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DERIVED CATEGORIES OF BHK MIRRORS

DAVID FAVERO AND TYLER L. KELLY

Abstract. We prove a derived analogue to the results of Borisov, Clarke, Kelly, and Shoe-
maker on the birationality of Berglund-Hübsch-Krawitz mirrors. Heavily bootstrapping off
work of Seidel and Sheridan, we obtain Homological Mirror Symmetry for Berglund-Hübsch-
Krawitz mirror pencils to hypersurfaces in projective space.
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1. Introduction

In 1989, Candelas, Lynker, and Schimmrigk wrote a prophetic paper with computer-based
evidence of a mathematical phenomenon predicted by string theorists. Their paper provides
a list of Calabi-Yau hypersurfaces in weighted-projective 4-space which mostly partner off.
Namely, if there is a Calabi-Yau threefold with Hodge numbers (h1,1, h2,1) on the list then
there is often one with the Hodge numbers flipped: (h2,1, h1,1) [CLS90] - the so called mirror.
Greene and Plesser followed with a physical construction of the mirror partners to Fermat
hypersurfaces in weighted-projective spaces [GP90].

The next generalization was provided by Berglund and Hübsch [BH93]. The Berglund-
Hübsch construction provides a mirror for quasismooth hypersurfaces in a weighted-projective
space. One takes a polynomial

FA :=
n∑
i=0

n∏
j=0

x
aij
j

associated to an invertible matrix A = (aij) which defines a quasismooth hypersurface in
weighted projective space P(q0, . . . , qn). Its mirror is roughly the hypersurface given by the
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transposed polynomial

FAT :=
n∑
i=0

n∏
j=0

x
aji
j

in another weighted projective space. More precisely, one takes additional quotients on
both sides by finite groups which correspond to an exchange of the geometric and quantum
symmetries of the polynomials FA and FAT .

This proposal had its limitations. For example, it was unable to accommodate the latest
theory seen in a paper of Candelas, de la Ossa, and Katz [CdK95]. Fortunately, a toric
mirror construction due to Batyrev [Bat94] saved the day. Batyrev’s mirror construction
was extended to Calabi-Yau complete intersections by Batyrev and Borisov the following
year, providing a pivotal construction for future work on mirror symmetry.

In 2007, Berglund-Hübsch mirrors resurfaced in a series of articles after Fan, Jarvis, and
Ruan used the Berglund-Hübsch construction to explain the self-duality of An and En sin-
gularities and study Landau-Ginzburg mirror symmetry [FJR13]. Soon afterward, Krawitz
gave a well-defined version of Berglund-Hübsch mirror symmetry [Kr09] and Chiodo and
Ruan [CR11] went on to prove that the Berglund-Hübsch-Krawitz (BHK) mirrors form a
mirror pair on the level of Chen-Ruan orbifold cohomology [CR04] (and consequently stringy
cohomology).

At this point, both Batyrev-Borisov mirrors and Berglund-Hübsch-Krawitz mirrors had
evidence of being correct mirrors; however, given a Calabi-Yau hypersurface that has both a
Batyrev-Borisov mirror and a BHK mirror, these mirrors may not be isomorphic. To make
matters worse, varying certain choices involved in either construction can result in multiple
mirrors. What to do?

As it turns out, this phenomenon is not so mysterious. In the physics literature, it is a
well-studied story about different phases or energy limits of the mirror. Meanwhile in the
math literature, we have a more specific ansatz: the paper of Clarke [Cla08] which unifies
the constructions of Givental, Hori-Vafa, Berglund-Hübsch, and Batyrev-Borisov, together
with Kontsevich’s Homological Mirror Symmetry Conjecture.

In light of Kontsevich’s Homological Mirror Symmetry Conjecture, a mirror pair of Calabi-
Yau manifolds M and W should exchange symplectic and complex data at the level of
categories. Namely, the Fukaya category of M (the A-model) should be equivalent to the
bounded derived category of coherent sheaves of its mirror W (the B-model), i.e.,

Fuk(M) ∼= Db(cohW) and Fuk(W) ∼= Db(cohM).

Consider a Calabi-Yau manifoldM. As a consequence of the Homological Mirror Symme-
try Conjecture, the derived category of its mirror should depend neither on the construction
of the mirror nor on the complex structure of M. In summary, if we have multiple mirrors
W1, ...,Wr that arise from various choices of complex structure onM or mirror constructions,
then we expect that these mirrors have equivalent derived categories

Fuk(M) ∼= Db(cohW1) ∼= ... ∼= Db(cohWr).

In this paper, we prove that this is precisely the case for Berglund-Hübsch-Krawitz mir-
rors in Gorenstein Fano toric varieties. The proof utilizes the fact that a variation of com-
plex/algebraic structure is mirrored by a variation of Kähler structure specifically realized
through variation of Geometric Invariant Theory quotients. Morally, this allows us to apply
the work of Ballard-Favero-Katzarkov [BFK12] to obtain the desired derived equivalence.
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However, a modification using partial compactifications of toric vector bundles is necessary
to realize this to fruition. We will now provide a more precise mathematical explanation of
our results.

1.1. Precise Results. Let us fix once and for all, κ, an algebraically closed field of charac-
teristic 0. We work strictly over such a field.

The context of BHK mirror symmetry consists of taking a polynomial

FA :=
n∑
i=0

n∏
j=0

x
aij
j

where the matrix A := (aij) is invertible and the polynomial FA cuts out a quasismooth
Calabi-Yau hypersurface in some weighted-projective stack P(q0, . . . , qn). Then one takes a
group G that is a subset of the group of diagonal automorphisms

Aut(FA) = {(λi) ∈ (Gm)n+1|FA(λixi) = FA(xi)}
so that G acts trivially on holomorphic (n, 0) forms of Z(FA). We take the quotient stack

ZA,G =

[
{FA = 0}
GGm

]
⊆
[
An+1 \{0}
GGm

]
=

P(q0, . . . , qn)

G

where Gm acts with weights q0, ..., qn and G := G/(G∩Gm). BHK mirror symmetry proposes
a mirror that is associated to the transposed polynomial

FAT :=
n∑
i=0

n∏
j=0

x
aji
j .

The polynomial FAT cuts out a quasismooth Calabi-Yau hypersurface in another weighted-
projective stack P(r0, . . . , rn). Krawitz [Kr09] identified the dual group GT

A (see Equa-
tion (2.7)) which depends on both G and A so that one can state the BHK mirror to
be,

ZAT ,GT :=

[
{FAT = 0}
GT
AGm

]
⊆
[
An+1 \{0}
GT
AGm

]
=

P(r0, . . . , rn)

GT
A

.

Chiodo and Ruan [CR11] proved the following.

Theorem 1.1 (Chiodo-Ruan). On the level of Chen-Ruan cohomology, the Hodge diamonds
for ZA,G and its BHK mirror ZAT ,GT flip:

Hp,q
CR(ZA,G, k) ∼= Hn−1−p,q

CR (ZAT ,GTA , k).

This is the analogous result to that of Batyrev and Borisov for their construction. One can
ask how this construction compares to the mirror construction of Batyrev for hypersurfaces
of Fano toric varieties. The answer is that the mirror construction matches if and only if the
polynomial FA is a Fermat variety in a (necessarily Gorenstein) Fano toric variety. In fact,
if one starts with a non-diagonal polynomial FA sitting in a (possibly Fano) toric variety,
very often one gets a BHK mirror ZAT ,GTA that is in a non-Gorenstein (and consequently non-

Fano) toric variety (see Example 2.4). Such a BHK mirror ZAT ,GTA does not have a mirror
prescribed by Batyrev and Borisov, and consequently does not match up to the varieties
prescribed to be the Batyrev mirror.

We can also consider two polynomials FA and FA′ that have the same weights. We can
then consider a group G ⊂ Aut(FA)∩Aut(FA′) that acts trivially on the holomorphic forms
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of both hypersurfaces Z(FA) and Z(FA′) and consequently get two quotient stacks ZA,G and
ZA′,G in the same toric variety; however, their respective BHK mirrors ZAT ,GTA and Z(A′)T ,GT

A′

may be in completely different toric varieties. This leads to the following question of Iritani:

Question 1.2 (Iritani). Given two quotient stacks ZA,G and ZA′,G that sit in the same toric
variety, are their BHK mirrors ZAT ,GTA and Z(A′)T ,GT

A′
birationally equivalent?

This question is answered affirmatively in many ways in the literature by Borisov [Bor13],
Shoemaker [Sho14], Kelly [Kel13], and Clarke [Cla13]. In this paper, we prove that these
mirrors are the same from the perspective of homological mirror symmetry.

Theorem 1.3 (=Theorem 5.1). Given two quotient stacks ZA,G and ZA′,G that sit in the
same Gorenstein Fano toric variety, their BHK mirrors ZAT ,GT and Z(A′)T ,GT

A′
are derived

equivalent.

By joining this theorem with the main theorem of [FK17], we can say the following: given
a Calabi-Yau complete intersection or hypersurface in a Gorenstein Fano toric variety, there
may be various distinct ways to construct its mirror using Berglund-Hübsch-Krawitz or
Batyrev-Borisov mirrors, but all of these mirrors are derived equivalent.

Moreover, when proving Theorem 1.3, one gets derived equivalences amongst members of
families of hypersurfaces in the different weighted-projective stacks. A priori, Berglund and
Hübsch proposed their mirror duality as a construction for specific Calabi-Yau hypersurfaces.
We can insert these specfic hypersurfaces into a family and explicitly match each member of
this extended family of Calabi-Yau varieties to one another pointwise by derived equivalence.

The most basic extension to families allows one to apply Polishchuk-Zaslow, Seidel, and
Sheridan’s proof of Homological Mirror Symmetry for Calabi-Yau hypersurfaces in projective
space [PZ98, Sei03, She15]. Since the Polishchuk-Zaslow result (dimension 1) is analogous but
slightly different to state, we treat the cases of Seidel (dimension 2) and Sheridan (dimension
≥ 3) which one can do simultaneously.

Namely, let Λ be the universal Novikov field which contains C[[r]] ⊆ Λ so that r is a formal
parameter. Over the universal Novikov field, we define a Berglund-Hübsch-Krawitz pencil as

Zpencil
A,G :=

[
{x0...xn + rFA = 0}

GGm

]
⊆
[
An+1 \{0}
GGm

]
=

P(q0, . . . , qn)

G

where
P(r0, . . . , rn) := [An+1\{0}/Gm]

is a weighted projective stack. For Berglund-Hübsch-Krawitz pencils we have the following.

Theorem 1.4 (=Theorem 5.17). Homological Mirror Symmetry holds for Berglund-Hübsch-
Krawitz mirror pencils in projective space over the universal Novikov field.

More precisely, if FA defines a smooth hypersurface in complex projective space CPn (in
particular G = Zn+1) with n ≥ 3, there is an equivalence of triangulated categories

FukZA,G ∼= Db(cohZpencil

AT ,GTA
).

1.2. Plan of the Paper. Here is a brief summary of how the paper is organized.
In Section 2, we outline BHK mirror symmetry, give a toric reinterpretation due to Borisov

and Shoemaker, and define the multiple mirrors that we will prove are derived equivalent.
In Section 3, we provide background on the category of singularities and in particular the

theorems of Orlov, Isik, and Shipman which we will use.
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In Section 4, we prove criteria for derived equivalences for complete intersections that are
zero loci of sections of different vector bundles. This is placed in the context of equivalences
of categories of singularities amongst various partial compactifications of vector bundles, and
we show how the latter follows from some recent results on variations of GIT quotients.

In Section 5, we apply our framework to prove the derived analogue to the birationality
result of Borisov, Clarke, Shoemaker, and the second-named author on BHK mirrors. We
then discuss this in an explicit example.

Acknowledgments: We heartily thank Colin Diemer for suggesting that VGIT may relate
to the BHK picture and give special thanks to Charles Doran for input on this project from
start to finish. The first-named author is grateful to the Korean Institute for Advanced
Study for their hospitality while this document was being prepared and especially to Bumsig
Kim for insightful conversations on Clarke’s mirror construction. The second-named author
thanks the Pacific Institute for the Mathematical Sciences for its hospitality in his visits as
they expedited the progress of this work. This project was also greatly aided by stimulating
conversations and suggestions from many great mathematicians; Matthew Ballard, Ionut
Ciocan-Fontanine, Ron Donagi, Daniel Halpern-Leistner, Yuki Hirano, and Xenia de la Ossa.
The authors would also like to extend their gratitude to the referees for their thorough
readings and many improvements to this manuscript.

The first-named author is grateful to the Natural Sciences and Engineering Research
Council of Canada for support provided by a Canada Research Chair and Discovery Grant
(CRC TIER2 229953 and RGPIN 04596). The second-named author acknowledges that this
paper is based upon work supported by the National Science Foundation under Award No.
DMS-1401446 and the Engineering and Physical Sciences Research Council under Grant
EP/N004922/1.

2. Background

2.1. Berglund-Hübsch-Krawitz Mirror Symmetry. Let

FA =
n∑
i=0

n∏
j=0

x
aij
j , aij ≥ 0 (2.1)

be a polynomial equation that is the sum of n+ 1 monomials in n+ 1 variables and set the
matrix A := (aij)

n
i,j=0. We impose the following conditions:

Definition 2.1. The polynomial FA above is a Kreuzer-Skarke polynomial if:

a) the matrix A is invertible over Q;
b) there exists positive integers qi so that the sum

∑
j qjaij is independent of i; and

c) when viewed as a polynomial map, FA : An+1 → A has exactly one critical point.

Remark 2.2. These conditions are restrictive. Their classification is discussed in Section 5.1.

We then can look at the well-defined hypersurface in a weighted projective stack that is
cut out by the polynomial FA,

ZA := {FA = 0} ⊆ P (q0, . . . , qn).

Condition (b) implies that the hypersurface is well-defined in this weighted projective space
and condition (c) implies that the hypersurface is quasismooth. We further impose the
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condition that ZA is Calabi-Yau. This is equivalent to the condition that the degree of the
polynomial FA is the sum of the weights

∑
i qi. This in turn is equivalent to the condition

that the sum of the entries in the inverse matrix A−1 is one, i.e.,
∑

i,j(A
−1)ij = 1. If we want

that the hypersurface ZA to be a generalized Calabi-Yau, i.e., a Fano variety with a middle
Hodge structure similar to that of a Calabi-Yau manifold (see Definition 2.2 of [FIK14]),
then we merely desire that the sum of the entries of the inverse matrix A−1 sums to an
integer.

These hypersurfaces are highly symmetric. If we take the the torus (Gm)n+1 acting coordi-
natewise on P(q0, . . . , qn), we can describe many subgroups of the torus that represent certain
symmetries of the polynomial FA and the hypersurface ZA. Consider the group Autdiag(FA)
of diagonal symmetries rescaling the coordinates and preserving FA,

Autdiag(FA) =
{

(λi) ∈ (Gm)n+1
∣∣ FA(λixi) = FA(xi)

}
. (2.2)

This group is generated by the elements ρj = (exp(2πiaj0), . . . , exp(2πiajn)), where aij :=
(A−1)ij.

In the case where ZA is a Calabi-Yau variety, not all the elements in the group of diagonal
symmetries leave the unique (up to scaling) holomorphic form invariant, hence we define a
subgroup,

SL(FA) =

{
(λi) ∈ Autdiag(FA)

∣∣∣∣∣ ∏
i

λi = 1

}
(2.3)

of elements that, when viewed a diagonal matrix acting on the coordinates xi has determinant
one.

Some of these symmetries of FA act trivially on the hypersurface ZA. In particular, one
has the exponential grading operator subgroup,

JFA = 〈ρ0 · · · ρn〉 ⊆ Autdiag(FA),

which acts trivially on the hypersurface ZA. Take a group G so that

JFA ⊆ G ⊆ SL(FA) (2.4)

and denote by G the quotient G/JFA . If we start with a Calabi-Yau hypersurface ZA, when
we quotient by G we get a Calabi-Yau orbifold ZA,G := [ZA/G]. Alternatively, we may view
this as a (smooth) Deligne-Mumford global quotient stack,

ZA,G =

[
{FA = 0}
GGm

]
⊆
[
An+1 \{0}
GGm

]
=

P(q0, . . . , qn)

G
. (2.5)

Berglund-Hübsch-Krawitz mirror symmetry provides a mirror for this orbifold in the fol-
lowing way. We define the transposed polynomial,

FAT =
n∑
i=0

n∏
j=0

x
aji
j , (2.6)

and the transposed group,

GT
A =

{∏
j

(ρTj )sj

∣∣∣∣∣ ∏
j

x
sj
j is G-invariant

}
, (2.7)
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where ρTj := ((exp(2πia0j), . . . , exp(2πianj)). For a more functorial description of GT
A, we

refer the interested reader to Definition 2.7 of [Cla13]. Provided FA and G above, we enjoy
the following properties about their transposed counterparts:

i. FAT is a Kreuzer-Skarke polynomial, but with possibly different weights ri.
ii. If JFA ⊆ G, then GT

A ⊆ SL(FAT ).
iii. If G ⊆ SL(FA), then JF

AT
⊆ GT

A.
iv. The hypersurface ZAT := {FAT = 0} ⊆ P(r0, . . . , rn) is (Fano) Calabi-Yau if ZA is (Fano)

Calabi-Yau.

Denote by GT
A the quotient GT

A/JFAT . If we start with a Calabi-Yau hypersurface ZA and
a group G so that JF

AT
⊆ G ⊆ SL(FA), we obtain the quotient stack,

ZAT ,GT =

[
{FAT = 0}
GT
AGm

]
⊆
[
An+1 \{0}
GT
AGm

]
=

P(r0, . . . , rn)

GT
A

, (2.8)

that is also a Calabi-Yau orbifold.

Example 2.3. If one takes A to be the 5 × 5 diagonal matrix, A = 5I5, then one gets the
Fermat polynomial F5I5 = x5

0 + x5
1 + x5

2 + x5
3 + x5

4 which carves out the Fermat hypersurface
X5I5 ⊆ P4. Take the group G to be the exponential grading operator JF5I5

so that we
are looking at the Fermat quintic threefold ZA,G = X5I5 . BHK mirror symmetry predicts
the mirror ZAT ,GTA = X5I5/(Z5)3 ⊆ P4 /(Z5)3 where the (Z5)3 acts coordinatewise by the

generators (ζ, ζ−1, 1, 1, 1), (ζ, 1, ζ−1, 1, 1), and (ζ, 1, 1, ζ−1, 1) where ζ is a primitive fifth root
of unity. This is the same mirror hypersurface that is predicted by Greene-Plesser and
Batyrev.

Example 2.4. Suppose one takes A′ to be the matrix of exponents for the polynomial
FA′ = x4

0x1 + x4
1x2 + x4

2x3 + x4
3x4 + x5

4, which carves out a quintic hypersurface ZA′ ⊆ P4. As

before, take the group G to be the exponential grading operator. In this case, G
T

A′ = {id}
and BHK mirror symmetry predicts the mirror Z(A′)T ,GT

A′
= Z(y4

0 + y0y
4
1 + y1y

4
2 + y2y

4
3 +

y3y
5
4) ⊆ P4(64, 48, 52, 51, 41). The hypersurface ZAT ,GTA is not predicted by Greene-Plesser

or Batyrev, rather, it does not sit in a Gorenstein Fano toric variety. Hypersurfaces in non-
Gorenstein toric varieties do not have mirror constructions due to any of the naturally toric
mirror constructions created. For more examples of BHK mirrors to projective hypersurfaces,
consult Tables 5.1-3 of [DG11].

The mirrors in Examples 2.3 and 2.4 do not have an obvious relation. The BHK mirror
construction does not predict the same mirror for two (symplectomorphic) hypersurfaces
ZA,G and ZA′,G that sit in the same toric variety. However, the question of if ZAT ,GTA and
Z(A′)T ,GT

A′
are birational has been well-studied recently by many approaches. The theorem

below states a relevant amalgamation of these results (which is not described in full gener-
ality):

Theorem 2.5 ([Bor13, Sho14, Kel13, Cla13]). Take two polynomials FA and FA′ as above
so that the Calabi-Yau hypersurfaces ZA and ZA′ are hypersurfaces in the same weighted
projective space P(q0, . . . , qn)/G where JFA = JFA′ ⊆ G ⊆ SL(FA) ∩ SL(FA′). One then has
two CY orbifolds ZA,G and ZA′,G as hypersurfaces in the orbifold P(q0, . . . , qn)/(G/JFA). The
BHK mirrors ZAT ,GTA and Z(A′)T ,GT

A′
are birational.
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In the following sections, we mesh the many approaches to this question with variational
geometric invariant theory in order to prove a result more in line with Kontsevich’s homo-
logical mirror symmetry—derived equivalence.

2.2. Toric reinterpretation of BHK mirrors. There have been a few toric reinterpreta-
tions of BHK mirror duality in the literature ([Bor13], [Cla08], [Sho14]). In this subsection,
we will give a brief overview of the framework that we will use and introduce the relevant
notation for the BHK mirror construction both in a Landau-Ginzburg and a Calabi-Yau
setting.

Caution 2.6. In this section, we use the notation M for a lattice which in [Bor13] is denoted
simply by M . The notation M is often used in the literature for M ⊕ Zn. In our case, we
will consider just M = M ⊕ Z in Section 5. In particular, we will specialize to the setting
where deg = (0, 1) and M/ deg = M .

We start with the setup of [Bor13]. Take two free abelian groups M0 and N0 with bases
{ui} and {vi}, respectively. Consider a matrix A = (aij)

n
i,j=0 that is the matrix associated

to a Kreuzer-Skarke polynomial as defined in Definition 2.1. Now, we define a pairing
〈, 〉 : M0 × N0 → Z between the two free abelian groups M0 and N0 by imposing that
〈ui, vj〉 = aij. Choose overlattices M and N so that M and N are dual to one another and
we have the following containments:

N0 ⊆ N ⊆M0
∨
; M0 ⊆M ⊆ N0

∨
. (2.9)

We then have exact sequences

0→M → N0
∨ → N0

∨
/M → 0;

m 7→ 〈m,−〉,
(2.10)

and
0→N →M0

∨ →M0
∨
/N → 0;

n 7→ 〈−, n〉.
(2.11)

The first map is the toric divisor map div for the toric variety (κ⊗N0)/(N0
∨
/M) with ray

generators vi, as it can be written

m 7→
∑
i

〈m, vi〉v∨i . (2.12)

The second map is the monomial map mon for the rational function
∑

i x
ui as it can be

written
n 7→

∑
i

〈ui, n〉u∨i . (2.13)

This gives us a pair consisting of a space and a function(
(κ⊗N0)/(N0

∨
/M);

∑
xuii

)
, (2.14)

often referred to as a Landau-Ginzburg (LG) model.
Following Clarke [Cla08], the mirror LG model is given by swapping M and N and the

maps mon and div. Hence, in this setting, the mirror is the pair

(κ⊗M0)/(M0
∨
/N);

∑
xvii . (2.15)
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Notice that we have a Z-basis for N0, namely {vi}, so we have natural functions on the
semi-group ring κ[N0] given by the v∨i . We denote these functions by xi. In these coordinates,
we write the monomial xui as

xui =
∏
j

x
〈ui,vj〉
j =

∏
j

x
aij
j , (2.16)

hence ∑
i

xui =
∑
i

∏
j

x
aij
j = FA (2.17)

(see Equation (2.1)). This gives a more intrinsic description of the function FA.
Analogously, we take the natural functions on the semi-ring κ[M0] given by the dual

elements u∨i . We denote these functions by yi. In these coordinates, we write the monomial
xvi as

xvj =
∏
i

y
〈ui,vj〉
i =

∏
i

x
aij
i , (2.18)

hence ∑
j

xvj =
∑
j

∏
i

x
aij
i = FAT (2.19)

(see Equation (2.6)). We have now checked that the polynomials in this toric interpretation
match to the original construction.

The groups involved in the Berglund-Hübsch-Krawitz construction also have a toric inter-
pretation. The choice of overlattices M and N corresponds to the choice of group. First,

consider the unique elements deg ∈ N0
∨

and deg∨ ∈M0
∨

so that

〈deg, vi〉 = 〈ui, deg∨〉 = 1 for all i.

Proposition 2.7 (Propositions 2.3.1 and 2.3.4 of [Bor13]). Suppose that
∑

i,j(A
−1)ij ∈ Z+ .

Then for any choice of a group G so that JFA ⊆ G ⊆ SL(FA), there is a pair of overlattices
M ⊇ M0 and N ⊇ N0 so that M and N are dual lattices, deg ∈ M , deg∨ ∈ N and the

groups N0
∨
/M and M0

∨
/N are naturally isomorphic to the groups G and GT

A, respectively.

While Proposition 2.7 only requires that
∑

i,j(A
−1)ij ∈ Z+, in the special case

∑
i,j(A

−1)ij =

1 we can in fact produce a Calabi-Yau hypersurface as follows. Take the cones CM = Cone(ui)
and CN = Cone(vj) and produce fans ΣM and ΣN by taking the collection of cones that are
the proper faces of the cones CM and CN . We star subdivide each fan by the ray generated
by deg and deg∨, respectively. We then have two new fans, call them ΣM,deg and ΣN,deg∨ .

We can now consider the toric stacks associated to these fans. For a treatment of toric
stacks that will be relevant to the proof of the derived equivalence of BHK mirrors presented
here, we direct the reader to Section 5 of [FK17]. A nice boon of considering stacks here is
that it applies even to the non-Gorenstein case which is prevalent in BHK mirror symmetry.

Working with stacks, ΣM,deg and ΣN,deg∨ always correspond to canonical bundles over the
fake weighted projective stacks for BHK mirror pairs. Here, we mean that a fake weighted
projective stack is the quotient stack analogous to a fake weighted projective space. This
means a group quotient on An \ {0} by GGm where G is a finite group and Gm acts with
positive weights on all coordinates. To obtain this correspondence combine Section 2 of
[Sho14] and Proposition 4.6 below. Namely, in the notation of loc. cit. Section 2, the fans
Σ and Σ∨ correspond to the projections of ΣM,deg and ΣN,deg∨ under the maps πM : M →
M/(deg) and πN : N → N/(deg∨) respectively.
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By taking the zero loci of the polynomials in (2.16) and (2.19), we obtain the Calabi-Yau
orbifolds

ZA,G ⊆ [P(q0, . . . , qn)/G]; ZAT ,GTA ⊆ [P(r0, . . . , rn)/GT
A].

3. Categories of Singularities

In this section, we provide the necessary details on categories of singularities for global
quotient stacks. We start by reminding the reader of the framework set up in Section 3 of
[FK17], and then continue with an additional observation from Orlov’s original discussion of
such categories [Orl04], which we require later.

Let X be a variety and G be an algebraic group acting on X.

Definition 3.1. An object of Db(coh[X/G]) is called perfect if it is locally quasi-isomorphic
to a bounded complex of vector bundles. We denote the full subcategory of perfect objects
by Perf([X/G]). The Verdier quotient of Db(coh[X/G]) by Perf([X/G]) is called the category
of singularities and denoted by

Dsg([X/G]) := Db(coh[X/G])/Perf([X/G]).

We now repeat Orlov’s observation that the category of singularities localizes about the
singular locus (Proposition 1.14 in [Orl04]) in the presence of a group action.

Proposition 3.2 (Orlov). Assume that coh[X/G] has enough locally-free sheaves. Let i :
U → X be a G-equivariant open immersion such that the singular locus of X is contained
in i(U). Then the restriction,

i∗ : Dsg([X/G])→ Dsg([U/G]),

is an equivalence of categories.

Proof. The proof of Proposition 1.14 in [Orl04] works verbatim for equivariant sheaves. �

Our goal later on, will be to convert a problem on hypersurfaces in weighted projective
space to a toric calculation. This is done using a theorem of Isik and Shipman which allows
us to pass from studying a hypersurface to studying the (toric) total space of the line bundle
defining it.

The setup is general and does not involve toric varieties. Namely, consider a variety X
with the action of an algebraic group G and an equivariant vector bundle E on X. Take a
section s ∈ H0(X, E)G and consider the zero locus Z of s in X. The pairing with s induces
a global function on the total space of E∨. Let Y be the zero locus of the pairing with s in
tot(E∨) i.e. the union of the zero section of tot(E∨) and tot(E∨|Z). Consider the fiberwise
dilation action of Gm on Y .

Theorem 3.3 (Isik, Shipman, Hirano). Suppose that s is a regular section i.e., the Koszul
complex on s is a resolution of OZ. Then there is an equivalence of categories

Dsg([Y/(G×Gm)]) ∼= Db(coh[Z/G]).

Proof. The theorem is originally due independently to Isik [Isi13] and Shipman [Shi12]. With
the G-action, it is Proposition 4.8 of [Hir16]. �
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Corollary 3.4. Let V be an algebraic variety with a G × Gm action. Suppose there is an
open subset U ⊆ V such that U is G×Gm equivariantly isomorphic to Y as above and that
U contains the singular locus of X. Then

Dsg([V/(G×Gm)]) ∼= Db(coh[Z/G]).

Proof. We have

Dsg([V/(G×Gm)]) ∼= Dsg([U/(G×Gm)])

∼= Db(coh[Z/G])

where the first line is Proposition 3.2 and the second line is Theorem 3.3. �

4. Torus Actions on Affine Space

In this section, we extend the setup of Section 4 of [FK17] to partial compactifications
of vector bundles. Consider an affine space X := An+t with coordinates xi, uj for 1 ≤ i ≤
n, 1 ≤ j ≤ t. Let T = Gn+t

m be the open dense torus with the standard embedding and action

on X. Take S ⊆ T to be a subgroup and S̃ be the connected component of the identity.

The possible GIT quotients for the action of S̃ on X [MFK94] have both an algebraic
and toric description. The description in terms of GIT variations comes from varying lin-
earization on trivial bundle (which is ample as X is affine). The choice of linearization on

the trivial bundle is the same thing as a choice of a character of S̃. That is, given an ele-

ment χ ∈ Hom(S̃,Gm), we can form the corresponding line bundle O(χ) by pulling back the

representation of S̃ via the morphism of stacks [X/S̃]→ [pt /S̃].
In studying GIT variations, it is often convenient to consider χ as an element of the

vector space Hom(S̃,Gm)⊗ZQ by rationalizing denominators in order to get an equivariant
line bundle. Now, each linearization in Mumford’s GIT, or in our case, each choice of χ,
determines an open subset Uχ corresponding to the semi-stable locus of X with respect to
χ.

Furthermore, if we think of the vector space Hom(S̃,Gm)⊗ZQ as a parameter space for
linearization, then it was shown in [GKZ94] that this parameter space has a natural fan-
structure ΣGKZ called the GKZ-fan. The fan is defined by the following property, each Uχ is
constant on the interior of each cone in the fan. The maximal cones of this fan are called
chambers and the codimension 1 cones are called walls.

To describe the situation precisely, apply Hom(−,Gm) to the exact sequence

0 −→ S
iS−→ Gn+t

m

proj−→ Coker(iS)→ 0

to get

Hom(Coker(iS),Gm)
p̂roj−→ Zn+t îS−→ Hom(S,Gm)→ 0.

Set νi(S) to be the element of Hom(Coker(iS),Gm)∨ given by the composition of p̂roj with
the projection of Zn+t onto its ith factor. Then, we define ν(S) as the following vector

ν(S) := (ν1(S), ...., νn+t(S)).

Theorem 4.1. There is a bijection between chambers of the GKZ fan for the action of S
on An+t and regular triangulations of the set ν(S). In particular, there are finitely many
chambers of the GKZ fan.
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Proof. See Proposition 15.2.9 of [CLS11] or Chapter 7, Theorem 1.7 of [GKZ94] for the
original formulation in terms of polytopes. �

By the above, we may enumerate the chambers of the GKZ-fan by σ1, ..., σr. Hence, for
1 ≤ p ≤ r we may choose a character χp in the interior of σp, and consider the semi-stable
points with respect to that character. This yields an open subset in X which we denote by Up
(it does not depend on the choice of character). It also corresponds to a regular triangulation
Tp of the collection of points {ν1(S), ..., νn+t(S)}.

Definition 4.2. Let × : Gn+t
m → Gm be the multiplication map. We say that S satisfies

the quasi-Calabi-Yau condition if ×|S̃ = 1, i.e., the multiplication map restricted to S̃ is the
trivial homomorphism.

Definition 4.3. Let G be a group acting on a space X and let f be a global function on X.
We say that f is semi-invariant with respect to a character χ if, for any g ∈ G,

f(g · x) = χ(g)f(x).

Equivalently, this means that f is a section of the equivariant line bundle O(χ) on the global
quotient stack [X/G].

Remark 4.4. Each variable xi is semi-invariant with respect to a unique character of S
which we can denote by deg(xi). The quasi-Calabi-Yau condition is equivalent to∑

deg(xi) +
∑

deg(uj) (4.1)

being torsion.

To apply Corollary 3.4, we will add an auxiliary Gm-action and an S-invariant function
which is Gm-semi-invariant. This auxiliary Gm-action acts with weight 0 on the xi for all i
and with weight 1 on the uj for all j. We refer to this auxiliary action as R-charge.

The action of S on Specκ[uj] gives a character γj of S. Let f1, ..., ft be S-semi-invariant
functions in the xi with respect to the character γ−1

j . The functions fi determine a complete
intersection in An as their common zero-set. We can also use them to define a function

w :=
t∑

j=1

ujfj.

we call the superpotential.
The superpotential w is S-invariant and χ-semi-invariant for the projection character

χ : S × Gm → Gm. This means that it is homogeneous of degree 0 for the S-action and
homogeneous of degree 1 with respect to the R-charge.

Let Z(w) denote the zero-locus of w in X and

Yp := Z(w) ∩ Up.

Theorem 4.5 (Herbst-Walcher). If S satisfies the quasi-Calabi-Yau condition, there is an
equivalence of categories

Dsg([Yp/S ×Gm]) ∼= Dsg([Yq/S ×Gm])

for all 1 ≤ p, q ≤ r.
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Proof. This is essentially Theorem 3 of [HW12] stated in geometric as opposed to algebraic
language. For the geometric translation see Theorem 5.2.1 of [BFK12] (version 2 on arXiv)
or [H-L15] Corollary 4.8 and Proposition 5.5. �

We now refocus our attention to decribe explicitly the open sets Up ⊆ X corresponding to

the semistable loci associated to the characters χp in Hom(S̃,Gm)⊗ZQ. For 1 ≤ p ≤ r, we
can define the irrelevant ideal Ip that is associated to the character χp in the chamber σp of
the secondary fan as

Ip :=

〈∏
i/∈I

xi
∏
j /∈J

uj

∣∣∣∣∣∣
⋂
i∈I

Fi,χp ∩
⋂
j∈J

Fn+j,χp 6= ∅

〉

where I ⊆ {1, ..., n}, J ⊆ {1, ..., t} and Fχp are the virtual facets of the polyhedron Pχp (see
Sections 14.2 and 14.4 of [CLS11]).

Alternatively, Ip can be defined by Tp, the corresponding triangulation of ν(S). Namely,

Ip =

〈∏
i/∈I

xi
∏
j /∈J

uj

∣∣∣∣∣∣
⋃
i∈I

νi(S) ∪
⋃
j∈J

νn+j(S) is the set of vertices of a simplex in Tp

〉
. (4.2)

The open set Up is complement of the zero set of the irrelevant ideal Ip, i.e.,

Up = X \ Z(Ip).

We also consider a certain subideal of the irrelevant ideal given by taking all generators
found by fixing J = {1, ..., t}:

Jp :=

〈∏
i/∈I

xi

∣∣∣∣∣ ⋂
i∈I

Fi,χp ∩
t⋂

j=1

Fn+j,χp 6= ∅

〉

=

〈∏
i/∈I

xi

∣∣∣∣∣ ⋃
i∈I

νi(S) ∪
t⋃

j=1

νn+j(S) is the set of vertices of a simplex in Tp

〉
. (4.3)

Note that the ideal Jp is non-zero if and only if there exists a simplex in the triangulation
T p whose set of vertices include νn+j(S) for all j. The complement of the zero-locus of Jp
gives a new open set

Vp := X \ Z(Jp) ⊆ Up.

We may also view Jp as an ideal in κ[x1, ..., xn] in which case we denote it by J x
p . Now,

restrict the action of S to An = Specκ[x1, ..., xn] (considered as a plane in An+t). This gives
an open set of An

V x
p := An \Z(J x

p )

and a toric Deligne-Mumford stack

Xp := [V x
p /S].

When Jp is a non-zero ideal, then V x
p and Xp are nonempty and we can show that [Vp/S] is

a vector bundle over Xp. The inclusion of rings κ[x1, ..., xn]→ κ[x1, ..., xn, u1, ..., ut] restricts
to a S-equivariant morphism

[Vp/S]→ [V x
p /S] = Xp.
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Proposition 4.6. Suppose the ideal Jp is non-zero. The morphism

[Vp/S]→ Xp.

realizes [Vp/S] as the total space of a vector bundle

[Vp/S] ∼= tot
t⊕

j=1

O(γj).

Furthermore, the R-charge action of Gm is the dilation action along the fibers. Finally, for
each j, the function fj gives a section of O(γ−1

j ) and the superpotential w =
∑
ujfj restricts

to the pairing with the section
⊕

fj.

Proof. Notice first that the open set Vp decomposes as a product

Vp = V x
p × Specκ[u1, ..., ut].

It is then a standard fact that the stack

[Vp/S] = [V x
p × Specκ[u1, ..., ut]/S]

can be realized as the equivariant bundle on [V x
p /S] given by the representation of S on

Specκ[u1, ..., ut].
Now, the group S acts on Specκ[u1, ..., ut] via the characters γj and the representation

is nothing more than the diagonal action of these characters. Hence, we get precisely the
statement

[Vp/S] ∼= tot
t⊕

j=1

O(γj). (4.4)

By definition, the R-charge action of Gm acts with weight 0 on V x
p and weight 1 on

Specκ[u1, ..., ut], i.e., by scaling on the second factor. Under the isomorphism (4.4), this Gm

just acts with weight 1 along the fibers of the vector bundle, as desired.
Finally, by definition,

tot
t⊕

j=1

O(γj) = Spec

(
Sym

(
t⊕

j=1

O(γ−1
j )

))
with global functions identified as

H0

(
Sym

(
t⊕

j=1

O(γ−1
j )

))
=

⊕
j=1,...,t,r∈Z

urj H0

(
t⊕

j=1

O(γ−rj )

)
so that w =

∑
ujfj is identified with

⊕
fj ∈ H0(

⊕t
j=1O(γ−1

j )) ⊆ H0(Sym(
⊕t

j=1O(γ−1
j )))

as desired. �

From Proposition 4.6, we see that for all p, the zero set of ⊕fj as a section of Vp defines
a complete intersection

Zp := Z(⊕fj) ⊆ Xp.

We can also consider the zero locus of w|Up which we denote by

Yp := Z(w) ∩ Up.
Let ∂w be the Jacobian ideal, i.e., the ideal generated by the partial derivatives of w with

respect to the xi and the uj.
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Proposition 4.7. Suppose the ideal Jp is non-zero. If Ip ⊆
√
∂w,Jp then

Dsg([Yp/S ×Gm]) ∼= Db(cohZp).

Proof. Since, Ip ⊆
√
∂w,Jp this implies that the singular locus of w|Up is contained in Vp.

By Proposition 4.6 we may apply Corollary 3.4 with X = Yp and U = Yp ∩ Vp to obtain the
result. �

Corollary 4.8. Assume that S satisfies the quasi-Calabi-Yau condition and that Jp and Jq
are non-zero. If Ip ⊆

√
∂w,Jp and Iq ⊆

√
∂w,Jq for some 1 ≤ p, q ≤ r, then

Db(cohZp) ∼= Db(cohZq).

Proof. We have

Db(cohZp) ∼= Dsg([Yp/S ×Gm])
∼= Dsg([Yq/S ×Gm])

∼= Db(cohZq),

where the first line is Proposition 4.7, the second line is Theorem 4.5, and the third line is
Proposition 4.7 again. �

Remark 4.9. For each p, the condition that Ip ⊆
√
∂w,Jp is a locally closed condition on

the set of t-tuples fj of S-invariant functions. Hence, given two partial compactifications of
vector bundles related by GIT, there is a locally-closed family of zero-sections of each bundle
which are derived equivalent.

Remark 4.10. For a single wall-crossing in the GKZ fan of a toric variety, one can look at
the corresponding wall crossing in the GKZ fan of the total space of the canonical bundle.
The condition that Ip ⊆

√
∂w,Jp and Iq ⊆

√
∂w,Jq is then equivalent to the hypersurface

w being nonsingular on the contracting loci. These wall-crossings were first described inde-
pendently by Dolgachev and Hu, and Thaddeus [DH98, Tha96] and by Gel’fand, Kapranov,
and Zelevinsky in the toric setting [GKZ94]. For an explanation of terminology see [BFK12],
especially Proposition 5.1.4 where the relevant contracting loci are described.

5. Derived Equivalence of Berglund-Hübsch-Krawitz Mirrors

Consider two quasihomogeneous polynomials FA and FA′ with the same weights qi. Then,JFA =
JFA′ . Fix a subgroup JFA ⊆ SL(FA) ∩ SL(FA′) as in Equation (2.4). Then, one can define
the Calabi-Yau orbifolds ZA,G and ZA′,G as well as the BHK mirrors ZAT ,GTA and Z(A′)T ,GT

A′
.

In this section, we prove the following theorem:

Theorem 5.1. Suppose we have two quasihomogeneous polynomials FA and FA′ such that
they have same weights qi, i.e., JFA = JFA′ . Choose a group G so that JFA ⊂ G ⊂ SL(FA)

and JFA′ ⊂ G ⊂ SL(FA′). Take G = G/JFA. Then ZA,G and ZA′,G are two hypersurfaces in

P(q0, . . . , qn)/G. If the coarse moduli space of P(q0, . . . , qn)/G is Gorenstein Fano, then the
BHK mirrors ZAT ,GTA and Z(A′)T ,GT

A′
are derived equivalent.

Proof. This is the special case of Corollary 5.15 where bi = 1, c = 0. �
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The theorem above is a derived analogue to the birationality of Berglund-Hübsch-Krawitz
mirrors (Theorem 2.5). We begin the proof by reducing to the case where FA − FA′ is a
difference of two monomials. For this reduction step, we introduce the notion of a Kreuzer-
Skarke cleave.

5.1. Kreuzer-Skarke Cleaves. In this subsection, we show that if the coarse moduli space
of P(q0, . . . , qn)/G is Gorenstein Fano, then for any two quasihomogeneous polynomials FA
and FA′ with the weights qi, there is a sequence of quasihomogeneous polynomials,

FA = FA1 , ..., FAt = FA′ ,

such that FAi−FAi+1
is a difference of two monomials. This uses the classification of Kreuzer-

Skarke polynomials i.e. quasihomogeneous, quasismooth potentials in n + 1 variables with
n+ 1 monomials terms:

Theorem 5.2 (Kreuzer-Skarke Classification [KS92]). Up to relabelling, all Kreuzer-Skarke
polynomials can be written as a sum of the following polynomials in separate variables:

i. Fermat: Wfermat := xa;
ii. Loops of length ` > 2: Wloop := xa1

1 x2 + xa2
2 x3 + . . .+ x

a`−1

`−1 x` + xa`` x1; and
iii. Chains of length ` > 2: Wchain := xa1

1 x2 + xa2
2 x3 + . . .+ x

a`−1

`−1 x` + xa`` .

The polynomials in the list above are called atomic types. In the original Kreuzer-Skarke
paper, the diagrams for such atomic types are the following

(1) Fermat:

•a

(2) Loop:

•a1 •a2 · · · •a`−1 •a`

(3) Chain:

•a1 •a2 · · · •a`−1 •a`

To each point in such a diagram, one can associate a monomial xaii or xaii xj where ai is
the weight at the vertex corresponding to xi and the factor xj depends on if there’s an arrow
pointing to the vertex corresponding to the variable xj. One obtains the three atomic types
of polynomials by summing over vertices. Hence, all Kreuzer-Skarke polynomials can be
visualized as disjoint unions of the three types above.

Remark 5.3. If one takes the Kreuzer-Skarke diagram of a polynomial FA, the Kreuzer-
Skarke diagram of the transposed polynomial FAT is the dual diagram resulting from revers-
ing the direction of all the arrows.

Definition 5.4. Consider two Kreuzer-Skarke polynomials FA and FA′ defining hypersur-
faces in P(q0, . . . , qn)/G. Suppose that FA and FA′ are related by deleting or adding a single
arrow and changing the exponent ai at the source of the arrow. In this case we say that the
pair (A,A′) is a Kreuzer-Skarke cleave.
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Definition 5.5. Given an element b ∈ κn+1 and a diagram as above, we define a generalized
Kreuzer-Skarke polynomial as a polynomial of the form

Fb
A =

n∑
i=0

bipi

where pi = xaii xj or pi = xaii according to the prescription above associated to the diagram.

Remark 5.6. Given a Kreuzer-Skarke cleave (A,A′), we may also compare Fb
A , F

b
A′ for fixed

b ∈ κn+1.

We now digress into the toric interpretation of Kreuzer-Skarke cleaves. First let us recall
some notation and review some standard facts. Let M and N be dual lattices, and let Σ be
the fan in NR such that the associated toric stack XΣ is the fake weighted projective stack
P(q0, . . . , qn)/G.

For any projective toric stack XΣ associated to a simplicial fan Σ, there is a polytope
∆ ⊂ MR whose lattice points correspond to global sections of the anticanonical bundle
on the stack. One can also construct a fan ΣK ⊂ (N ⊕ Z)R associated to the toric stack
XΣK = totωXΣ

such that the support |ΣK | is a strictly convex cone.
To briefly outline its construction, for any ray ρ ∈ Σ(1), we denote by uρ ∈ N the

corresponding primitive ray generator. Let ρb be the ray in (N ⊕ Z)R generated by the
element (0, 1). The fan ΣK is the collection of cones

σ = Cone ((uρ, 1), (0, 1) | ρ ∈ σ(1)), (σ ∈ Σ)

and their proper faces. By Lemma 5.17 of [FK17], we have that the dual cone to the support
of the fan ΣK is |ΣK |∨ = Cone(∆, 1) ⊂ (M ⊕ Z)R.

Denote by xρ the variable associated to the ray ρ := Cone((uρ, 1)) in ΣK and u the variable
associated to the ray ρb. Recall from Equation (2.16) that the lattice point m := (m, 1) ∈
(∆, 1) corresponds to the global function

xm := u〈(m,1),(0,1)〉
∏
ρ

x〈(m,1),(uρ,1)〉
ρ = u

∏
ρ

x〈m,uρ〉+1
ρ

on the toric variety XΣK . By a minor abuse of notation, we also let xρ correspond to the
variable of XΣ associated to the ray ρ ∈ Σ(1). Here the lattice point m ∈ ∆ corresponds to
the global section of the anticanonical bundle given by

xm :=
∏
ρ

x〈m,uρ〉+1
ρ .

A generalized Kreuzer-Skarke polynomial Fb
A can now be associated to a collection of n+1

lattice points
Ξ = {m0, . . . ,mn} ⊆ (∆, 1) ∩M ⊕ Z

together with the (n+ 1)-tuple b ∈ κn+1 so that the polynomial

Fb
A =

n∑
i=0

bix
mi .

Lemma 5.7. Let q0, ..., qn be a weight sequence and G be a finite group such that the coarse

moduli space of P(q0, . . . , qn)/G is Gorenstein Fano. Then, for each i, the monomial x
d
qi
i is

G-invariant.
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Proof. Since the coarse moduli space of P(q0, . . . , qn)/G is Gorenstein Fano, the anticanonical
polytope ∆ is reflexive, which means that the dual polytope ∆∨ is also a lattice polytope.
Consequently, the support of the fan for the canonical bundle on P(q0, . . . , qn)/G is the cone
over (∆∨, 1). Moreover, the vertices of (∆∨, 1) are the minimal generators (uρ, 1) of the rays
ρ ∈ ΣK(1).

By the dual cone correspondence, if m is a vertex of the anticanonical polytope ∆ then
m = (m, 1) pairs to 0 against a codimension 1 face of Cone(∆∨, 1). Since ∆ is a simplex,
there exists exactly two rays in ΣK whose minimal generators pair positively with m, one of
which is (0, 1). This means that the global function associated with m is

xm = ux〈uρ,m〉+1
ρ

for some ρ ∈ Σ, the vertex m ∈ ∆ is associated to the Fermat monomial

xm = x〈uρ,m〉+1
ρ .

Since the monomial xaii is a section of the anticanonical, it is of degree d hence ai = d
qi

.
�

As a consequence of the lemma, given coefficients b ∈ κn+1, we can define a G-invariant
polynomial, ∑

bix
d
qi
i ,

called the generalized Fermat polynomial.

Proposition 5.8. Fix b ∈ κn+1. Take d =
∑

i qi. Suppose the coarse moduli space of

P(q0, . . . , qn)/G is Gorenstein Fano. Any G-invariant generalized Kreuzer-Skarke polynomi-
als of (weighted) degree d with weights q0, ..., qn is related to the generalized Fermat polynomial∑

bix
d
qi
i

by a sequence of Kreuzer-Skarke cleaves.

Proof. In any Kreuzer-Skarke diagram, a Fermat monomial term corresponds to a point hav-
ing no outgoing arrow. Start with any non-Fermat G-invariant monomial. This corresponds
to a point in the Kreuzer-Skarke diagram with an arrow coming out of it. A Kreuzer-Skarke
cleave which deletes this arrow will give a G-invariant polynomial since, by Lemma 5.7,
the replaced monomial is G-invariant. Delete all arrows in any order to get a sequence of
Kreuzer-Skarke cleaves that relate FA with a Fermat polynomial. �

5.2. Derived Equivalence of BHK Mirrors Related by a Kreuzer-Skarke Cleave.
We now will prove that if FA and FA′ are related by a Kreuzer-Skarke cleave, then their
BHK mirrors are derived equivalent. The method is partially toric and will use results from
Section 5 of [FK17]. We refer the reader there for a more thorough dictionary between the
algebraic and toric language. A technical tool in the proof will be the use of two carefully
chosen regular triangulations which correspond to different chambers for a given geometric
invariant theory problem.

Recall that a Kreuzer-Skarke polynomial

FA :=
n∑
i=0

xmi
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corresponds to a collection of n+ 1 lattice points

Ξ = {m0, . . . ,mn} ⊆ (∆, 1) ∩M ⊕ Z .

For notational clarity, we take mi to be the lattice point associated to the vertex i in the
Kreuzer-Skarke diagram, i.e., xmi is of the form xaii or xaii xj for some j. Now let (A,A′) be a
Kruzer-Skarke cleave. This gives us a new lattice element m′k ∈ (∆, 1)∩ (M ⊕Z) defined by

FA − FA′ = xm
′
k − xmk .

This gives two new point collections denoted by,

Ξ′ := (Ξ\{mk}) ∪ {m′k}.

and

ν := {(0, 1),m0, ...,mn,m
′
k} = Ξ ∪ Ξ′ ∪ {(0, 1)} ⊆ (∆, 1) ∩M ⊕ Z .

Recall the definition of a triangulationof ν (in M ⊕ Z):

Definition 5.9 (§15.2 of [CLS11]). A triangulation of a point collection ν ∈ M ⊕ Z is a
collection of simplices T so that:

(1) Each simplex in T is codimension one in MR ⊕ R with vertices in ν.
(2) The intersection of any two simplices in T is a face of each.
(3) The union of the simplices in T is Conv(v | v ∈ ν).

We can define two triangulations of ν (called T , T ′) as follows. Let

C := {Conv({mi}i∈I , (0, 1)) | I ⊂ Ξ, |I| = n},

i.e., C is the collection of simplices generated by any proper face of the convex hull of n
elements of the set Ξ together with the element (0, 1). Also, let

S := {Conv({ξ}ξ∈I ,m′k)| I ⊆ Ξ, |I| = n,Conv({ξ}ξ∈I ,m′k) ∩ int(Conv(Ξ)) = ∅} .

Note that elements of S need not be n-dimensional, hence we define the subset,

Sn := {T ∈ S | dimT = n}.

The triangulation T is built from C and Sn,

T :=

{
C if m′k ∈ Conv(Ξ)

C ∪ Sn otherwise.

We now define the triangulation T ′ analogously. That is, we define

C ′ := {Conv({mi}i∈I , (0, 1)) | I ⊂ Ξ′, |I| = n},

S ′ := {Conv({ξ}ξ∈I ,mk) | I ⊆ Ξ′, |I| = n,Conv({ξ}ξ∈I ,mk) ∩ int(Conv(Ξ′)) = ∅},

S ′n := {T ∈ S ′ | dimT = n},

T ′ :=

{
C ′ if mk ∈ Conv(Ξ′)

C ′ ∪ S ′n otherwise.

Lemma 5.10. Given a Kreuzer-Skarke cleave (A,A′) associated to anticanonical sections
as above, the corresponding sets of simplices T , T ′ are regular triangulations of ν.
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Proof. By Theorem 4 of [Lee90], all triangulations of point collections of cardinality at most
n + 3 whose corresponding convex hull is n-dimensional are regular. Hence, it is enough to
show that T , T ′ are triangulations. Since T , T ′ are defined completely analogously, we only
provide a proof for T .

To show that T is a triangulation, first, notice that Conv(mi) is an n-dimensional simplex
by using the fact that A = (〈mi, uρj〉)ij is an invertible matrix. Note that

∑
imiri = (0, dT ),

using the fact that the transposed polynomial FAT is quasihomogeneous of degree dT with
positive weights ri so that

∑
i riaij is equal to dT for all j. This implies that (0, 1) is in

the relative interior of Conv(mi). By definition, any t ∈ C is the convex hull of a facet of
Conv(mi) and (0, 1), hence is an n-dimensional simplex. By definition, if t ∈ Sn, then it is
an n-dimensional simplex. All points in the set ν pair with (0, 1) ∈ (N ⊕ Z)R to one, so
they are all in an affine hyperplane of (M ⊕ Z)R, making T satisfy the first condition in
Definition 5.9.

Second, it is easy to check that the intersection of any two simplices in T is given by the
convex hull of the terms in ν they have in common hence a face of both simplices. Checking
this verifies the second condition in Definition 5.9.

Third, we need to check that ⋃
t∈T

t = Conv(ν).

The containment
⋃
t∈T t ⊆ Conv(ν) is trivial. The point (0, 1) is in the relative interior of

the simplex Conv(Ξ), hence ⋃
t∈C

t = Conv(Ξ).

If m′k ∈ Conv(Ξ), then we are done. Otherwise, we note that Conv(ν) is the union of all
lines between points in Conv(Ξ) and m′k. Take a generic point p in Conv(ν)\Conv(Ξ). Take
q to be the point where the line from m′k to p first intersects the boundary of Conv(Ξ). The
point q lies on a facet F of Conv(Ξ) since p is generic. Since q lies on such a facet F then p
is in Conv(F,m′k) which is in Sn. We have now proven an open dense subset of Conv(ν) is
contained in

⋃
t∈T t. Since all t ∈ T are closed, the union is closed, so we have the second

containment
⋃
t∈T t ⊇ Conv(ν). This verifies the third condition of Definition 5.9. �

Given a Kreuzer-Skarke polynomial FA, a group JFA ⊆ G ⊆ SL(FA) and a vector (c,b) ∈
κn+2 we can define a generalized BHK pencil to be the 1-parameter family of hypersurfaces

Zc,b
A,G =

[
{Fb

A + c
∏
xi = 0}

GGm

]
⊆
[
An+1 \{0}
GGm

]
=

P(q0, . . . , qn)

G
.

Any Kreuzer-Skarke cleave (A,A′), by definition, removes an arrow from the diagram for
FA or FA′ . The removal of an arrow always results in the formation of a new chain or Fermat
diagram. This chain or Fermat diagram has its tail at the head of the removed arrow. Let
I be the indexing set which records the ai which this chain passes through.

Theorem 5.11. Suppose (A,A′) is a Kreuzer-Skarke cleave where FA, FA′ define anticanon-
ical hypersurfaces in the fake weighted projective stack P(q0, . . . , qn)/G. If bi 6= 0 for i ∈ I,

then the generalized BHK mirror pencils Zc,b

AT ,GTA
and Zc,b

(A′)T ,GT
A′

are (memberwise) derived

equivalent, i.e.,

Db(cohZc,b

AT ,GTA
) ∼= Db(cohZc,b

(A′)T ,GT
A′

).
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Proof. Recall we can write the two superpotentials FA and FA′ as

Fb
A :=

n∑
i=1

bix
mi and Fb

A′ := bkx
m′k +

∑
i 6=k

bix
mi .

The CY orbifolds Zc,b
A,GA

and Zc,b
A′,GA′

are hypersurfaces in the same toric variety P(q0, . . . , qn)/G

and their BHK mirrors Zc,b

AT ,GTA
and Zc,b

(A′)T ,(GA′ )
T are hypersurfaces in quotients of weighted

projective stacks, say P(r0, . . . , rn)/GT
A and P(r′0, . . . , r

′
n)/(GA′)T .

Caution 5.12. As in Subsection 2.2, the CY-orbifolds Zc,b

AT ,GTA
and Zc,b

(A′)T ,GT
A′

are obtained

by exchanging the roles of M and N . So now we will construct fans in (M ⊕ Z)R whereas
the standard in the toric literature is to construct fans in NR.

Without loss of generality, the Kreuzer-Skarke cleave deletes an arrow, i.e., the monomial

xm
′
k is x

d/qk
k and the monomial xmk is part of a loop or chain. Recall the set of n+ 3 points

ν := {(0, 1),m0, ...,mn,m
′
k} = Ξ ∪ Ξ′ ∪ {(0, 1)} ⊆ (∆, 1) ∩M ⊕ Z

and the two regular triangulations T , T ′ of ν (see Lemma 5.10).
Now, we have an exact sequence

0→ N ⊕ Z→ Zν → coker→ 0

n 7→
∑
ρ∈ν

〈n, ρ〉eρ.

Let

S := Hom(coker,Gm)

and define an action of S on Aν given by the natural inclusion S ↪→ Gν
m. Notice that S

satisfies the quasi-Calabi-Yau condition by Lemma 5.12 of [FK17] since ν lies in the affine
plane (M, 1).

We set yi to be the coordinate of Aν associated to mi, u to be the coordinate associated
to (0, 1), and y′k to be the coordinate associated to m′k. As both T and T ′ are regular
triangulations of ν, we get two irrelevant ideals Ip and Iq (as defined in Equation (4.2))
associated to the regular triangulations T and T ′ respectively.

Now, the generators of the subideals Jp ⊆ Ip and Jq ⊆ Iq as defined in Equation (4.3)
are in 1-1 correspondence to the simplices in C and C ′. Notice that Jp and Jq are non-zero
ideals as C, C ′ are non-empty.

Recall the open sets

Up = Spec(κ[y0, . . . , yn, y
′
i, u]) \ Z(Ip); Uq = Spec(κ[y0, . . . , yn, y

′
i, u]) \ Z(Iq).

We also have the subsets

Vp = Spec(κ[y0, . . . , yn, y
′
i, u]) \ Z(Jp); Vq = Spec(κ[y0, . . . , yn, y

′
i, u]) \ Z(Jq).

The stacks [Vp/Sν ] and [Vq/Sν ] are the toric stacks that correspond to the fans Σp and Σq

which are the collections of cones obtained by coning over the set of simplices in C and
C ′. These correspond to the canonical bundles over the fake weighted projective stacks

P(r0, . . . , rn)/GT
A and P(r′0, . . . , r

′
n)/(GA′)T ) respectively as described at the end of Subsec-

tion 2.2.
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Now introduce the superpotential

w :=
n∑
i=0

biy
uρi + cuy(0,1) =

n∑
i=0

biy
uρi + cuy′ky0 · · · yn.

and define

Zp := Z(w) ⊆ Xp = P(r0, . . . , rn)/GT
A

and

Zq := Z(w) ⊆ Xq = P(r′0, . . . , r
′
n)/GT

A′ .

When we take these zero loci, the polynomial w specializes to only having the variables that
correspond to the elements in Ξ and Ξ′, respectively. By Equations (2.18) and (2.19), it
follows that w specializes to FAT and F(A′)T respectively.

In summary, we have defined the two CY orbifolds

ZAT ,GTA = Zp; Z(A′)T ,GT
A′

= Zq.

The derived equivalence desired now follows if we can use Corollary 4.8. In Lemma 5.13
below, we prove that the hypotheses of Corollary 4.8 hold, finishing the proof. �

Lemma 5.13. Take the superpotential associated to the sum of the monomials corresponding
to the lattice points uρi that are the minimal generators of the rays in the fan Σ:

w :=
n∑
i=0

biy
(uρi ,1) + cu

∏
y(0,1).

If bi 6= 0 for all i ∈ I, then we have the following containment of ideals

Ip ⊆
√
∂w,Jp and Iq ⊆

√
∂w,Jq.

Proof. We use the notation in the previous proof. Take FA to be the sum of β invertible
polynomials of atomic types FA1 , . . . , FAβ . Without loss of generality, we say that mk is in
FA1 . Due to the assumption that FA′ corresponds to having a Fermat term for the variable
xk, we know that FA1 must be either a chain or a loop. We split our proof into these two
cases as they give triangulations of a slightly different nature.

Case 1: FA1 is a chain of length `+ 1.
Since by assumption, xakkk xk+1 is a summand of the atomic part FA1 , we know that k < `.

We now look at the polytope (∆, 1) ⊆ MR × R. We have two triangulations T and T ′ as
above. These triangulations correspond to irrelevant ideals Ip and Iq for some maximal
chambers of the secondary fan corresponding to some characters χp and χq. The subideals
of Ip and Iq generated by taking the monomials associated to the maximal simplices in the
subcollections C ⊆ T and C ′ ⊆ T ′ yield the subideals Jp and Jq as in Equation (4.3), namely,

Jp = 〈y′k(y0, . . . , yn)〉
and

Jq = 〈yk(y0, . . . , yk−1, y
′
k, yk+1, . . . , yn)〉.

The quotients Ip/Jp and Iq/Jq are generated by the monomials associated to the simplices
in the collections S and S ′ that are of maximal dimension. While we need to prove that
Ip ⊆

√
∂w,Jp and Iq ⊆

√
∂w,Jq, we will instead prove something slightly stronger. Namely

Ip ⊆ 〈y′k(y0, . . . , yn), u(yk+1, . . . , y`)〉 ⊆
√
∂w,Jp (5.1)
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and

Iq ⊆ 〈yk(y0, . . . , yk−1, y
′
k, yk+1, . . . , yn), u(yk+1, . . . , y`)〉 ⊆

√
∂w,Jq. (5.2)

We first establish the containments

Ip ⊆ 〈y′k(y0, . . . , yn), u(yk+1, . . . , y`)〉

and

Iq ⊆ 〈yk(y0, . . . , yk−1, y
′
k, yk+1, . . . , yn), u(yk+1, . . . , y`)〉 ,

from Equations (5.1) and (5.2). This is equivalent to showing that the simplices in Sn,S ′n
do not contain (0, 1) and some v ∈ {mk+1, ...,m`}. The fact that each simplex in Sn,S ′n
does not contain (0, 1) and some other element v ∈ ν \ {(0, 1)} is clear, so we now focus on
proving that the v dropped is in the set {mk+1, ...,m`}.

The key observation is that the variables m′k,mk, . . . ,m` all live on the same ` − k − 1
dimensional face of the polytope (∆, 1). In particular, this is the face defined by taking the
intersection of (∆, 1) with the half spaces corresponding to the elements (uρi , 1) for k ≤ i ≤ `,
i.e.,

m′k,mk, . . . ,m` ∈ (∆, 1) ∩
⋂

i/∈{k,...n}

H(uρi ,1).

This implies that one cannot obtain a simplex in S or S ′ whose set of vertices contains the
set {m′k,mk, . . . ,m`}. If m′k is not a vertex, then we have Conv(Ξ) and if mk is not a vertex,
then we have Conv(Ξ′). Neither of these is in T , T ′. This implies the desired containment.

We now establish the containments

〈y′k(y0, . . . , yn), u(yk+1, . . . , y`)〉 ⊆
√
∂w,Jp

and

〈yk(y0, . . . , yk−1, y
′
k, yk+1, . . . , yn), u(yk+1, . . . , y`)〉 ⊆

√
∂w,Jq,

from Equations (5.1) and (5.2).
It suffices to prove that the monomial uyj is in both ideals

√
∂w,Jq and

√
∂w,Jp for

k < j ≤ `.
First, one can describe all of the monomials of w explicitly in terms of the matrix A

y(uρi ,1) =



ya00
0 u if k 6= 0 and i = 0.

ya00
0 (y′0)bu if k = i = 0

yaiii yi−1u if 0 < i ≤ `, i 6= k

yakkk yk−1(y′k)
bu if 0 < k = i∏n

j=`+1 y
aji
j u if i > `.

Note that yj does not divide the monomial y(uρi ,1) whenever 0 ≤ j ≤ ` and i > `.
We now take the partial derivative of w with respect to the variable yk and consider,

yk∂kw = bkakky
akk
k yk−1(y′k)

bu+ bk+1yky
a(k+1)(k+1)

k+1 u+ cuy′k
∏

yi.

The first and third summand are in the ideals Jp,Jq. Therefore ykyk+1u is in the radical

ideals
√
∂w,Jp and

√
∂w,Jq as bk+1 6= 0 by assumption.
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Inductively, we now show that, provided that yj−1yju for k < j < ` is in
√
∂w,Jp and√

∂w,Jq, the monomial yj+1u is as well. We take the partial derivative with respect to yj
of the superpotential w

∂jw = bjyj−1y
ajj−1
j u+ bj+1y

a(j+1)(j+1)

j+1 u+ cuy′k
∏
i 6=j

yi.

The first and third summands are in
√
∂w,Jp and

√
∂w,Jq, consequently yj+1u is as well.

Finally, return to the partial derivative and compute

∂kw = bkakky
akk−1
k yk−1(y′k)

bu+ bk+1y
a(k+1)(k+1)

k+1 u+ cuy′k
∏
i 6=k

yi.

The first and third summands are in
√
∂w,Jp,

√
∂w,Jq therefore yk+1u is as well. This

completes Case 1 as Equations (5.1) and (5.2) are satisfied.
Case 2: FA1 is a loop of length `+ 1.
Similarly, we prove

Ip ⊆ 〈y′0(y0, . . . , yn), u(y1, . . . , y`)〉 ⊆
√
∂w,Jp (5.3)

and
Iq ⊆ 〈y0(y0, . . . , yn), u(y1, . . . , y`)〉 ⊆

√
∂w,Jq. (5.4)

As FA1 is a loop, without loss of generality we set k = 0. We apply a similar strategy to
that of Case 1, but we have that m′0,m0, . . . ,m` all sit in the same face of (∆, 1), namely,

(∆, 1) ∩
n⋂

j=`+1

H(uρj ,1).

The same argument gives the containments

Ip ⊆ 〈y′0(y0, . . . , yn), u(y1, . . . , y`)〉
and

Iq ⊆ 〈y0(y0, . . . , yn), u(y1, . . . , y`)〉
from Equations (5.3) and (5.4).

Again, one can explicitly describe the monomial terms of w in terms of the matrix A,

y(uρi ,1) =


ya00

0 (y′0)a
′
0y`u if i = 0.

yi−1y
aii
i u if 0 < i ≤ `∏n

j=`+1 y
aji
j u if j > `.

We now prove the containments

〈y′0(y0, . . . , yn), u(y1, . . . , y`)〉 ⊆
√
∂w,Jp

and
〈y0(y0, . . . , yn), u(y1, . . . , y`)〉 ⊆

√
∂w,Jq,

from Equations (5.3) and (5.4).
First, take the partial derivative of w with respect to y0,

y0∂0w = b0a00y
a00
0 (y′0)by`u+ b1y0y

a11
1 u+ cuy′0

∏
yi.

As the first and third summands are in both Jp and Jq, we know that y0y1u is in both the

radical ideals
√
∂w,Jp and

√
∂w,Jq. We now can iterate the procedure.
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Given that the monomial yj−1yju is in both the ideals
√
∂w,Jp and

√
∂w,Jq, we can

prove that yj+1u is as well for 0 < j < `. Take the partial derivative with respect to yj,

∂jw = bjajjyj−1y
ajj
j u+ bj+1a(j+1)(j+1)y

a(j+1)(j+1)

j+1 u+ cuy′0
∏
i 6=j

yi

as the first and third summands are in both ideals
√
∂w,Jp and

√
∂w,Jq, we have that the

second summand is as well, hence yj+1u is in both the radical ideals
√
∂w,Jp and

√
∂w,Jq.

Finally, return to the partial derivative at y0,

∂0w = b0a00y
a00−1
0 (y′0)by`u+ b1y

a11
1 u+ cuy′0

∏
i 6=0

yi.

The first and third summands are in
√
∂w,Jp,

√
∂w,Jq therefore y1u is as well. This

completes Case 2 as Equations (5.3) and (5.4) are satisfied. �

Corollary 5.14. Suppose (A,A′) is a Kreuzer-Skarke cleave where FA, FA′ define hypersur-
faces define anticanonical hypersurfaces in the fake weighted projective stack P(q0, . . . , qn)/G.
Then the BHK mirrors ZAT ,GTA and Z(A′)T ,GT

A′
are derived equivalent, i.e.,

Db(cohZAT ,GTA) ∼= Db(cohZ(A′)T ,GT
A′

).

Proof. We set c = 0 and bi = 1 in Theorem 5.11. �

Corollary 5.15. Fix b ∈ (κ∗)n+1, c ∈ κ. Take two polynomials FA and FA′ which define
hypersurfaces in a quotient of a Gorenstein Fano weighted projective stack P(q0, . . . , qn)/G.

Then the generalized BHK mirror pencils Zc,b

AT ,GTA
and Zc,b

(A′)T ,GT
A′

are derived equivalent.

Proof. Since we assume bi 6= 0 for all i, this follows directly from iteratively using Theo-
rem 5.11 to compare both FA and FA′ through a sequence of Kreuzer-Skarke cleaves, which
is guaranteed to exist by Proposition 5.8. �

Remark 5.16. Since Zc,b

AT ,GTA
, Zc,b

(A′)T ,GT
A′

are open substacks of the irreducible component of

the critical locus of w lying on Z(u), it follows that they are birational. In the Gorenstein
Fano case, this immediately recovers Theorem 2.5 in the case of families.

We can now rephrase Seidel and Sheridan’s Homological Mirror Symmetry result for hy-
persurfaces in projective space [Sei03, She15] in the language of Berglund-Hübsch-Krawitz
mirror symmetry. They define the universal Novikov field Λ, to be the field whose elements
are formal sums

∞∑
j=0

cjr
λj

where cj ∈ C, and λj ∈ R is an increasing sequence of real numbers such that

lim
j→∞

λj =∞.

The universal Novikov field is algebraically closed of characteristic zero.
Over the universal Novikov field, we define a Berglund-Hübsch-Krawitz pencil as

Zpencil
A,G :=

[
{x0...xn + rFA = 0}

GGm

]
⊆
[
An+1 \{0}
GGm

]
=

P(q0, . . . , qn)

G
.
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Since Sheridan and Seidel have proven Homological Mirror Symmetry when AT is a Fermat
polynomial, we obtain the following.

Theorem 5.17. Homological Mirror Symmetry holds for Berglund-Hübsch-Krawitz mirror
pencils in projective space over the universal Novikov field.

More precisely, if FA defines a smooth hypersurface in projective space Pn over the univer-
sal Novikov field (in particular G = Zn+1) and n ≥ 3, there is an equivalence of triangulated
categories,

FukZA,G ∼= Db(cohZpencil

AT ,GTA
).

Proof. Set A′ = (n+ 1) Id, G = JA′ = Zn+1 and q0 = ... = qn = 1. We have

FukZA,G = FukZA′,G

= Db(cohZpencil

(A′)T ,GT
A′

)

= Db(cohZpencil

AT ,GTA
).

The first line follows from the fact that ZA,G is symplectomorphic to ZA′,G by Moser’s
theorem. The second line is Theorem 1.3 of [Sei03] in the case n = 3 and Theorem 1.2.7 of
[She15] in the case n ≥ 4. The third line is Corollary 5.15 in the special case bi = 1, c = r,
and κ = Λ. �

Remark 5.18. In the case of elliptic curves (n = 2), a variant of this theorem can be proven
using work of Polishchuk and Zaslow [PZ98].

Remark 5.19. The category FukZA,G is equipped with a Λ-linear structure and the equiva-

lence is Λ-linear after changing the module structure of Db(cohZpencil

AT ,GTA
) by an automorphism

of Λ. See [Sei03, She15] for details. It can then be extended to an equivalence of dg-categories
using Theorem 9.8 of [LO10].

5.3. An Example. In the following example, we will see that our proof extends to families
as well.

Example 5.20. Consider the polynomials FA = x3
0 + x2

1x2 + x3
2 and FA′ = x3

0 + x3
1 + x3

2.
Both carve out cubic curves in P2. Let us take the fan of P2 which is the complete fan in
NR = (Z)2 ⊗ R generated by rays (1, 0), (0, 1) and (−1,−1) and enumerate these rays as
x(1,0) =: x0, x(0,1) =: x1 and x(−1,−1) =: x2 respectively. The canonical bundle of P2 is the
toric variety associated to the fan ΣK which is defined to be the fan with rays generated by
uρ0 = (1, 0, 1), uρ1 = (0, 1, 1) uρ2 = (−1,−1, 1) and uρ3 = (0, 0, 1) and is the star subdivision
along ρ3 of the fan generated by ρ0, ρ1, and ρ2.

The dual cone to |ΣK | is generated by the elements (2,−1, 1), (−1, 2, 1), and (−1,−1, 1).
The polytope ∆ that is associated to P2 is found by looking at the one slice |ΣK |(1) = (∆, 1).
Note that since each lattice point corresponds to a monomial we can look at which lattice
points correspond to monomials that are nonzero in FA and FA′ .

To consider the BHK mirrors, we set

ν := {vτ0 , vτ1 , vτ ′1 , vτ2 , vτ3}
where vτ0 = (2,−1, 1), vτ1 = (−1, 2, 1), vτ ′1 = (−1, 1, 1), vτ2 = (−1,−1, 1) and vτ3 = (0, 0, 1).
We introduce variables for each ray: yi for τi where i ∈ {0, 1, 2}, y′1 for τ ′1 and u for τ3. The
triangulations T , T ′ are pictured in Figure 2.
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Figure 1. The polytope ∆ with lattice points marked by sections of ωP2 .
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Figure 2. The triangulations T , T ′ of ν.

The corresponding irrelevant ideals are

Ip = 〈y1(y0, y
′
1, y2), uy2〉 = 〈y1y0, y1y

′
1, y1y2, uy2〉 and Iq = 〈y′1(y0, y1, y2)〉 = 〈y′1y0, y

′
1y1, y

′
1y2〉,

respectively.
There exists subideals Jp = 〈y1(y0, y

′
1, y2)〉 = 〈y1y0, y1y

′
1, y1y2〉 and Jq = Iq which corre-

spond to the fans over the triangulations in Figure 3. The toric varieties associated to Ξ and
Ξ′ are tot(ωP(2,3,1)) and tot(ωP2 /Z3

) respectively.
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Figure 3. The triangulations Ξ,Ξ′.
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We now need to discuss the superpotential w that is a function on the partial compact-
ifications of these bundles. To do this, we must turn back to the dual cone to Cone(ν).
In this case, the dual cone is just |ΣK | (on a general Gorenstein Fano quotient of weighted
projective space, the dual cone contains |ΣK | with equality if and only if FA or FA′ is a
Fermat polynomial). We draw the support of the dual cone |ΣK |(1) below along with the
functions corresponding to the lattice points in Figure 4.
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Figure 4. Functions corresponding to lattice points in ∆∨.

Now, let

w := c0y
3
0u+ c1y

3
1(y′1)2u+ c2y

′
1y

3
2u+ c3y0y1y

′
1y2u

for some constants ci ∈ κ. We need to check that we have that Ip ⊆
√
∂w,Jp in order to be

able to use Corollary 4.8 (as Iq = Jq this is automatic for the other triangulation). Here,
we compute the partial derivative of w with respect to y′1:

∂y′1w = 2c1y
3
1(y′1)u+ c2y

3
2u+ c3y0y1y2u.

Here we can see that the first and third summands are both in Jp, hence y2u is in
√
∂w,Jp

as long as the constant c2 is nonzero. In other words, one can apply Corollary 4.8 as long as
c2 is nonzero. Applying the framework outlined in Section 4, we get:

Up := A5 \Z(Ip); Uq := A5 \Z(Iq);
Vp := A5 \Z(Jp); Vq := A5 \Z(Jq);
V x
p := A4 \Z(J x

p ); V x
q := A4 \Z(J x

q );

[Vp/S] := tot(ωP(2,3,1)); [Vq/S] := tot(ωP2 /Z3
);

Xp := [V x
p /S] = P(2, 3, 1); Xq := [V x

q /S] = P2 /Z3;

Zp := Z(wp); Zq := Z(wq);

(5.5)

where
wp := c0y

3
0 + c1(y′1)2 + c2y

′
1y

3
2 + c3y0y

′
1y2;

wq := c0y
3
0 + c1y

3
1 + c2y

3
2 + c3y0y1y2.

(5.6)

Then we have the equivalence of categories Db(cohZp) ∼= Db(cohZq).
The special case c0 = c1 = c2 = 1 and c3 = 0 is wp = FAT and wq = F(A′)T , which gives

us the BHK mirrors to ZA and ZA′ . If we take c0 = c1 = c2 = 1 and c3 = λ, we have
pencils. Also, we can take degenerate loci, for example, c2 = 1 and c0 = c1 = c3 = 0 so that
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wp = y′1y
3
2 and wq = y3

2. In general, we have locally-closed BHK mirror families that are
pointwise derived equivalent to one another.
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[BH93] P. Berglund, T. Hübsch. A Generalized Construction of Mirror Manifolds. Nucl.Phys. B393 (1993)
377-391.
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