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We present accurate fits for the remnant properties of generically precessing binary black holes,
trained on large banks of numerical-relativity simulations. We use Gaussian process regression
to interpolate the remnant mass, spin, and recoil velocity in the 7-dimensional parameter space
of precessing black-hole binaries with mass ratios q ≤ 2, and spin magnitudes χ1, χ2 ≤ 0.8. For
precessing systems, our errors in estimating the remnant mass, spin magnitude, and kick magnitude
are lower than those of existing fitting formulae by at least an order of magnitude (improvement
is also reported in the extrapolated region at high mass ratios and spins). In addition, we also
model the remnant spin and kick directions. Being trained directly on precessing simulations, our
fits are free from ambiguities regarding the initial frequency at which precessing quantities are
defined. We also construct a model for remnant properties of aligned-spin systems with mass ratios
q ≤ 8, and spin magnitudes χ1, χ2 ≤ 0.8. As a byproduct, we also provide error estimates for
all fitted quantities, which can be consistently incorporated into current and future gravitational-
wave parameter-estimation analyses. Our model(s) are made publicly available through a fast and
easy-to-use Python module called surfinBH.

Introduction– As two black holes (BHs) come together and
merge, they emit copious gravitational waves (GWs) and
leave behind a BH remnant. The strong-field dynamics
of this process are analytically intractable and must be
simulated using numerical relativity (NR). However, from
very far away, the merger can be viewed as a scattering
problem, depicted in Fig. 1. The complicated dynamics
of the near zone can be overlooked in favor of the gauge-
invariant observables of the in- and out-states: the initial
BH masses and spins, the outgoing GWs, and the final
BH remnant. This final BH is fully characterized by its
mass, spin, and recoil velocity; all additional complexities
(“hair”) of the merging binary are dissipated away in
GWs [1–3].

All GW models designed to capture the entire inspiral-
merger-ringdown (IMR) signal from BH binary coales-
cences need to be calibrated to NR simulations (e.g.,
[4–12]). In particular, the BH ringdown emission is cru-
cially dependent on the properties of the BH remnant
— properties obtained from NR simulations. Accurate
modeling of the merger remnant is therefore vital for
construction of accurate IMR templates.
Besides waveform building, accurate knowledge of the

remnant properties is also instrumental to fulfill one of
the greatest promises of GW astronomy: testing Ein-
stein’s general relativity (GR) in its strong-field, highly
dynamical regime. Current approaches to test the Kerr
hypothesis attempt to measure the properties of the inspi-
ralling BHs from the low frequency part of the GW signal,
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FIG. 1. Quasi-circular binary BH merger problem viewed as
a scattering process via a “Feynman” diagram. Time flows to
the right. All quantities are well defined in the asymptotically
flat region far from the interaction (merger).

then use NR fits to predict the corresponding remnant
mass and spin; this final-state prediction is compared to
the properties inferred from the high frequency part of the
GW signal [13, 14]. Inaccuracies in remnant models there-
fore directly propagate to the final fundamental-physics
test.

The importance of building fits for the remnant proper-
ties was realized soon after the NR breakthrough [15–17]
and has been periodically revisited by several groups since
then [18–39]. There are two important shortcomings in all
existing fitting formulae. First, they enforce analytic an-
sätze (with NR-calibrated coefficients) that are physically
motivated, but lack a rigorous mathematical justification.
Therefore, current fits can be prone to systematic errors,
especially in regions of parameter space where the intu-
ition used to design the formulae become less accurate.
Second, current expressions for remnant mass and spins
are calibrated on aligned-spin simulations and therefore
fail to fully capture the rich physics of precessing systems
(but see e.g. [34] where a non-generic subspace of precess-
ing configurations is considered). For example, current
LIGO/Virgo parameter-estimation pipelines [40, 41] rely

ar
X

iv
:1

80
9.

09
12

5v
2 

 [
gr

-q
c]

  1
0 

Ja
n 

20
19

mailto:vvarma@caltech.edu
mailto:dgerosa@caltech.edu
mailto:lcstein@olemiss.edu
mailto:fhebert@caltech.edu
mailto:zhangphy@sas.upenn.edu


2

on ad-hoc corrections to partially account for precession
effects [42]. Aligned fits applied to precessing systems
are inevitably ambiguous, as the outcome will depend on
where (in time, separation, or frequency) the spins are
defined and inserted into the fits (e.g., [43]).
In this Letter we tackle both these issues for the first

time. We construct surrogate models that fit the rem-
nant properties from a large sample of generic, precess-
ing, quasi-circular binary BH simulations performed with
the Spectral Einstein Code (SpEC) [44]. Surrogates are
trained directly against the NR simulations, using Gaus-
sian process regression (GPR) without any phenomenolog-
ical ansätz, and achieve accuracies comparable to those
of the NR simulations themselves. In their regime of
validity, the models presented here are at least an order
of magnitude more accurate than previous fits.

In particular, we present two models:

1. surfinBH7dq2 : a fit trained against precessing sys-
tems with mass ratios q ≤ 2 and dimensionless spin
magnitudes χ1, χ2 ≤ 0.8.

2. surfinBH3dq8 : an aligned-spin model trained
against systems with mass ratios up to q ≤ 8 and
(anti-)aligned spin magnitudes χ1, χ2 ≤ 0.8.

Both these models can be easily accessed using the pub-
licly available Python module surfinBH [45], and are
ready to be incorporated in both waveform constructions
and GW parameter-estimation studies.
Fitting procedure– We construct fits for the BH rem-
nant mass mf , spin vector χf , and recoil kick vector
vf as functions of the binary mass ratio q and spin vec-
tors χ1,χ2. Our fits for surfinBH7dq2 (surfinBH3dq8 )
map a 7- (3-)dimensional input parameter space to a 7-
(4-)dimensional output parameter space. The fits are per-
formed in the coorbital frame at t=−100M , with t=0 at
the peak of the total waveform amplitude (cf. Ref. [12]
for details). The coorbital frame is defined such that
the z-axis lies along the direction of the orbital angular
momentum, the x-axis runs from the smaller BH to the
larger BH, and the y-axis completes the triad.
All fits are performed using GPR [46]; details are pro-

vided in the supplemental material [47]. Notably, GPR
naturally returns estimates of the errors of the fitted
quantities across the parameter space.
The values of spins, masses, and kicks used in the

training process are extracted directly from the NR sim-
ulations. We use the simulations presented in Ref. [12]
for surfinBH7dq2 and those of Ref. [48] for surfinBH3dq8 .
Both spins and masses are evaluated on apparent hori-
zons [49]; the dimensionful spin S solves an eigenvalue
problem for an approximate Killing vector, and the mass
is determined from the spin and area A following the
Christodoulou relation m2 = m2

irr + S2/(4m2
irr), where

m2
irr = A/16π is the irreducible mass. The masses m1,2

are determined close to the beginning of the simula-
tion at the “relaxation time” [50], whereas the spins
χ1,2 ≡ S1,2/m

2
1,2 are measured at t = −100M . The

remnant mass mf and spin χf are determined long after
ringdown, as detailed in [50]. All masses are in units of
the total mass M = m1 +m2 at relaxation. The remnant
kick velocity is derived from conservation of momentum,
vf = −P rad/mf [51]. The radiated momentum flux P rad

is integrated [52] from the GWs extrapolated to future
null infinity [50, 53]. Before constructing the fits, χf and
vf are transformed into the coorbital frame at t=−100M .
Besides the GPR error estimate, we further address

the accuracy of our procedure using “k-fold” cross valida-
tions with k=20. First, we randomly divide our training
dataset into k mutually exclusive sets. For each set, we
construct the fits using the data in the other k−1 sets and
then test the fits by evaluating them at the data points in
the considered set. We thus obtain “out-of-sample” errors
which conservatively indicate the (in)accuracies of our
fits. We compare these errors against the intrinsic error
present in the NR waveforms, estimated by comparing the
two highest resolutions available. We also compare the
performance of our fits against several existing fitting for-
mulae for remnant mass, spin, and kick which we denote
as follows: HBMR ([30, 35] with nM =nJ =3), UIB [37],
HL [38], HLZ [33], and CLZM ([21, 22, 27, 31, 32] as sum-
marized in [36]). To partially account for spin precession,
fits are corrected as described in Ref. [42] and used in
current LIGO/Virgo analyses [40, 41]: spins are evolved
from relaxation to the Schwarzschild innermost stable cir-
cular orbit, and final UIB and HL spins are post-processed
adding the sum of the in-plane spins in quadrature. We
note these fitting formulae were calibrated against dif-
ferent sets of simulations. Fitting methods, number of
simulations, their quality, and their distribution in pa-
rameter space all contribute to the accuracy of the fits.

Aligned-spin model– We first present our fit surfinBH3dq8 ,
which is trained against 104 aligned-spin simulations [48]
with q ≤ 8 and −0.8 ≤ χ1z, χ2z ≤ 0.8. Symmetry implies
that the kick lies in the orbital plane while the final spin
is orthogonal to it [54]. We therefore only fit for four
quantities: mf , χfz, vfx, and vfy.
Figure 2 shows the out-of-sample errors of

surfinBH3dq8 . Our fits are as accurate as the NR
simulations used in the training process. 95th per-
centile errors lie at ∆mf∼ 4×10−4M , ∆χf∼ 10−4, and
∆vf∼ 5×10−5c. The kick direction is predicted with an
accuracy of ∼ 0.5 radians, which is the inherent accuracy
of the NR simulations. Our errors for the remnant mass
and kick magnitude are comparable to the most accurate
existing fits. On the other hand, for the final spin, our
procedure outperforms all other formulae by at least a
factor of 5.

Precessing model– We now present surfinBH7dq2 , a rem-
nant model trained on 890 simulations [12] of generic,
fully precessing BH binaries with mass ratios q ≤ 2 and
spin magnitudes χ1, χ2 ≤ 0.8. Out-of-sample errors are
shown in Fig. 3. 95th percentiles are ∼ 5×10−4M for
mass, ∼ 2×10−3 for spin magnitude, ∼ 4×10−3 radians
for spin direction, ∼ 4×10−4 c for kick magnitude, and
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FIG. 2. Errors in predicting remnant mass, spin, kick magnitude, and kick direction for non-precessing binary BHs with mass
ratios q ≤ 8, and spin magnitudes χ1, χ2 ≤ 0.8. The direction error is the angle between the predicted vector and a fiducial
vector, taken to be the high-resolution NR case and indicated by a ?. The square (triangle) markers indicate median (95th

percentile) values. Our model surfinBH3dq8 is referred to as 3dq8. The black histogram shows the NR resolution error while
the dashed histograms show errors for different existing fitting formulae.
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FIG. 3. Errors in predicting the remnant mass, spin magnitude, spin direction, kick magnitude, and kick direction for precessing
binary BHs with mass ratios q ≤ 2, and spin magnitudes χ1, χ2 ≤ 0.8. Our model, surfinBH7dq2 is referred to as 7dq2. The
black histogram shows the NR resolution error while the dashed histograms show errors for different existing fitting formulae. In
the bottom-right panel we show the distribution of kick magnitude vs. error in kick direction.
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FIG. 4. Left panel: Errors for surfinBH7dq2 in predicting
remnant properties when the spins are specified at an orbital
frequency of f0 =10 Hz, for different total masses. Right panel:
Errors for surfinBH7dq2 when extrapolating to higher mass
ratios, with the spins specified at t=−100M . The labels on the
horizontal axis indicate the range of mass ratios being tested.
Note that the distributions in these plots are normalized to
have a fixed height, not fixed area.

∼ 0.2 radians for kick direction. As in the aligned-spin
case above, our errors are at the same level as the NR res-
olution error, thus showing that we are not limited by our
fitting procedure but rather by the quality of the training
dataset. Our fits appear to outperform the NR simula-
tions when estimating the spin direction, which suggests
this quantity has not fully converged in the NR runs, and
that the difference between the two highest resolution
simulations is an overestimate of the NR error in this
quantity.

Figure 3 shows that our procedure to predict remnant
mass, spin magnitude, and kick magnitude for precessing
systems is more precise than all existing fits by at least
an order of magnitude. These existing fits presented sig-
nificantly lower errors when applied to aligned binaries
(cf. Fig. 2), which suggests that they fail to fully capture
precession effects despite the augmentation of Ref. [42].
Some impact of precession effects on the final spin and
recoil is expected, since both of these quantities have been
found to depend strongly on the in-plane orientations of
the spins of the merging BHs [43, 51, 55]. More surpris-
ingly, we find that spin precession significantly affects the
energy radiated as well, which was expected to depend
mostly on the aligned-spin components via the orbital
hang-up effect [56–58].

The largest errors in the kick direction can be of order
∼ 1 radian. The bottom-right panel of Fig. 3 shows the
joint distribution of kick magnitude and kick direction
error for both surfinBH7dq2 and surfinBH3dq8 , showing
that errors are larger at low kick magnitudes. Our error in
kick direction is below ∼ 0.1 radians whenever vf & 10−3c.

Regime of validity– The errors in Fig. 3 are obtained by

evaluating fits using input spins specified at t=−100M ,
i.e., where the GPR interpolation is performed. The
input spins can also be specified at earlier times; this
case is handled by two additional layers of time evolution.
Given the spins at an initial orbital frequency f0, we first
evolve the spins using a post-Newtonian (PN) approxi-
mant — 3.5PN SpinTaylorT4 [59–61]— until the orbital
frequency reaches a value of 0.018 rad/M . At this point,
we are in the range of validity of the (more accurate)
NRSur7dq2 approximant [12], which we use to evolve
the spins until t=−100M . Thus, spins can be specified
at any given orbital frequency and are evolved consis-
tently before estimating the final BH properties. This is
a crucial improvement over previous results, which, being
calibrated solely to non-precessing systems, suffer from
ambiguities regarding the separation/frequency at which
spins are defined.

The left panel of Fig. 4 shows the errors when the spins
are specified at an orbital frequency f0 = 10 Hz. These
errors are computed by comparing against 20 long NR
simulations [50] with mass ratios q ≤ 2 and generically
oriented spins with magnitudes χ1, χ2 ≤ 0.5. None of
these simulations were used to train the fits. Longer PN
evolutions are needed at lower total masses, and the errors
are therefore larger. These errors will decrease with an
improved spin evolution procedure. Note, however, that
our predictions are still more accurate (and, crucially,
unambiguous) than those of existing fitting formulae (cf.
Fig. 3).
Finally, the right panel of Fig. 4 shows the the per-

formance of surfinBH7dq2 when extrapolating to more
extreme mass ratios. We compare against 175 (225) NR
simulations [62] with 2≤q≤3 (3≤q≤4), and generically
oriented spins with magnitudes χ1, χ2 ≤ 0.8 specified at
t=−100M . The error distribution broadens, but our fits
still provide a reasonable estimate of the final remnant
properties even far out of the training parameter space.
Detailed results on extrapolation accuracy are provided
in the supplemental materials [47].

Conclusion– We have presented two highly accurate sur-
rogate models for the remnant properties of BH binaries.
surfinBH7dq2 (surfinBH3dq8 ) is trained against 890 (104)
NR simulations with mass ratios q ≤ 2 (q ≤ 8) and pre-
cessing (aligned) spins with magnitude χ1, χ2 ≤ 0.8. Both
models use GPR to provide fits for the remnant mass,
spin, and kick velocity (both magnitudes and directions).
Our findings are implemented in a public Python module
named surfinBH (details are provided in the supplemental
materials [47]).
For aligned spins, errors in surfinBH3dq8 are com-

parable to existing fitting formulae for the final mass
and kick magnitude, while the spin is predicted about 5
times more accurately. For precessing systems, errors in
surfinBH7dq2 for final mass, spin magnitude, and kick
magnitude are lower than all existing models by at least
an order of magnitude. Crucially, our fits are free from
ambiguities regarding the time/frequency at which pre-
cessing quantities are specified. This is a point of major
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improvement over previous models, which all fail to fully
capture precession effects.

Is this increased accuracy necessary? For current events
like GW150914, the estimated error in the remnant prop-
erties are ∆mf∼ 0.1M and ∆χf∼ 0.1 [40]. These mea-
surements are currently dominated by statistical errors,
as the systematics introduced by existing fits used in the
analysis are ∆mf∼ 5×10−3M and ∆χf∼ 2×10−2 (see
95th percentile values in Fig. 3). Because statistical errors
scale approximately linearly with the detector sensitivity
[63], we estimate that systematic errors in current models
for χf will start dominating over statistical uncertainties
at signal-to-noise ratios which are ∼ 5 times larger than
that of GW150914. This will happen sooner rather than
later, with current interferometers expected to reach their
design sensitivity in a few years [64], and future instru-
ments already being scheduled [65] or planned [66, 67].
Our fits, being an order of magnitude more accurate (see
Fig. 3), introduce systematic errors which are expected
to be relevant only at SNRs ∼ 50 times larger than that
of GW150914. As shown above, errors are largely domi-
nated by the underlying NR resolution, not by our fitting
procedure. The inclusion of self-force evolutions alongside
NR in the training dataset might also be exploited to
improve extrapolation performance at q � 1; we leave
this to future work.
Moreover, the GPR methods employed here naturally

provide error estimates along with the fitted values (some
results are provided in the supplemental material [47]).
This constitutes a further key application of our results:
when performing, e.g., consistency tests of GR [13, 14],

systematic uncertainties introduced by remnant fits can
be naturally incorporated into the statistical analysis and
marginalized over (cf. Ref. [68] for a similar application
of GPR and Refs. [69–73] for other applications to GW
science).

As GW astrophysics turns into a mature field, increas-
ingly accurate tools such as those presented here will
become crucial to uncover more hidden secrets in this new
field of science.
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Supplemental Material

Gaussian process regression– We construct fits in this
work using Gaussian process regression (GPR) [S1, S2]
as implemented in scikit-learn [S3].
The starting point is a training set of n observations,

T S =
{

(xi, f(xi))|i = 1, . . . , n
}
, where xi denotes an in-

put vector of dimension D and f(xi) is the corresponding
output. In our case, x is mass ratio and spins of the
merging binary, and f(x) is the remnant property we are
fitting. Our goal is to use T S to make predictions for the
underlying f(x) at any point x∗ that is not in T S.

A Gaussian process (GP) can be thought of as a prob-
ability distribution of functions. More formally, a GP
is a collection of random variables, any finite number of
which have a joint Gaussian distribution [S1]. A GP is
completely specified by its mean function m(x) and co-
variance function k(x, x′), i.e. f(x) ∼ GP(m(x), k(x, x′)).
Consider a prediction set of n∗ test inputs and their
corresponding outputs (which are unknown): PS ={

(xi
∗, f(xi

∗))|i = 1, . . . , n∗
}
. By the definition of a GP,

outputs of T S and PS (respectively f = {f(xi)}, f∗ =
{f(xi

∗)}) are related by a joint Gaussian distribution[
f
f∗

]
= N

(
0,
[
Kxx Kxx∗

Kx∗x Kx∗x∗

])
, (S1)

where Kxx∗ denotes the n×n∗ matrix of the covariance
k(x, x∗) evaluated at all pairs of training and prediction
points, and similarly for the other K matrices.

Eq. (S1) provides the Bayesian prior distribution for f∗.
The posterior distribution is obtained by restricting this
joint prior to contain only those functions which agree
with the observed data points, i.e. [S1]

p(f∗|T S) = N
(
Kx∗xK

−1
xx f , Kx∗x∗−Kx∗xK

−1
xx Kxx∗

)
.

(S2)

The mean of this posterior provides an estimator for f(x)
at x∗, while its width is the prediction error.
Finally, one needs to specify the covariance (or ker-

nel) function k(x, x′). In this Letter we implement the
following kernel

k(x, x′) = σ2
k exp

−1
2

D∑
j=1

(
xj − x′j

σj

)2
+ σ2

n δx,x′ ,

(S3)

where δx,x′ is the Kronecker delta. In words, we use
a product between a squared exponential kernel and a
constant kernel, to which we add a white kernel term to
account for additional noise in the training data [S1, S3].
GPR fit construction involves determining the D+2

hyperparameters (σk, σn and σj) which maximize the
marginal likelihood of the training data under the GP
prior [S1]. Local maxima are avoided by repeating the

optimization with 10 different initial guesses, obtained by
sampling uniformly in log in the hyperparameter space
described below.
Before constructing the GPR fit, we pre-process the

training data as follows. We first subtract a linear fit and
the mean of the resulting values. Datapoints are then
normalized by dividing by the standard deviation of the
resulting values. The inverse of these transformations is
applied at the time of the fit evaluation.
For each dimension of x, we define ∆xj to be the

range of the values of xj in T S and consider σj ∈
[0.01×∆xj , 10×∆xj ]. Larger length scales are unlikely
to be relevant and smaller length scales are unlikely to be
resolvable. The remaining hyperparameters are sampled
in σ2

k ∈ [10−2, 102] and σ2
n ∈ [10−7, 10−2]. These choices

are meant to be conservative and are based on prior ex-
ploration of the typical magnitude and noise level in our
pre-processed training data.
Input parameter space– Fits for surfinBH3dq8 are pa-
rameterized using x = [log(q), χ̂, χa], where χ̂ is the spin
parameter entering the GW phase at leading order [S4–S7]
in the PN expansion,

χeff = q χ1z + χ2z

1 + q
, η = q

(1 + q)2 , (S4)

χ̂ = χeff − 38η(χ1z + χ2z)/113
1− 76η/113 , (S5)

and χa is the “anti-symmetric spin”,

χa = 1
2 (χ1z − χ2z) . (S6)

For surfinBH7dq2 we use x =
[log(q), χ1x, χ1y, χ̂, χ2x, χ2y, χa]. Subscripts x, y
and z refer to components specified in the coorbital
frame at t = −100M . We empirically found these
parameterizations to perform more accurately than the
more intuitive choice x = [q, χ1x, χ1y, χ1z, χ2x, χ2y, χ2z].
In the main text we describe how we evolve spins

given at earlier times to t=−100M , using PN and NR-
Sur7qd2. Is it worth noting that the NR spins used to
train NRSur7qd2 had some additional smoothening fil-
ters applied to them (see Eq. 6 in [S8]). This introduces
additional systematics when evolving spins from times
t<−100M . We verified that the resulting errors on our
fits are subdominant.
Extrapolation erorrs– The right panel of Fig. 4 shows
the errors in remnant quantities when extrapolating
surfinBH7dq2 to mass ratios beyond its training range
(q ≤ 2). These errors are computed using the spins at
t=−100M . If the spins are given at earlier times, we
expect larger extrapolation errors as this also involves
extrapolation of the NRSur7dq2 waveform model (which
was also trained in the q ≤ 2 space). Figure S1 shows the
extrapolation errors when the spins are specified at at
orbital frequency f0 =10 Hz for a total mass M = 70M�,
computed by comparing against the same NR simulations
as in Fig. 4. Errors are comparable to or lower than those
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FIG. S1. Errors in surfinBH7dq2 when extrapolating to higher
mass ratios, and the spins are specified at an orbital frequency
f0 =10 Hz, for a total mass M = 70M�.

of existing fits for q ≤ 3. For 3 < q ≤ 4, our errors for
the remnant spin magnitude can become larger, but the
remnant mass and kick magnitude remains as accurate
as in other fits.
Figure S2 shows errors in surfinBH3dq8 when extrap-

olated beyond its training space to higher mass ratios
and/or spin magnitudes (this figure complements the re-
sults shown in Fig. 4 of the main text for surfinBH7dq2 ).
Here we used some of the simulations of [S9–S13] with
q > 8 and/or χ1, χ2 > 0.8. Accuracy in the remnant mass
degrades noticeably only at high (∼ 0.9) co-aligned spins.
Errors in final spin become larger at both high spins and
extreme mass ratios. For counter-aligned spins, our errors
are always comparable to those found within the training
region. Errors in kick magnitude and direction appear to
be insensitive to extrapolation.

GPR error prediction– As stressed above and in the main
body of our Letter, GPR naturally associates errors to the
estimated quantities. In this Section we test the efficacy
of this prediction by comparing the GPR errors against
the out-of-sample errors. The GPR errors shown here
are evaluated using the same cross-validation data sets
used to generate the out-of-sample errors. Therefore, both
error estimates are evaluated at points in parameter space
where models were not trained.

Error comparisons for surfinBH3dq8 and surfinBH7dq2
are reported in Figs. S3 and S4, respectively. While
GPR predictions miss some of the features captured by
the “k-fold” cross validations, overall it provides faithful
estimates of the fit errors.

Public python implementation– Our fits are made pub-
licly available through the easy-to-use Python package,
surfinBH [S14]. Our code is compatible with both
Python 2 and Python 3. The latest release can be in-
stalled from the Python Package Index using

pip install surfinBH

Python packages numpy [S15], scipy [S16], h5py [S17],
scikit-learn [S3], lalsuite [S18], and NRSur7dq2 [S8]
are specified as dependencies and are automatically in-
stalled if missing. surfinBH is hosted on GitHub at
github.com/vijayvarma392/surfinBH, from which devel-
opment versions can be installed. Continuous integration
is provided by Travis [S19]

The surfinBH module can be imported in Python using

import surfinBH

Documentation is provided for each submodule of
surfinBH and can be accessed via Python’s help() func-
tion. The fit class has to be initialized using, e.g.

fit = surfinBH.LoadFits("surfinBH7dq2")

Given mass ratio and component spins, the fits and 1σ
GPR error estimates of the remnant mass, spin vector
and kick vector can be evaluated as follows:

q = 1.2
chiA = [0.5, 0.05, 0.3]
chiB = [-0.5, -0.05, 0.1]
mf, mf_err = fit.mf(q, chiA, chiB)
chif, chif_err = fit.chif(q, chiA, chiB)
vf, vf_err = fit.vf(q, chiA, chiB)

Both the input spins as well as the remnant spin and
kick vectors are assumed to be specified in the coorbital
frame at t=−100M . Performance of surfinBH was tested
on a 3.1GHz Intel Core i5 processor by averaging over
103 evaluations at randomly chosen points in parameter
space. For surfinBH7dq2 , evaluation cost of final mass
(spin) [kick] is 2.5ms (7ms) [7ms]. For surfinBH3dq8 ,
evaluation cost of final mass (spin) [kick] is 0.4ms (0.4ms)
[0.6ms].

We also allow specifying an orbital frequency (in units
of rad/M), e.g.:

omega0 = 5e-3
mf, mf_err = fit.mf(q, chiA, chiB,

omega0 = omega0)
chif, chif_err = fit.chif(q, chiA, chiB,

omega0 = omega0)
vf, vf_err = fit.vf(q, chiA, chiB,

omega0 = omega0)

https://github.com/vijayvarma392/surfinBH
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FIG. S2. Errors in predicting the remnant mass, spin, kick magnitude and kick direction for nonprecessing BBH when
surfinBH3dq8 is extrapolated outside of the training region (i.e. q > 8 and χ1, χ2 > 0.8). Each solid symbol marks the error of
the extrapolated model against a single nonprecessing NR simulation. The legend in the bottom-left panel displays the mass
ratio and spin components of the two BHs along the orbital angular momentum direction. Histograms of errors within the
training region (from Fig. 2) are reproduced here for comparison. The hollow square (triangle) markers indicate the median
(95th percentile) values for those errors.
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The bounds of the training parameter space are indicated as a black rectangle.
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In this case, the component spins, as well as the final
remnant spin/kick vectors are specified in the coorbital
frame at this orbital frequency. The evaluation costs
are larger when specifying an initial orbital frequency
since this involves two additional stages of spin evolution.
Execution times depend on the initial frequency, the spe-
cific PN approximant used and the time step size in the

integration routine. For instance, with omega0 = 5e-3,
SpinTaylorT4, and a step size of 0.1M the evaluation cost
is ∼ 0.5s for each of the remnant quantities.

Additional resources are provided in the package in-
stallation page [S14]. This includes example jupyter
notebooks for both models presented in this Letter.
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