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Brief Communications

Disrupting Reconsolidation of Conditioned Withdrawal
Memories in the Basolateral Amygdala Reduces Suppression
of Heroin Seeking in Rats

Kim G. C. Hellemans, Barry J. Everitt, and Jonathan L. C. Lee
Department of Experimental Psychology, University of Cambridge, Cambridge, CB2 3EB, United Kingdom

Recent data from our laboratory have demonstrated that appetitive drug memories undergo protein synthesis-dependent reconsolida-
tion in the basolateral amygdala (BLA), an area important in the formation of emotional memories. We here investigated the importance
of the BLA in the reconsolidation of opiate conditioned withdrawal memories. Rats with bilateral cannulas implanted in the BLA were
trained to respond for heroin (0.12 mg/kg, i.v.) under a seeking–taking schedule, which required responding on a seeking lever to gain the
opportunity to self-administer heroin by a single response on a taking lever. After induction of opiate dependence with subcutaneously
implanted, heroin-filled osmotic minipumps (3 mg � kg �1 � d �1 heroin), rats received five consecutive pairings of a conditioned stimulus
(CS) (tone, light, and odor compound) paired with naloxone (0.10 mg/kg, s.c.)-precipitated withdrawal. We replicated our previous
findings that heroin seeking is suppressed in the presence of the withdrawal-associated CS. However, infusion of Zif268 antisense
oligodeoxynucleotide into the BLA before reactivation of the CS–withdrawal association abolished this conditioned suppression in a
reactivation-dependent manner. We also report that reconsolidation of CS–withdrawal memories upregulates Zif268 protein in the
basolateral but not central nucleus of the amygdala and that Zif268 knockdown occurs selectively in the BLA. These results demonstrate
that drug withdrawal memories undergo protein synthesis-dependent reconsolidation in the BLA and suggest a common mechanism for
the reconsolidation of both appetitive and aversive drug memories.
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Introduction
The reactivation of drug withdrawal memories by cues or con-
texts previously associated with withdrawal can motivate com-
pulsive drug seeking in abstinent opiate addicts (Wikler, 1973;
Childress et al., 1986). Wikler (1948) postulated that the reacti-
vation of drug withdrawal memories occurred after repeated pav-
lovian pairing of stimuli associated with opiate withdrawal, lead-
ing to a state of “conditioned withdrawal.” One prediction of this
theory is that reexposure to stimuli previously paired with with-
drawal should increase opiate seeking to relieve the negative af-
fective state induced by conditioned withdrawal. Nonetheless,
this has been difficult to demonstrate in experimental models,
because stimuli paired with the experience of withdrawal do not
increase (Wikler and Pescor, 1967; Miller et al., 1979) and may
even suppress (Hellemans et al., 2006) drug seeking in opiate-
dependent animals.

The neural mechanisms underlying the formation and expres-

sion of conditioned opiate withdrawal involve the amygdala
(Schulteis et al., 2000; Frenois et al., 2005). One way to assess
whether amygdala-dependent conditioned stimulus (CS)– drug
withdrawal associations are similar to other CS– unconditioned
stimulus (US) memories is to investigate the propensity of CS–
withdrawal memories to undergo reconsolidation in the basolat-
eral amygdala (BLA). According to current reconsolidation the-
ories, reactivation of a consolidated memory renders it once
again vulnerable to amnestic treatment (Misanin et al., 1968),
and the so-called reconsolidation of this old memory requires de
novo protein synthesis (Nader et al., 2000; Nader, 2006). Studies
from our laboratory have shown that appetitive drug memories
undergo protein synthesis-dependent reconsolidation in the
BLA. Intra-BLA infusions of antisense oligodeoxynucleotides
(ASOs) targeting the immediate-early gene Zif268 before mem-
ory reactivation of a CS– cocaine or CS–fear association resulted
in a significant reactivation-dependent reconsolidation deficit
(Lee et al., 2005) and prevented cue-maintained cocaine seeking
and cue-induced relapse (Lee et al., 2006). Expression of Zif268 is
upregulated in the BLA after reexposure to CSs previously paired
with both cocaine (Thomas et al., 2003) and footshock (Hall et
al., 2001), and intra-BLA Zif268 ASO knocks down Zif268 pro-
tein in the BLA after reexposure to a CS paired with footshock
(Lee et al., 2005). Thus, the synthesis of Zif268 in the BLA is
required for the reconsolidation of both fear- and drug-
associated memories.
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The purpose of the study was to investigate whether aversive
drug memories (specifically, cues associated with opiate with-
drawal) also undergo protein synthesis-dependent reconsolida-
tion in the BLA. Rats were trained to respond for heroin using a
well established seeking–taking task (Olmstead et al., 2000), and
then withdrawal precipitated by low dose naloxone injection was
paired with a discrete CS using the same conditioned suppression
protocol used in our previous study (Hellemans et al., 2006). The
involvement of the BLA in the reconsolidation of CS-elicited
withdrawal memories was assessed by infusing Zif268 ASO di-
rectly into the BLA before memory reactivation, and conditioned
suppression of heroin seeking was measured in a subsequent test
session. To further assess the importance of Zif268 protein syn-
thesis in the BLA on reconsolidation of CS–withdrawal memo-
ries, Zif268 upregulation and knockdown were measured in the
BLA and central nucleus of the amygdala (CeN) using Western
blotting analysis.

Materials and Methods
Self-administration training and dependence induction. Adult male Lister
Hooded rats were surgically implanted with both a single indwelling
intravenous catheter and bilateral BLA cannulas and, after recovery, were
initially trained to respond for heroin (0.12 mg/kg over 7.3 s) under a
fixed ratio (FR) 1 schedule of reinforcement in daily, 3 h sessions. After
5 d, rats were then introduced to the multiple heterogeneous chain [tan-
dem FR 1 (random interval 120 s) FR 1] timeout schedule, which, for
brevity, we refer to as a seeking–taking chain schedule. After stable re-
sponding, rats were implanted subcutaneously with osmotic minipumps
(Charles River, Kent, UK) that infused heroin at a continuous rate (3
mg � kg �1 � d �1) for up to 4 weeks. A full description of the methods is
available in the supplemental data (available at www.jneurosci.org as
supplemental material).

Withdrawal conditioning. Conditioning of an intermittent tone, light,
and odor compound stimulus with the naloxone-precipitated with-
drawal state was performed over 5 consecutive days. For each session, rats
were connected to the tether inside the chamber and then presented with
the intermittent tone (75 db, 100 kHz), flashing light (30 W), and distinct
odor (sandalwood essence; The Body Shop, Littlehampton, West Sussex,
UK) for 2 min. Rats were then removed from the chamber, injected with
naloxone (0.1 mg/kg, s.c.), and then immediately returned to the cham-
ber for an additional 15 min. Neither the seeking nor taking lever was
present in the chamber at this time.

Experiment 1. To replicate previous findings (Hellemans et al., 2006)
and ensure that animals could learn the CS–US relationship after BLA
cannula implantation [cannulation of the BLA can sometimes have non-
specific effects on aversive learning and memory (Fendt, 2001)], animals
were tested for conditioned suppression of heroin seeking in extinction
(i.e., heroin was not available). During these sessions, animals were
placed in the operant chamber for 2 min before receiving an injection of
saline (1 ml/kg); they were then returned to the operant chamber for an
additional 15 min. During these sessions, the seeking lever was present in
the chamber, but the taking lever was always retracted. Half of the rats in
each group received the tone, light, and odor CS before and throughout
the lever presentation, and half received no CS. Animals were then re-
trained on the seeking–taking chain schedule for two consecutive ses-
sions, and then the presentation of the CS was reversed between animals
(i.e., animals that did not receive the CS then received a test session with
the CS). Sessions lasted 15 min, and the total number of responses on the
heroin-seeking lever was recorded.

Experiment 2. After the initial extinction testing, animals were re-
implanted with osmostic minipumps, and they then received 5 addi-
tional consecutive days of withdrawal conditioning (i.e., naloxone–CS
pairings). The following day, rats received intra-BLA infusions of either
Zif268 ASOs (n � 8) or scrambled missense sequences (MSOs) (n � 9).
Ninety minutes later, the CS–withdrawal association was reactivated in a
single 2 min session, in which rats were reexposed continuously to the

CS. The next day, animals were tested for heroin seeking in the presence
and absence of the CS in extinction sessions as described above.

Experiment 3. In a separate group of rats, reactivation-dependent
disruption of reconsolidation was tested in animals that were not
reactivated after Zif268 ASO infusion. Animals were trained, im-
planted with minipumps, subjected to the withdrawal conditioning
procedure, and infused with Zif268 ASOs (n � 8) or MSOs (n � 9) as
described above. However, groups did not receive a reactivation ses-
sion but instead were returned to their home cage after infusions. The
following day, animals were tested for CS suppression in extinction as
described above.

Histological and Western blotting procedures. At the end of the experi-
ment, rats from experiments 1 and 2 were perfused with paraformalde-
hyde, and their brains were extracted and cut using a cryostat to produce
60 �m coronal sections. Slices were stained using cresyl violet, and accu-
rate cannula placement was assessed using light microscopy. Results
showed 17 rats with accurate placements.

Rats from experiment 3 were reconditioned for subsequent analysis of
Zif268 protein levels after CS reexposure and Zif268 ASO infusion. Rats
were split into four groups:)1) non-reactivated home cage control (n �
4); (2) reactivated with no infusion (n � 4); (3) reactivated after Zif268
MSO infusion (n � 4); or (4) reactivated after Zif268 ASOs (n � 5). After
CS withdrawal reactivation or non-reactivation, rats were killed by car-
bon dioxide inhalation. A full description of the Western blotting proce-
dure is in the supplemental data (available at www.jneurosci.org as sup-
plemental material).

Statistics. A full description of the statistical analyses can be found at in
the supplemental data (available at www.jneurosci.org as supplemental
material).

Results
All rats included in the behavioral analyses had cannulas located
bilaterally in the BLA (Fig. 1).

Figure 2 shows that Zif268 ASOs infused into the BLA resulted
in a significant, reactivation-dependent impairment in the CS
suppression of heroin seeking (reactivation � infusion interac-
tion, F(2,45) � 7.87; p � 0.05). Planned comparisons between
pre-reactivation and post-reactivation conditions revealed a sig-
nificant reactivation � infusion interaction (F(1,34) � 9.09; p �
0.05) and a significant main effect of infusion (F(1,34) � 11.56; p �
0.05). Post hoc analyses revealed that, whereas rats to be infused
with ASOs or MSOs showed equivalent suppression of heroin
seeking in the presence of the CS (pre-reactivation), infusion of
Zif268 ASOs before reactivation with the CS paired previously
with naloxone-precipitated withdrawal significantly impaired
subsequent conditioned suppression (post-reactivation; p �
0.05). Moreover, a single sample t test revealed that the suppres-
sion ratio in ASO-infused animals in the post-reactivation con-
dition was not significantly different from 0.5 (t(7) � �0.41; p �
0.35, one-tailed), further demonstrating that ASO-infused ani-
mals were not suppressed in the presence of the CS. Although
MSO-infused rats were significantly more suppressed post-
reactivation compared with pre-reactivation ( p � 0.05), this is
likely attributable to the fact that animals in the post-
reactivation condition received an additional five CS–with-
drawal pairings before infusion and testing. Importantly,
planned comparisons between post-reactivation and non-
reactivated groups revealed a significant reactivation � infu-
sion interaction (F(1,34) � 20.04; p � 0.05); post hoc analyses
indicated that this difference was attributable to the signifi-
cant increase in suppression of heroin seeking in the non-
reactivated ASO group compared with ASO-infused animals
in the post-reactivation condition ( p � 0.05). Also, rats that
received ASO infusions in the non-reactivated control group
did not differ from MSO-infused controls ( p � 0.05).
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Reexposure to the CS previously paired with naloxone-
precipitated withdrawal upregulated Zif268 protein specifi-
cally in the BLA (Fig. 3A). Microdissected BLA and CeN sam-
ples were separated on 7.5% Tris-HCl gels, and Zif268 protein
levels were determined by Western blot analysis. Loading vari-
ation was corrected by normalizing the Zif268 amount accord-
ing to the amount of �-actin in each sample (for additional
details, see supplemental data, available at www.jneurosci.org
as supplemental material). This analysis revealed a significant
increase in Zif268 protein in the BLA (F(1,6) � 11.82; p � 0.02)
but not in the CeN (F(1,6) � 0.043; p � 0.84) for rats reexposed
to the CS compared with non-reexposed controls. However,
infusion of Zif268 ASOs into the BLA before CS reexposure
attenuated this increase in Zif268 protein (Fig. 3B). Zif268
ASOs resulted in a 20% knockdown in the BLA (F(1,7) � 10.82;
p � 0.02) but had no effect on Zif268 protein levels in the CeN
(F(1,6) � 0.161; p � 0.70).

Discussion
The results of the present experiments demonstrate that aversive
drug memories undergo protein synthesis-dependent reconsoli-
dation in the amygdala in a manner similar to appetitive drug
memories. Specifically, we show that intra-BLA Zif268 ASO in-
fusions before a brief period of memory reactivation through
reexposure to a CS associated with opiate withdrawal abolishes
conditioned suppression of heroin seeking measured in a subse-
quent test session. This finding was critically dependent on mem-
ory reactivation with the withdrawal-associated CS, because non-
reactivated rats infused with Zif268 ASO showed no impairment.
Moreover, Western blotting analysis showed that Zif268 is up-
regulated in the BLA, but not CeN, after memory reactivation
through reexposure to the withdrawal–paired CS, and intra-BLA
Zif268 ASO infusion before memory reactivation significantly
attenuated this increase. Therefore, the behavioral effects of
Zif268 ASO infusion are most likely mediated by the knockdown
of Zif268 protein in the BLA.

Initially, all rats in the pre-reactivated condition showed sig-
nificant suppression of heroin seeking in the presence of the CS
associated previously with naloxone-precipitated withdrawal.
These data support both our previous and other findings that
stimuli paired with the aversive experience of opiate withdrawal
suppress appetitive behavior in opiate-dependent rats (Goldberg
and Schuster, 1967; Goldberg and Schuster, 1970; Gellert and

Figure 1. BLA cannulations. Schematic representation of the amygdala at five different
rostrocaudal planes. Numbers represent the posterior coordinate from bregma (in millimeters).
Injector tips for each cannulation are represented by filled circles.

Figure 2. Intra-BLA Zif268 ASOs impairs conditioned suppression to a CS previously associ-
ated with naloxone-precipitated withdrawal. Bars represent the mean � SEM suppression
ratio of heroin-seeking responses [CS On/(CS On � CS Off); suppression ratio of 0.5 represents
no suppression and �0.5 indicates CS-induced suppression] before reactivation, after reacti-
vation, and in a non-reactivated control group. Infusion of Zif268 ASOs impaired subsequent
conditioned suppression of heroin seeking relative to both control MSO infusions and baseline
pre-reactivation levels. Reconsolidation of the conditioned withdrawal memories is reactiva-
tion dependent: animals that did not receive reactivation with the CS, but did receive ASO
infusions, showed no difference in suppression ratios compared with MSO-infused controls.
*p � 0.05

12696 • J. Neurosci., December 6, 2006 • 26(49):12694 –12699 Hellemans et al. • Reconsolidation of Opiate Withdrawal Memories



Sparber, 1977; Koob et al., 1989; Hellemans et al., 2006). Impor-
tantly, our data also demonstrate that BLA-cannulated rats are
capable of learning the CS–withdrawal association and verify that
rats that were later infused with ASOs showed no preexisting
impairment in instrumental learning. In contrast, in post-
reactivation test sessions, rats that were infused with Zif268 ASOs
into the BLA showed impaired suppression of heroin seeking
compared with both MSO-infused controls and their own pre-
reactivation levels. Indeed, Zif268 ASO-infused rats did not show
any suppression of heroin seeking when the withdrawal–associ-
ated CS was presented. Thus, blocking reconsolidation of the
CS–withdrawal memory through infusion of Zif268 ASO at
memory reactivation abolishes the ability of the CS to suppress
heroin seeking in the future. These data greatly extend our pre-
vious observations that intra-BLA Zif268 ASO disrupts the re-
consolidation of appetitive drug-associated memories for drug-
paired stimuli (Lee et al., 2005, 2006), by showing that aversive
drug memories are also susceptible to disruption in this man-
ner. Although MSO-infused animals in the post-reactivation
session were significantly more suppressed than in the pre-
reactivation test, this is likely attributable to the 5 additional
consecutive days of withdrawal conditioning (i.e., naloxon-
e–CS pairings) these animals received after the initial test ses-
sion. That ASO-infused animals showed no suppression dur-
ing this session despite the additional CS–withdrawal pairings
is additional evidence of the strength of the amnesic effect
after Zif268 knockdown in the BLA.

A critical criterion for the demonstration of a reconsolida-
tion impairment is that the amnesic effect is observed only
after memory reactivation and not if this reactivation session

is omitted (Lewis, 1979; Dudai, 2004). In our study, animals
that did not experience reactivation of the CS–withdrawal
memory but were infused with Zif268 ASOs before testing
showed the same degree of conditioned suppression of heroin
seeking as that seen in the MSO-infused controls. Thus, our
data confirm that the effects of Zif268 ASO on the impairment
of appetitive and aversive memory reconsolidation are reacti-
vation dependent (Lee et al., 2005, 2006; Debiec et al., 2006).
Some studies have demonstrated a recovery from amnesia af-
ter reconsolidation blockade with repeated testing (Lattal and
Abel, 2004; Power et al. 2006), whereas others have found no
evidence of recovery (Duvarci and Nader, 2004; Lee et al.,
2004). Although the current study did not test for persistent
impairments in heroin seeking, previous data from our labo-
ratory using Zif268 ASOs to explore both appetitive and aver-
sive memory reconsolidation deficits have never observed any
indication of a recovery, suggesting a persistent amnesia after
this manipulation (Lee et al., 2004, 2005, 2006).

Regulation of Zif268, an inducible transcription factor, ap-
pears to be critical for many forms of associative learning (Davis
et al., 2003) and may be a common fundamental requirement for
the reconsolidation of aversive and appetitive memories (Lee et
al., 2004, 2005). Our data are in accordance with this finding,
because we found that Zif268 was upregulated in the BLA after
reexposure to an opiate withdrawal–paired cue. Our results also
suggest a selective involvement of the BLA in regulating recon-
solidation of CS–withdrawal memories, because Zif268 was not
upregulated in the CeN after reactivation with the CS, and Zif268
ASO infusion reduced expression selectively in the BLA. This
latter finding extends the data in previous reports not only by
confirming that Zif268 ASO attenuates Zif268 upregulation in
the BLA (Lee et al., 2005) and whole amygdala (Malkani et al.,
2004) but also providing the novel finding that the effect is selec-
tive to the BLA, because there is no reduction of Zif268 protein in
the CeN. The amygdalar nuclei form part of an interconnected
circuit that has been suggested to underlie the aversive aspects of
opiate withdrawal (Frenois et al., 2002, 2005). A wealth of
evidence suggests that, whereas the CeN is activated during
primary withdrawal, the BLA appears to be selectively in-
volved in mediating the formation and expression of condi-
tioned opiate withdrawal. Lesions of the BLA abolish condi-
tioned, but not unconditioned, suppression of instrumental
responding for food in opiate-dependent rats (Schulteis et al.,
2000), and increased c-fos expression occurs selectively in the
BLA after reexposure to an environment previously paired
with naloxone-precipitated withdrawal (Frenois et al., 2005).
Thus, we add to this growing body of evidence by using revers-
ible protein knockdown to show that the BLA is functionally
involved in conditioned opiate withdrawal and extend these
findings to show that the reconsolidation of CS–withdrawal
memories occurs selectively within the BLA.

Although this experiment is unique in showing that aver-
sive drug withdrawal-associated memories undergo protein
synthesis-dependent reconsolidation in the BLA, an impor-
tant extension of this finding would be to explore whether the
reconsolidation of incentive learning related to drug–paired
stimuli can also be disrupted. Thus, we have shown that a CS
previously paired with naloxone-precipitated withdrawal ini-
tially suppressed heroin seeking in opiate-dependent rats but
enhanced heroin seeking when this CS was later paired with
heroin taking (Hellemans et al., 2006). This latter finding sup-
ports previous reports that drug self-administration in the
presence of a withdrawal-paired CS increases drug seeking

Figure 3. A, Zif268 protein levels after reexposure to a conditioned withdrawal stimulus.
Zif268 protein was upregulated 2 h after stimulus reexposure in the BLA but not in the CeN; p �
0.05. Data are presented as mean � SEM. B, Zif268 protein levels after reexposure to a condi-
tioned withdrawal stimulus and Zif268 ASO infusion. Zif268 ASOs resulted in a significant de-
crease in Zif268 expression compared with rats infused with Zif268 MSOs, 2 h after stimulus
reexposure in the BLA but not in the CeN; p � 0.05. Data are presented as mean � SEM.
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during the conditioned withdrawal state (Goldberg et al.,
1969; Kenny et al., 2006). However, these results may be ex-
plained by the operation of incentive-learning processes un-
derlying drug addiction whereby drug seeking in withdrawal
may be rendered compulsive when the drug is previously ex-
perienced in a withdrawn state, providing the opportunity for
a subject to learn about its increased value in that state (Dick-
inson and Balleine, 1994, 2002; Hutcheson et al., 2001). If we
seek to understand how drug-associated memories control
and lead to compulsive drug-seeking behavior, an important
test would be to explore whether the CS now associated with
the increased incentive value of heroin also undergoes protein
synthesis-dependent reconsolidation in the BLA. There is
good evidence to suggest that the BLA is involved in incentive
learning (Everitt et al., 1999; Balleine et al., 2003) and consol-
idation of memory for changes in the incentive value of re-
wards (Salinas et al., 1993). Moreover, reconsolidation of in-
centive memory for different food outcomes is blocked by
intra-BLA infusions of anisomycin (Wang et al., 2005), sug-
gesting that incentive learning for natural rewards undergoes
protein synthesis-dependent reconsolidation in the BLA. Fu-
ture studies that examine this phenomenon with drug-related
stimuli could provide important information as to how incen-
tive learning for appetitive drug-associated stimuli controls
compulsive drug-seeking behavior.

In summary, this study provides novel and important in-
formation on the formation of CS–withdrawal associations,
suggesting that aversive drug memories undergo protein
synthesis-dependent reconsolidation in the BLA in a
reactivation-dependent manner. The BLA is part of an inte-
grated circuit of neural structures implicated in the formation
and storage of CS–US associations (Everitt et al., 1999, 2003)
and in the processing of emotional events in relation to envi-
ronmental stimuli that guide motivated behavior (Cardinal et
al., 2002). Our data add to the growing body of evidence that
the BLA is also involved in the reconsolidation of fear, drug,
and incentive memories (Nader et al., 2000; Lee et al., 2005,
2006; Wang et al., 2005) and extend these findings to include
aversive drug memories retrieved by presenting opiate with-
drawal–paired CSs. Together, these studies provide critical
information on how reexposure to pavlovian cues associated
with both drug intake and drug withdrawal may influence
instrumental behavior to render drug-seeking compulsive in
abstinent addicts.
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