  0.016d
x   THz,  

0.01d
y   THz, and 0.01   THz. 
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FIG. 4. Fitted (a) dissipation loss rate d
x  and (b) resonance frequency xf  of the NbN 

resonator from 7 to 12 K. 
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FIG. 5. Eigen-polarization states of the transmission matrix in polarization space. The 

eigen-polarization states in the first row are the experimental results, and those in the second row 

are the corresponding fitted results: (a) and (f) T = 7 K, (b) and (g) T = 8 K, (c) and (h) T = 9.1 K, 

(d) and (i) T = 11 K, and (e) and (j) T = 12 K. And (k) is the Poincare sphere presentation of 

transition from (a) to (e). 

 

 

 

 

 


