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Anomalous dynamics of capillary rise in porous media
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The anomalous dynamics of capillary rise in a porous medium discovered experimentally more than a decade
ago [T. Delker et al., Phys. Rev. Lett. 76, 2902 (1996)] is described. The developed theory is based on considering
the principal modes of motion of the menisci that collectively form the wetting front on the Darcy scale. These
modes, which include (i) dynamic wetting mode, (ii) threshold mode, and (iii) interface depinning process,
are incorporated into the boundary conditions for the bulk equations formulated in the regular framework of
continuum mechanics of porous media, thus allowing one to consider a general case of three-dimensional flows.
The developed theory makes it possible to describe all regimes observed in the experiment, with the time spanning
more than four orders of magnitude, and highlights the dominant physical mechanisms at different stages of the

process.
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I. INTRODUCTION

The propagation of the liquid-fluid interfaces through
porous media is central to a wide range of natural phenomena
and industrial applications, with the latter including enhanced
oil recovery, hydrogeology, fuel cells, and carbon dioxide
sequestration, to mention but a few. This topic remains
the subject of intensive research, both experimental and
theoretical, comprehensively reviewed in a number of articles
over the past 40 years [ 1-5]. The main aspects of research have
been the rate of propagation of the wetting front [6-9], the
wetting front’s roughening [10,11] and stability [12], as well
as the related problems of the formation and dynamics of the
pockets of the displaced phase (bubbles, ganglia) left behind
the front [2,13,14]. The first of these aspects is of particular
importance as it ultimately determines the main macroscopic
characteristics of the process in many applications.

As has been discovered experimentally more than a
decade ago by Delker and his co-workers [15], besides the
common situation where a wetting front propagates through
a porous medium broadly in accordance with Washburn’s
model [16], which balances the driving force due to the
(presumed constant) capillary pressure of a meniscus and
viscous resistance as in the Poiseuille-type flow, for some
media, such as porous matrices made of packed spherical
beads, the initial Washburn-type imbibition is followed by a
completely different and in many ways “anomalous” regime.
A representative set of data taken from [15] is shown in
Fig. 1. Similar results have been reported later by Lago and
Araujo [17]. The essence of the discovered effect is that, if the
height & of the capillary rise (measured from some initial level
to remove from consideration the entrance effects) is plotted
against time 7 on the log-log scale (Fig. 1), one can immediately
see two distinct regions. Roughly speaking, for about two
minutes, the liquid climbs 2/3 of its eventual (maximum)
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height A, in the Washburn-type regime after which it takes
many hours for it to advances across the remaining 1/3 of &,
with the wetting front moving in small-amplitude jumps on the
pore scale [17]. The log-log plot of this second regime shows
a clear concave-convex sequence, which indicates that the
dynamics there is more complex than what one would expect
from some power-law fit and the accompanying arguments.
Another intriguing feature of the phenomenon is that /i,y is
determined by the balance of capillarity and gravity, i.e., the
factors that, together with viscous resistance, determine the
dynamics of the Washburn regime, although what looked like
the Washburn regime has been abandoned after a couple of
minutes from the onset of the capillary rise, and for hours the
process is distinctly non-Washburnian.

The experimental data have been discussed qualitatively in
terms of interface pinning and random capillary forces [15,17],
but on the quantitative level the only outcome is that a simple
equation

dh/dt = vo(F/Fr — 1) (1)

expressing the rate of the capillary rise as a function of
a driving force F and a threshold value Fy leads to an
“anomalously large” exponent B [15], so that /& deviates
from the experimental data for small times and unphysically
diverges as time goes to infinity. The dashed line in Fig. 1
corresponds to

h=H.—(H. — h)[1 + At — ;)] P )

that has been deduced from (1) and used in [15]; the values of
the constants H,, hy, A, t, and B are given in [15]. Although
the fitting curve (2) is able to describe only a finite time
span, the general ideas of the interface pinning and random
forces that might depin the interface and allow it to move
further seem fruitful, and a question that arises naturally is
how to embed them into the regular framework of continuum
mechanics of porous media, as opposed to just using ad hoc
semiempirical equations for the wetting front evolution in
a one-dimensional flow. In the following, we address this

©2012 American Physical Society
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FIG. 1. Time dependence of the imbibition height in one-
dimensional capillary rise. Circles: experimental data from [15] for
beads 253 pm in diameter; dashed line: fit considered in [15]; solid
line: present theory.

question on the basis of an earlier developed approach to
the modeling of the wetting front dynamics in porous media
based on considering different modes of motion that menisci
go through on the pore scale and the corresponding technique
of conjugate problems [18]. Then, we will discuss how the
experimental phenomenon in question is seen through other
modeling approaches.

II. MACROSCOPIC (DARCY-SCALE) DESCRIPTION

In the continuum framework, the wetting front 9€2; is a
moving boundary which, together with other boundaries 9€2,,
confines a domain 2 where the Darcy equation

u=—(/wWV(p+pgz) (reQ), 3)

and the continuity equation V - u = 0 for the average velocity
u and pressure p operate. Then, the wetting front evolution
is part of the solution of a properly formulated problem
for these bulk equations. The Darcy equation (3) is written
in the form already accounting for gravity with p being
the density of the liquid, g the gravitational acceleration, z
the coordinate directed against gravity, « the permeability of
the porous matrix, and p the liquid’s viscosity; the coordinates
are represented in terms of the position vector r; hereafter, the
pressure is measured with respect to the (presumed constant)
pressure in the displaced gas.

An appropriate starting point for the modeling is the re-
cently developed approach [18] that gives boundary conditions
for Laplace’s equation for p:

Vip=0 (req), “4)

which follows from the Darcy and continuity equations above
and can be used to replace the latter. The key idea of this
approach is to consider the modes of motion which the
menisci that collectively form the wetting front undergo as
the wetting front propagates. The simplest model formulated
in the framework of this approach accounts for the two main
modes: (i) the wetting mode, where, on the pore scale, the
contact line moves forward, essentially in the Washburn regime
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but accounting for a dynamic, i.e., velocity-dependent, contact
angle 6, and (ii) the threshold mode, where the contact line
gets pinned and the meniscus bends as the pressure on it
increases until the contact angle reaches some threshold value
0, when the meniscus can go back into the wetting mode with
the contact line moving again. This increase of pressure on
the meniscus as the contact line gets pinned is similar to what
one would have on a piston sucking a liquid into a pipe if the
motion of the piston is blocked. For the porous medium, the
maximum possible pressure on the meniscus in the threshold
mode p|yq, is the solution of a conjugate problem [18]

Vp=0 (reQ) n-V(p+pgdse =0, ()

with the boundary condition for p on d€2; being the same as
for p; n is the outward normal to d€2;. Thus, the idea of the
interface pinning is already in the model, used in formulating
the boundary conditions on the wetting front that we will
recapitulate below, and in this work we consider how the model
can be generalized to incorporate the idea of random forces
that could lead to depinning of the interface and describe the
observed features of the phenomenon mentioned earlier.

On the moving wetting front, the kinematic and dynamic
boundary conditions for (4) have the form

f B
Sy tuvr=0, (©6)

p=Aipi+Ap (red), @)

where for a one-dimensional capillary rise f(r,?) =z — h(?),
p1, p» are the averaged pressures and A, A, are the spatiotem-
porally averaged fractions of the unit area of the free surface
corresponding to the two modes of motion (A + A, = 1). For
the wetting mode, one has

p1 = —20 cosb,/a, (8)

where o is the liquid-gas surface tension, a is the effective
radius of the capillary, and the dependence of the dynamic
contact angle 6; on the meniscus speed i, is given by [18,19]

12
u [14 (1 - p,) cosb;](cos 6, — cos 6,)> / ©
4(cos 0 + B)(cos B, + B) ’

Ucl

where B = (1 — pfe)’l[l =+ p1,10(84)], 6; is the static contact
angle,

inf, — 0y cos b s(1+4ap)\ '
o6y = Sim0a = 0a cos UL_Z:(W)

sinf; cos@; — 6,
is the characteristic speed associated with the parameters
that the “additional” physics of wetting brings in to resolve
the well-known “moving contact-line problem” [19-21], and
00> Ple» @, B, ¥, T are material constants characterizing the
contacting media, the values of which can be found elsewhere
[19,22].

In the threshold mode, the contact line gets pinned and the
meniscus, experiencing an increase in pressure on it, bends so
that the contact angle varies from 6,, i.e., the value with which
the meniscus arrives at the threshold mode, to 6,, which is the
value at which the meniscus “breaks through” the threshold
and the process goes back to the wetting mode. From the
dynamics of this type of motion, under the assumption that the
meniscus retains the shape of a spherical cap with its radius
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varying as the meniscus bends, one has that [18]

uy = aJ@)T™", (10)
20 Pa
pr=P— — | =— +cosby | J(6y), an
ulT 20
where
P =p )
Plag, (12)

J(6y) = 1tan b_xm —+—1tan3 o _m\]"
CT27\274) e 2 4/,

[f ]2 = f(b) — f(a), and the time T that the meniscus spends
in the threshold mode is given by

T =1 (0,29
- 2 dazo_
P P
=au;' (22 4 costy ) 1 (60 =—). (13)
20 20

Pa & do
I6,— | = - .
20 o, (14+3sin6)’[Pa/(20)+ cosh]

For a one-dimensional capillary rise, as follows from (5), the
stagnation pressure plyq, is given simply by plsq, = po —
pgh(t), where py is the prescribed pressure at z = 0.

Finally, the velocity of the wetting front as a whole, u, =
n - ulyq,, is given by an expression

up, = Ay + Asuz, (14)

which is similar to (7). For the menisci intermittently going
through the wetting and threshold modes as the wetting front
propagates, the coefficients A; and A, can be viewed as
reflecting the fraction of the time spent in each mode as the
meniscus travels over the length of averaging that introduces
the Darcy scale (or, equivalently, the fraction of the interfacial
area corresponding to each mode of motion over the time
interval of averaging that introduces the Darcy time scale),
i.e., the spatiotemporal averages we mentioned earlier. They
are given by [18]

S1uyp SaoUq
Al=—————, A= —————, (15)
Soup + siup Souyp + siup
where
15 9 _9* 2 09
51(64.6:) = {Sm b6 <0 S2=1-s, (6
£ * ’

and s19 (<1) is a characteristic of the porous matrix. Then,
as should be expected, the slowest (controlling) mode of
motion makes a greater contribution to the average pressure
and velocity at the wetting front, and if the velocity u;
corresponding to the ith mode reaches zero, one will have
A; = 1 and the pressure at the wetting front, that is now at
rest, will become equal to p;. Thus, the wetting front will
stop propagating in two cases: (a) u; = 0 and hence 6; = 6;,
which means that the meniscus has reached its equilibrium
state corresponding to the maximum imbibition height /p,x,
and (b) u, = 0 so that the wetting front still has a capacity to
propagate further but the contact line became pinned (threshold
mode) and the pressure that mounts on the meniscus in this
case, even when it reaches its maximum possible value p|yq,,
is insufficient to push the meniscus through. Mathematically,
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in the last case, we have that p|yq,, which goes down as &
increases, becomes equal to p, = —20 cos 6, /a, and hence is
unable to make the contact angle greater than 6,, which would
allow the meniscus to resume its motion in the wetting mode:
in this case, I[6,;, Pa/(20)] and hence the time T go to infinity.
The height corresponding to this last case depends only on 6,,
and the meniscus reaches it in a finite time [18].

III. SUBCRITICAL INTERFACE DEPINNING

It is convenient to introduce the “stagnation” contact
angle  corresponding to the stagnation pressure jlyq, by
0 = arccos[— plyq,a/(20)]. Then, if § > 6, the wetting front
has the potential to propagate, but if at the same time § < 6,
the stagnation pressure p|yq, is unable to push the meniscus
through the threshold mode. In a sense, 6, — @ can be viewed
as a quantitative measure of the potential barrier that has to
be overcome to get the meniscus back into the wetting mode
when p|yq, is “subcritical,” i.e., less than p,, and hence unable
to push the meniscus through the threshold.

Importantly, since, until the wetting front reaches its
equilibrium position at the maximum height, at every moment
individual menisci are not in the same mode of motion (and,
for the threshold motion, not even in the same stage of it),
the Darcy-scale pressures we are considering, including the
stagnation pressure plyq,, represent average values, whereas
on the pore scale one also has pressure fluctuations due
to mutual influences of menisci. These fluctuations are
unimportant when the stagnation pressure p|yq, is capable of
pushing the meniscus through the threshold mode. However,
as plaq, goes down to p,, the time T needed to overcome the
threshold increases, so that, when it becomes large enough, it
is the fluctuations that increasingly become the mechanism of
depinning, and when @ < 6, it is only the random fluctuations
that can depin the menisci.

The simplest way of accounting for the subcritical depin-
ning due to random fluctuations as this mechanism takes over
from the “regular” depinning due to the stagnation pressure is
to assume that, once 7, becomes greater than a certain value
T., it is these random factors that will depin the interface
and determine the time it stays in the threshold mode. For
the regular stagnation pressure plyq,, one has that 7, — oo
as plag, = p» and plye, is no longer able to push the
meniscus through when plyq, < p.«. The probability of the
random factors depinning the interface should be expected
to go down as p, — plag, (or equivalently 6, — ) increases.
The simplest way of generalizing the model to incorporate
the above scenario mathematically is to replace (13) and (12),
respectively, with

T — Tz(ed,aﬁzl%) i
T, + k(O — O

if Th(plye) < Ty,

it Ta(plae,) > Ty,
p|: if Th(pl|; < T,

p_ {Pbszl : 2(lj|as2]) i (18)
P+ it Ta(plae,) > Ty,

amn

where p, is determined by T»(py+)=T;, and 60 =
arccos[—pya/(20)]. Since T, rises steeply only when 0 is
close to 6,, in practice one has that 6, =~ 6, and p; =~ p,.
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Now, we have a closed model, which, unlike ad hoc
formulas for one-dimensional propagation of the wetting front,
is applicable for a general case of three-dimensional flows. In
order to describe a particular flow involving a moving wetting
front, one has to solve Laplace’s equation (4) for p in €2, the
boundary 9€2; of which evolves according to (6), where u
is given by (3), subject to the dynamic condition (7), where
equations (8)—(11) and (14)—(18) close the formulation and
Plag, is the solution of the conjugate problem (5); the boundary
conditions on 92, for both p and p are the same and, together
with the initial shape of €2, they specify a particular problem.

In the case of a one-dimensional capillary rise, Laplace’s
equations for p and p give that these are linear functions of z,
and Eqgs. (3), (4), and (6) yield

dh  «k [ po— p(h,t)
=L (R ),
which together with the algebraic equations (7), where p|yq, =
p(h,t), (8)—(11) and (14), where u, = dh/dt, (15)—(18), with
Plag, = po — pgh as the solution of the conjugate problem,
form a closed system for h, p(h,t), p1, 64, Uy, ua, pa, Ay, Aa,
s1, and s,. The results of comparing the numerical solution
corresponding to the experimental flow conditions of [15]
with the data are shown in Fig. 1. As one can see, the solid
curve representing the computed solution describes the data
very well over the whole time period spanning more than
four orders of magnitude. The theoretical curve also levels off
as t — oo, indicating that the capillary rise does eventually
come to a halt. Comparison of the theory with all four sets of
experimental data from [15] is shown in Fig. 2. (The dashed
line in this figure is used to indicate that for the beads’ diameter
of 510 um, strictly speaking, the theory is used outside its
limits of applicability as the whole advancement of the wetting
front is less than 40 beads’ diameters, so that it is difficult to
talk about the separation of scales required for the continuum
mechanics approach to work. Indeed, for this approach to be
applicable, there should exist an intermediate scale much larger
than the pore size and at the same time much smaller than the
macroscopic length scale on which the flow is described. In
[ H‘

20 | \HHH‘ (N
Z(cm)

10 — —
9 - -
8 - -
7 4 ,
6 - = -
5 | Iy =
4 -

t(s)
3 I \HHH‘ I \HHH‘ I \HHH‘ I \HHH‘ T TTTTT
10° 10' 10 108 10* 10°

FIG. 2. All four experimental sets from [15] for beads’ diameters
180 pum (v), 253 um (o), 359 um (A), and 510 um (). The
corresponding theoretical curves are given as solid lines for the first
three sets of data and as a dashed line for the last.
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the case of 510-um beads, “much larger” and “much smaller”
would mean six times larger or smaller, which is clearly not
sufficient to ensure acceptable accuracy.)

It is noteworthy that, although the initial regime where
the curve in Fig. 1 rises steeply looks Washburn-like, it
actually involves both the wetting and the threshold modes of
motion. As in [18], the presence of the threshold-overcoming
motion becomes pronounced only when % climbs close to
he = (po — px)/(pg), i.e., when p becomes close to p, or, in
other words, @ close to 6. For the results presented in Fig. 1,
0. = 67°, 0, = 0°, 510 = 0.7, nUq/(kpg) = 10%, pi, = 0.6,
T,/Ty=3, k/Ty =4 x 10°, where Ty = 20u/((pg)*ax),
and it is 6y, 0,, T4 /Ty, and k/Tp that are most important.
Since in the experiment, as described in [15], the bottom
of the test section was located approximately 4 cm above
the bottom of the porous sample, we have to start the
calculations from the bottom of the sample with pg = pgZ;,;,
Zini = 4 cm, and, to compare theory with the data, measure
the time from the moment the wetting front reaches Z;,;.
To describe the data in Fig. 2, only a variation of 6, and
K = k/ T() is required: 5*130 = 640, 9*253 = 670, 9*359 = 780;
K3s9 = 3Kas3 = 12K 59, K130 = 10°.

It is worth mentioning that, although in the model we
represent capillary effects in the pores using the capillary
pressure and viscous resistance corresponding to an “effective”
circular cross section, whereas in the experiment with the
porous matrix made of spherical beads neither the “chambers”
nor the “throats” of the porous medium had circular cross
sections, no adjustment of the results was required: we used
the radius of the bead as a in the model with no subsequent
calibration of the time and length scales. This shows that
a representative way of modeling the porous medium, as
opposed to much more difficult way of incorporating into a
model the exact porous structure determined via elaborate and
expensive experiments, allows one to incorporate all the main
features of the process on the pore scale, including the actual
physics of dynamic wetting, and obtain good results for the
flow on the Darcy scale.

IV. DISCUSSION

It is instructive to look at the obtained theoretical result
and the experiment it addresses from the viewpoint of the
different modeling approaches used to describe two-phase
flows in porous media. These approaches broadly fall into two
general classes: representative and simulative. They are not
antagonistic as, in theory, if the same pore-scale physics and
the same characteristics of the porous medium are accounted
for in the models formulated in the framework of each of
these approaches, then the results produced by these models
are expected to converge and describe the same macroscopic
behavior of the wetting front.

The present model has been developed in the framework of
the representative approach, where the equations and boundary
conditions are formulated on the Darcy scale, i.e., the scale
implying that the continuum limit has already been taken,
and the properties of the porous matrix are represented in
terms of the permeability coefficient (or tensor, if the porous
medium is anisotropic), effective size of the pores (or the
corresponding distribution), effective threshold angles, etc.
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Importantly, since the pore-scale wetting process is modeled
realistically, with the velocity (as well as material) dependence
of the dynamic contact angle, the model captures naturally that
the wetting front has the capacity to move forward when the
contact angle is greater than the static value 6y, i.e., when the
interface has not reached its maximum height determined by
the balance of capillary and gravity forces. In other words,
as the meniscus gets depinned, the fact that the contact angle
differs from its equilibrium value 6; and that the dynamic
contact angle is velocity dependent act as a mechanism that
moves the interface until the dynamic contact angle goes down
to 6, and the interface reaches its maximum height.

The subcritical depinning mechanism that comes into action
when plyq, < p« is formulated implicitly, in terms of the
“potential barrier” 6, — 0 and the “waiting time” T, + k(6 —
0)? required for the random fluctuations to overcome it. Both
of these characteristics are Darcy-scale parameters. A natural
way to develop the model further would be to remove the direct
link between the potential barrier and the waiting time and
instead explicitly introduce the field of pressure fluctuations
depending on the flow rate and properties of the porous matrix.
Then, this pressure fluctuation field becomes an addition to
Plag, as a breakthrough factor. For this explicitly introduced
mechanism, the results obtained in this work would serve as a
guideline, indicating one of the outcomes that this mechanism
should produce.

The implicit mechanism of the subcritical interface de-
pinning on the Darcy scale that we have introduced can
be viewed as a macroscopic manifestation of the dynamics
of avalanches [23]. Avalanches qualitatively stem from the
same physics as the one considered here and, in a sense, can
be regarded as a medium-scale phenomenon, i.e., between
the pore scale and the Darcy scale. The idea of linking the
Darcy-scale subcritical interface depinning and the dynamics
of avalanches agrees with the fact that the avalanche-type
events have been observed experimentally by Lago and
Araujo [17] in the anomalous regime of the wetting front
propagation. The avalanche behavior of the wetting fronts is
currently being investigated in terms of scaling laws [24], and
the present theory, with its explicit accounting for different
pressures corresponding to different modes of motion and their
spatiotemporal weights, offers a macroscopic framework for
the mathematical description of these medium-scale events.
Then, the subcritical interface depinning in the anomalous
regime of the wetting front propagation could be viewed as
the macroscopic outcome of a succession of avalanches with
decreasing probabilities.

The simulative approach to the modeling of two-phase
flows in porous media is based on replacing the actual porous
matrix with a regular network of chambers and capillary throats
connecting them [25-29]. In order to partially compensate the
anisotropy inherent in this approach where, as is the case in
most works, the chambers are placed at the nodes of a regular
lattice, the sizes of both chambers and throats are made random
following certain prescribed distributions. The macroscopic
(Darcy-scale) characteristics of the process are obtained as a
result of the appropriate averaging. The simulative approach
has the appeal of what looks like a numerical experiment
offering a transparent link between the pore-scale and the
Darcy-scale dynamics, but, unlike the case of molecular-
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dynamics simulations with regard to macroscopic fluid me-
chanics, this appeal is moderated by a number of factors,
notably the fact that the actual dynamics on the pore scale is not
computed. Instead, it is essentially represented in terms of a
Washburn-type dynamics, thus bypassing the moving contact-
line problem [20] and the associated physics of dynamic
wetting [21,30]. It is also important to note that the rigid
geometric structure of the network simulating the actual porous
matrix imposes unavoidable limitations on the macroscopic
transport properties of the porous medium that the network
purports to simulate. By contrast, the representative approach
can introduce any tensorial and topological characteristics of
the porous medium that the corresponding model requires.
Having in mind the above shortcomings of the representative
approach, it is interesting to look at what it can produce with re-
gard to the anomalous regime of the wetting front propagation.

Bijeljic et al. [29] performed the network modeling of the
capillary rise and compared their results to the truncated set
of data taken from Lago and Araujo [17], with the original
experiment by Delker et al. [15] mentioned but not used for
comparison with the simulations. The simulations agree well
with the experimental data for the times # < 4 x 10* s after
which the simulated height levels off. However, when one takes
the full set of experimental data reported by Lago and Araujo,
i.e., for the times up to r =2 x 10° s, one can immediately
see that the wetting front continues to climb. It is also worth
noting that the simulated height-versus-time curve in the
log-log coordinates is convex, with the slope monotonically
decreasing, whereas, as one can see in Fig. 1, the experimental
data show a distinct concave-convex sequence, i.e., after
an initial decrease as the anomalous regime is entered the
slope picks up again until, finally, the data start to level off,
asymptotically approaching the maximum height. The same
trend was observed earlier by Diggins et al. [31], the data
of which are given in Fig. 12 of Lago and Araujo [17].
This figure in [17] also clearly shows that, although the
time dependence of the height of the capillary rise following
from the Washburn-type interplay of capillarity, viscosity and
gravity can describe the “regular” regime and be fitted to the
initial stage of the “anomalous” regime, it is nowhere near a
satisfactory description of the latter once the full set of data are
considered, as the height-versus-time curve in the logarithmic
coordinates picks up again and climbs much higher than the
above fitting predicts.

From the viewpoint of the theory developed in this work,
the main deficiency of the currently implemented network
models is that they essentially deal only with one (wetting)
mode of motion of the menisci. Then, setting aside the minor
(in comparison with the effects considered here) variations
introduced by randomizing the size distributions, these models
broadly reproduce the Washburn-type dynamics of the wetting
front. As a result, once gravity starts to balance capillarity as
the driving force, the wetting front slows down and comes to a
halt. Essentially, the fitting of the simulated curve to the experi-
mental data for the very beginning of the anomalous regime is
produced by adjusting the maximum height of the capillary
rise, whereas, as we pointed out in the Introduction, the
intriguing feature of the anomalous regime is precisely the fact
that it lies in-between the normal Washburnian regime of the
imbibition and the maximum height that is also Washburnian.
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The capillary network approach can be modified in a
relatively straightforward way to account for the threshold
mode of motion. The main element in this modification should
be equipping the chambers with threshold characteristics, such
as the pressure required to overcome the threshold, which,
besides material properties, can depend on the number of
menisci reaching the same chamber. The implementation of
the subcritical depinning is more challenging as this would
require accounting for fluctuations of pressure experienced
by the liquid, i.e., replacing the Washburn-type models of
the flow in the throats by an essentially unsteady motion that
takes into account the unsteady processes in the neighboring
chambers and throats. An intermediate check for such a model
could be its ability to produce avalanches as the medium-scale
phenomena that on the Darcy scale result in the anomalous
regime of imbibition.

V. CONCLUSION

The developed theory shows that the approach to the
modeling of the propagation of wetting fronts in porous media

PHYSICAL REVIEW E 86, 016306 (2012)

based on considering specific modes of motion that the menisci
of the pore scale undergo as the front propagates allows one
to incorporate critical phenomena and adequately describe
experimental data for the anomalous regime of imbibition.
Accounting for the random pore-scale forces macroscopically,
in terms of the potential barriers and the corresponding times
required for the random forces to overcome these barriers,
allowed the simplest model formulated in the framework
of the approach to describe the whole experimental curve,
from the Washburn regime to the (also Washburn) maximum
imbibition height with the anomalous regime in-between.
The proposed theory could be used as a guide for the
porous network modeling and the study of the anomalous
imbibition regime as the manifestation of the dynamics of
avalanches.
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