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40 YEARS OF FEATURE INTEGRATION: SPECIAL ISSUE IN MEMORY OF ANNE TREISMAN

Value associations bias ensemble perception

Daniel B. Dodgson1
& Jane E. Raymond1

# The Author(s) 2019

Abstract
Ensemble perception refers to awareness of average properties, e.g. size, of Bnoisy^ elements that often comprise visual arrays in
natural scenes. Here, we asked how ensemble perceptionmight be influencedwhen some but not all array elements are associated
with monetary reward. Previous studies show that reward associations can speed object processing, facilitate selection, and
enhance working-memory maintenance, suggesting they may bias ensemble judgments. To investigate, participants reported the
average element size of brief arrays of different-sized circles. In the learning phase, all circles had the same color, but different
colors produced high or low performance-contingent rewards. Then, in an unrewarded test phase, arrays comprised three spatially
inter-mixed subsets, each with a different color, including the high-reward color. In different trials, the mean size of the subset
with the high-reward color was smaller, larger, or the same as the ensemble mean. Ensemble size estimates were significantly
biased by the high-reward-associated subset, showing that value associations modulate ensemble perception. In the test phase of a
second experiment, a pattern mask appeared immediately after array presentation to limit top-down processing. Not only was
value-biasing eliminated, ensemble accuracy improved, suggesting that value associations distort consciously available ensemble
representation via late high-level processing.

Keywords Reward . Ensemble perception . Scene perception . Attention .Workingmemory

Introduction

The world is rich with visual redundancy; in most natural
scenes, similar objects occur many times simultaneously. To
enhance processing efficiency and to overcome tight capacity
limitations of high-level visual processing, including attention
and working memory (Cohen, Dennett, & Kanwisher, 2016),
evidence suggests that the brain may represent such repeated
object information as a single code or ensemble representation
rather than retaining individual object representations
(Alvarez & Oliva, 2008; Ariely, 2001; Chong & Treisman,
2003, 2005; Dakin & Watt, 1997; Haberman, Brady, &
Alvarez, 2015). For example, when viewing a tree, the brain
may represent leaf size by calculating a statistical average of
all leaf sizes visible on the tree and then use and store only this
abstracted ensemble information in subsequent cognitive
processing.

Ariely (2001) first demonstrated that the visual system could
compress complex scenes into a summary of the scene’s statisti-
cal properties. He presented observerswith a brief (500-ms) array
of up to 16 heterogeneously sized circles; the task was to judge
whether a subsequently presented probe circle was larger or
smaller than the average size of the circlesmaking up the original
array. Using this method, he reported that mean circle size was
estimated remarkably precisely, i.e., within approximately 4% of
the actual average element size. Interestingly, participants were
unable to correctly identify whether a specific probe item had
been a member of the original set, suggesting they lacked con-
scious access to individual element size. This study demonstrated
that even with set sizes well beyond what is considered the
capacity for selective attention and working memory (WM) of
around four items (Luck & Vogel, 1997; Pylyshyn & Storm,
1988), the visual system is proficient at coding and synthesizing
information, even without high-level representation of individual
items. Subsequent studies using similar methodologies showed
evidence of statistical averaging for other low-level features, in-
cluding element orientation (Dakin & Watt, 1997; Haberman
et al., 2015), color (Haberman et al., 2015), speed and direction
of motion (Alvarez & Oliva, 2008; Sweeny, Haroz, & Whitney,
2012), and size (Chong & Treisman, 2003, 2005).
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One account of ensemble perception is that only a subset of
elements is actively selected and that ensemble statistics are
calculated solely on this subset using high-level WM-related
processes (Myczek & Simons, 2008). However, arguments
against this view are substantial (Cohen et al., 2016), and were
first advanced by Triesman’s group who showed that accuracy
of ensemble judgments is largely unaffected by array size
(Chong & Treisman, 2003, 2005), a finding consistent with
the notion of a fast, pre-selective, parallel scene analyser
(Oliva & Torralba, 2006; Treisman & Gelade, 1980). Other
studies showed that increasing array size could even improve
performance (Ariely, 2001; Robitaille & Harris, 2011), a ma-
nipulation that should degrade performance if ensemble per-
ception were based on subset selection and WM. Additional
evidence against the involvement of slow selective attention
processes is that accurate ensemble estimates are possible with
stimulus durations as brief as 50 ms (without pattern masks;
Chong & Treisman, 2003) or 200 ms (with pattern masks;
Whiting & Oriet, 2011), durations that are shorter than that
required to shift selective attention from one element to anoth-
er (Egeth & Yantis, 1997). Furthermore, Im and Halberda
(2013) systematically manipulated the physical variability of
array items and then applied variance summation modeling to
demonstrate that the effects of internal noise and sampling on
ensemble estimation are more akin to that seen for texture
processing than for multiple individual items processing.
Lastly, several studies have shown that ensemble perception
of high-level properties, including average emotion expressed
in faces (Haberman & Whitney, 2007) and average numeric
value of numbers (Corbett, Oriet, & Rensink, 2006) can be
accurately reported under conditions in which individual
items cannot be explicitly identified.

A more widely accepted view of ensemble perception ini-
tially put forth by Chong and Treisman (2005) is that individ-
ual scene elements automatically undergo parallel processing
that is just sufficient to contribute data regarding the feature
dimension required by the task to the mechanism computing
the ensemble average (Brady & Alvarez, 2011; Corbett &
Oriet, 2011). In this view, high-level processing mechanisms
that support awareness and WM only have access to the en-
semble representation, with all but a few individual elements
being inaccessible (Cohen et al., 2016; Leib, Kosovicheva, &
Whitney, 2016; Whitney & Leib, 2018) This restrictive view
of ensemble processing suggests that element variability on
task-irrelevant dimensions (e.g., element color in an ensemble
size judgment task) should have little influence on ensemble
representations directed at a different feature dimension (e.g.,
size). Indeed, evidence from an experiment by Brady and
Alvarez (2011) support this possibility. Using a WM retro-
cue task, they briefly presented arrays comprised of circles
of different sizes; smaller than average circles were presented
in one color and larger than average circles in another color.
After 1 s, a probe circle was presented in the location of one of

the array elements. Participants were asked to adjust its size to
match the array circle just seen at that location. Interestingly,
when color was irrelevant, responses were biased towards the
mean size of all the circles in the array, not the mean size of the
circles with the probed circle’s color. This suggests that indi-
vidual element sizes were unavailable for report, forcing par-
ticipants to default to the average. Importantly, variation on an
irrelevant dimension (color) had no apparent impact on en-
semble size perception.

Here, we explored whether ensemble perception is similar-
ly immune to task-irrelevant, but non-sensory, i.e., learned,
attributes of elements. Specifically, we asked whether subsets
of elements in an array that had task-irrelevant reward associ-
ations would bias ensemble perception for the whole array.
For example, would perception of average car size in a
crowded parking lot be biased toward the size of a few high-
value cars or would car value effectively be ignored?
Numerous studies have shown that objects associated with
monetary rewards are prioritized for visual processing
resulting in better recognition, even when attention is limited,
exposures are brief, and rewards are no longer forthcoming
(O’Brien & Raymond, 2012; Raymond & O’Brien, 2009).
Moreover, objects with reward-associated features are better
maintained in visual working memory (Gong & Li, 2014;
Thomas, FitzGibbon, & Raymond, 2016). When presented
as distractors, reward-associated objects are also more likely
to distract task-relevant processing (Anderson, Laurent, &
Yantis, 2011a, 2011b; Hickey, Chelazzi, & Theeuwes, 2010;
Maclean & Giesbrecht, 2015; Rutherford, O’Brien, &
Raymond, 2010) more than similar, equally familiar yet mo-
tivationally neutral objects. Some of these behavioral studies
show reward effects even with very brief, masked exposures
(O’Brien & Raymond, 2012) and with arrays of more than
four items (Anderson et al., 2011a), suggesting that value
associations may influence processing at early parallel-
processing stages. If so, then it is reasonable to expect that a
subset of value-associated items in an array could influence
ensemble encoding even when array exposures are brief and
masked. However, other evidence argues that value associa-
tions only influence processing at later, post-attentive stages
where processing is capacity limited and serial (Pedale &
Santangelo, 2015; Raymond & O’Brien, 2009; Thomas
et al., 2016). If so, then the presence of some value-
associated items in the array might fail to modulate ensemble
processing because irrelevant, individual item information
may be lost once the ensemble representation is produced
(Ariely, 2001). A third, hybrid possibility is that with longer
processing times (i.e., without immediate presentation of a
pattern mask), an ensemble representation as well as a few
selected individual items can be encoded into WM allowing
ensemble reports to become influenced by other WM contents
(Cohen et al., 2016; Whitney & Leib, 2018; deFockert &
Marchant, 2008). Considering that value-associated items
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gain priority for access to visual WM (Thomas et al., 2016),
then this hybrid view predicts that value-associated items
might bias ensemble reports but only when processing times
are sufficiently long.

To investigate, we asked participants to perform two suc-
cessive ensemble size judgment tasks. In each, they were re-
quired to adjust the size of a probe circle to match the average
size of 12 different-sized circles presented briefly in a circular
fashion around a central fixation point. In the first task, all the
circles were presented in the same color. Participants were
given performance feedback on every trial using rewards that
varied with response accuracy. In addition, when the array had
a specific color, substantially higher point values could be
earned for accurate responses than when it was a different
color. Points were later exchanged for cash. Following this
color-reward learning phase, participants repeated the ensem-
ble size task, but this time the array comprised three spatially
intermixed subsets of circles, each defined by a different color.
No rewards were forthcoming. Importantly, the four largest
circles (large set), the four mid-sized circles (medium set), or
the four smallest circles (small set) were presented in the high
value-associated color on different trials. A control condition
was also included wherein no circles had the high value-
associated color.

If value associations of individual elements in the array
were available relatively early in processing (prior to en-
semble representation) and were able to boost neural rep-
resentations, then the contribution of reward-associated el-
ements might be more heavily weighted than non-reward-
associated elements by the statistical averaging mecha-
nism. In our experiments this should cause ensemble esti-
mates for the entire array to be biased in favor of the value-
associated subset’s size. However, if value associations are
not available prior to ensemble representation, then no ef-
fect of value should be evident because all element infor-
mation should become inaccessible once ensemble repre-
sentations are produced. To probe how early in processing
value associations might influence ensemble representa-
tions, we conducted two experiments, both using a 200-
ms array presentation duration but only one (Experiment
2) presented an immediate pattern mask to stop further
processing. Numerous studies show that pattern masks ef-
fectively terminate processing modulations arising from
high-level feedback, preventing more stable, elaborated
representations (Enns & Di Lollo, 2000; Phillips, 1974;
Sligte, Scholte, & Lamme, 2009; Sperling, 1965; Vogel,
Woodman, & Luck, 2006). We predicted that by presenting
a pattern mask we might abolish any value-biasing effects
by limiting ensemble representations to available sensory
data, unaffected by previously learned information. To an-
ticipate, we observed value-biasing of ensemble estimation
when the array exposure was not masked and abolished
this effect when a mask was presented.

General method

Participants

Sample size was based on Brady and Alvarez (2011) who
tested 20 participants in a similar study and obtained an effect
size of Cohen’s d = 1.82. A more conservative Cohen’s d of
1.4, power = 0.80, and a two-tailed test indicated a sample size
of 19would sufficiently power each experiment. Twenty-three
participants (four males, average age = 22.0 years (SD = 4.42;
range = 18–35) completed Experiment 1; a different 23 par-
ticipants (three males, average age = 19.35 years (SD = 0.81,
range 18–21) completed Experiment 2. All participants were
recruited from the University of Birmingham, took part in
exchange for course credits, or were compensated £6 (plus
extra cash earned on the value-learning task). All provided
informed consent prior to participation, reported normal or
corrected-to-normal vision, were naïve to the purpose of the
experiment, and had normal color vision as assessed using the
Munsell D-15 color-blindness test.

Apparatus

Value-learning and post-learning tasks Stimulus presentation
and data recording were controlled by a Macintosh computer
and were programmed in Matlab (The MathWorks, Inc.,
Natick, MA, USA) using the Psychophysics Toolbox.
Responses were recorded using a standard keyboard and
mouse. Stimuli were presented in RGB color space on a black
background ([0, 0, 0]) of a 68-cm LCD monitor (ASUS
VG278) with a screen resolution of 1,920 × 1,080 and a re-
fresh rate of 60 Hz. Viewing distance was approximately 60
cm.

Stimuli

Test arrays comprised 12 color-filled circles with areas that
could range between 79 pixels2 (diameter = 10 pixels) and
20,096 pixels2 (diameter = 160 pixels). The diameter of each
circle in each array was drawn from a log-normal distribution
(s.d. = 35 pixels). This allowed the average circle size (for the
entire array) to have 25 different equally spaced values (rang-
ing between 1,885 and 11,499 pixels2); each average circle
area was equally probable for each array condition.
Averaging across all trials and all conditions used within the
session, the average circle area was 5,675 pixels2, which cor-
responds to a circle with a diameter of 1.6° of visual angle.
The center of each circle was positioned randomly on the
circumference of a larger central and invisible circle (radius
of 8°), with the constraint that no element overlapped another.
In the value-learning task, all test array circles had the same
color; in the post-learning task, three different colors were
used (with four circles in each color). Colors (drawn in RGB
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color space) used in experimental trials were purple [RGB
colors 148, 131, 165], red [230, 93, 85], and orange [182,
133, 58]. Three different colors were used for control trials:
pink [226, 90, 121], brown [215, 115, 58], and green [110,
151, 125].

The response display comprised a single circle presented at
fixation. On initial presentation, its diameter was randomly
chosen (between 10 and 160 pixels) but was never within 20
pixels of the actual mean diameter. Adjustment of circle size
by the participant could lead to a minimum diameter of 10
pixels and a maximum diameter of 192 pixels. In the value-
learning task, the response circle had the same color as the
preceding test array; on post-learning trials it was gray (127,
127, 127).

The mask used in Experiment 2 was comprised of differ-
ently colored squares arranged in a 9.5° × 9.5° grid, each small
square subtending approximately 0.5° × 0.5°. Each square
was presented in one of the six possible colors used in the
post-learning task. The mask was constructed on each trial
by randomly selecting a color for each grid location.

Feedback displays comprised point reward values present-
ed at the center of the screen in white on a black field in Arial
font, 100 point. Running total information was positioned at
the center bottom of the screen and displayed in black Arial
font, 50 point.

Procedure

Value-learning task The trial sequence is illustrated in Fig. 1a.
Following a fixation cross (1,000 ms), the test array was pre-
sented for 200ms immediately followed by the response circle
(until response). After response, the number of points earned
on that trial was displayed (1,000 ms). Participants were
instructed to estimate the average size of all of the circles in

the test array, i.e., to provide an ensemble size estimate. To
indicate this, participants adjusted the size of the central re-
sponse circle by moving the mouse to the left (to shrink it) or
right (to enlarge it) until it matched the perceived average
circle size, pressing the left mouse button to submit the en-
semble estimate (cf. Brady & Alvarez, 2011). The response
circle diameter adjusted linearly in response to movements of
the mouse. If response was within 5% (smaller or larger) of the
actual average size, the maximum number of points for that
trial was presented; otherwise the percentage error (larger or
smaller) was deducted from the maximum possible point
award for that trial (rounded to the nearest 10%) and presented
as feedback. A running total of the points earned was present-
ed at the bottom of the screen throughout the session and was
updated in the feedback display provided after each trial.

Test array circles shared one of two possible colors. One
(reward) color denoted a maximum award of 1,000 points, the
other (baseline) color a maximum award of 10 points. The
color-outcome pairings were counterbalanced across partici-
pants. There were 200 trials in total; value and baseline trials
were presented equally often in a pseudo-random manner.
Participants completed four blocks of 50 trials. During inter-
block breaks, participants were reminded of the number of
points earned thus far and its cash equivalent (20,000 points
= £1). At the end of the value-learning task, participants were
given the cash that they had earned. For the first five trials of
every block the participant chose the color of the test array,
having been told to pick the color that would give them the
highest number of points. This was used to provide an explicit
measure of color-value learning. To ensure that participants
had equal exposure to both colors, five extra trials were ran-
domly placed in the subsequent block composed of the alter-
nate color to that which the participant chose on the first five
(choice) trials.

1000

200ms

Until
response

1000ms Until
response

200ms

100ms

a b

25126

26126

25126

+ +

Fig. 1 (a) Trial schematic for the Value-learning Task used in
Experiments 1 and 2 to condition color-value associations prior to partic-
ipation in the Post-Learning Task. The ensemble array was immediately
followed by the response circle. Point feedback was based on response
accuracy and array color. A running point total was displayed at the
bottom on the screen, as shown (not to scale). (b) Trial schematic for

the Post-learning Task as performed in Experiment 2. The sequence
was similar for Experiment 1 except that the colored check pattern
(mask) was not presented and the response circle was presented immedi-
ately after the offset of the stimulus array. Feedback was not provided.
Gray-scale variations in the figure represent color variations in the actual
display
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Post-learning test The trial sequence illustrated in Fig. 1b was
identical to that used in the value-learning task with the fol-
lowing exceptions. First, there was no feedback or points
awarded and participants were explicitly told that no further
points would be awarded. Second, the response circle was
always gray. Third, in Experiment 2 only, a pattern mask
was presented for 100 ms immediately following the test array
offset. Fourth, test circles no longer shared the same color. The
four largest circles (Large Set) were presented in one color, the
four mid-sized circles (Medium Set) in another color, and the
four smallest circles (Small Set) in a third color. On every trial
the average size of circles in the Medium Set was equal to the
average size of all circles in that array. On each trial of the
experimental conditions, one set was presented in the value
color, another in the baseline color, and the third in a novel
color. The latter was the unused color from the color set used
for the value-learning task (see Stimuli).

The experiment used a subset of the six unique combina-
tions of color (value, baseline, novel) × set (Large, Medium,
Small), omitting conditions that placed the value color and
baseline color in the Small and Large set, respectively, or vice
versa. This left the following conditions: (1) Value-Large:
Novel, baseline, and value colors were used for the Small,
Medium, and Large sets, respectively. (2) Value-Small:
Value, baseline, and novel colors were used for the Small,
Medium, and Large sets, respectively. (3) Value-Medium:
The value color was used for the Medium set and the baseline
and novel colors for the Small and Large sets, respectively,
and vice versa, creating two types of Value-Medium trials. (4)
Control condition: The three colors not used previously were
used in the test array, one for each set. On each trial, control
colors were assigned randomly to a set (without replacement).
For all trials, the average circle size in the entire array always
matched the average size of the Medium set.

There were 50 trials in each block: ten for each color-set
combination described above plus ten control condition trials.
Trial order was pseudo-random. Note: In each block, the value
and baseline colors were equally likely to appear in each size-
set; novel colors were never used for the medium set but were
equally likely to appear in the Large or Small set. Each par-
ticipant completed nine experimental blocks (450 trials). A
practice block of 50 trials, followed by ten top-up learning
trials (five for each value condition, pseudo-randomly present-
ed), was given at the start of the task. Similar, brief top-up
learning blocks (ten trials each) were given after blocks 3, 5,
and 7 of the experimental blocks.

Data analysis

Value-learning and post-learning task Three participants in
Experiment 1 and four in Experiment 2 chose the incorrect
color on the choice task onmore than 15% of trials, suggesting
weak or absent color-value learning. All the rest of the

participants performed at 100% on this easy test of learning.
One participant in Experiment 1 had average misestimations
in all Learning and Post-learning blocks that were more than 2
s.d.’s larger than the corresponding group means, suggesting
failure to understand the task. All the data from the poor
learners and from the atypically poor task performer were
excluded from further analysis.

For each trial on all tasks, ensemble estimates (i.e., circle
area expressed in pixels2) were log10 transformed (log10Est)
and each circle area in the test array was similarly trans-
formed; array circle values were then averaged to compute
mean circle size (log10Array). Misestimation on each trial
was calculated as the difference between log10Est and
log10Array, where positive log unit values mean overestima-
tion.Misestimationmeans were calculated for each participant
and array condition and then subjected to repeated-measures
analyses of variance (ANOVA), using all four or just the three
value-array conditions as the within-subjects factor, as needed.
Greenhouse-Geisser corrections were applied when assump-
tions of sphericity were violated in all ANOVAs. Paired-
sample (2-tailed) t-tests were used to compare group mean
misestimations and response times (RTs) for high veresus
low reward trials in the learning tasks in each Experiment.
Bonferroni corrections for multiple comparison were applied
as needed. One-sample (2-tailed) t-tests were used establish
that misestimations were different from zero. Mixed-design
repeated-measures ANOVAs were used to compare results
between experiments, using Experiment as a between-
subjects factor and array condition as the within-subjects fac-
tor. Alpha levels were set at 0.05.

Experiment 1

The aim of this experiment was to determine if ensemble
reports of array element size would be biased by a subset of
elements presented in a reward-associated color. Each array
was presented for 200 ms and was never masked.

Results and discussion

Value-learning task Average ensemble misestimations and
mean RT are shown in Table 1. The magnitude of ensemble
misestimation in each condition was similar (p > .5). Circle
size was significantly overestimated in both the value [t(18) =
6.63, p < .001] and the baseline [t(18) = 6.81, p < .001] con-
ditions. However, mean RTs were 179 ms slower when the
array color signalled the availability of reward versus baseline
outcome [t(18) = 2.920, p = .009], suggesting greater effort in
the former condition and supporting the contention that re-
ward learning had occurred.
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Post-learningAs in the learning task, participants significantly
overestimated ensemble circle area in all conditions (all t’s >
6, all p’s < .001). However, as can be seen in Fig. 2a, the
magnitude of misestimation varied with array condition
[F(2.42, 43.4) = 3.384, p = .035, eta2 = .158, power = .661].
Specifically, the presence of the value color significantly mod-
ulated ensemble estimates depending on the size-set for which
it was used – the smaller the set possessing the value color, the
smaller the ensemble estimate. Specifically, when the value
color was used for the Small set, misestimation (mean = 0.143
log units) was significantly smaller than when this color was
used for the Large set (mean = .161 log units; t(18) = 3.018, p
= .007) or Medium set (mean = .152 log units; t(18) = 2.234, p
= .038). Misestimation was non-significantly different be-
tween the Large and Medium size sets (t(18) = 1.250, p =
.227). Ensemble misestimation obtained in the Value-Small
condition was also significantly smaller than that measured
in the control condition (mean = .156 log units; t(19)= 2.79,
p = .011). A similar comparison for the Value-Large condition
was non-significant (p > .45).

Experiment 1 provides novel evidence that the motiva-
tional salience of a subset of elements can bias ensemble
estimation even when there is no incentive for biased
selection of information from the array. When the smallest
circles in the display were in the high-value-associated

color, the tendency to overestimate ensemble element size
was modestly but reliably reduced relative to a control
(no-value) condition. Furthermore, when the large set of
circles had the high-value color, ensemble estimates were
reliably larger than when the same color was used for the
small set.

Experiment 2

If, in Experiment 1, motivational salience influenced en-
semble estimations by modulating early perceptual repre-
sentations of each element, then the introduction of a pat-
tern mask immediately after the test array should have
minimal effect on the pattern of results, i.e., the influence
of the high-value colored circles should again be evident.
However, if value-associations modulate processing at a
later stage of processing that involves recurrent top-down
processing (Enns & Di Lollo, 2000), then masking the test
array might eliminate any influence of previously learned
value-associations. Experiment 2 tested this by repeating
the procedure of Experiment 1 but this time presenting a
pattern mask immediately following the presentation of
the initial ensemble test array.

Table 1 Mean response times (RTs; ms) and misestimates (log units) of circle size in the value-learning task for baseline and value circles in
Experiments 1 and 2

Trial type Experiment 1 (No-mask) Experiment 2 (Mask)

RT Misestimation (log units)1 RT Misestimation (log units)

Baseline 2497 (273) 0.183 (0.028) 2938 (240) 0.150 (.100)

Value 2670 (246) 0.178 (0.027) 3151 (271) 0.156 (.094)

Standard error of the mean is given in parenthesis
1 Postive values indicate overestimation. See Data analysis

Fig. 2 Group mean misestimation of circle size obtained in the four
conditions of the test array in the Post-learning Task for Experiment 1
(a) and Experiment 2 (b). Black bars represent means when the value
color appeared in the test array; gray bars when it was absent (control

condition). The circle size category of the subset with the value color is
indicated on the x-axis. Positive numbers represent an overestimation of
the actual average circle size. Error bars reflect ±1within-subject standard
error of the mean (Cousineau, 2005)
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Results and discussion

Value-learning task As before, reward value had no effect on
ensemble estimation (t < 1) (see Table 1.) When misestima-
tions from this experiment were compared to the correspond-
ing results fromExperiment 1, neither a significant main effect
of experiment (F < 1) or reward value (F(1,37) = 1.514, p =
.23, eta2= .039) nor an interaction (F < 1) was found. RTs were
213 ms longer in the value (mean = 3,151 ms) versus baseline
(mean = 2,937 ms) condition (t(18) = 2.606, p = .017), repli-
cating effects observed in Experiment 1.

Post-learning task Group mean ensemble misestimations are
plotted in Fig. 2b for each test array condition. In contrast to
Experiment 1, array condition had a non-significant effect
(F(2.46, 26.78) = 2.096, p = .124, eta2 = .099, power =
.454). The linear trend of misestimation to decrease with value
size set was no longer significant (F < 1). It is obvious from
the figure that misestimates were markedly reduced in this
experiment compared to Experiment 1, approaching but not
reaching zero. One-way t-tests showed that in all array condi-
tions, ensemble size was still significantly overestimated, (all
p’s < .05).

A mixed-design ANOVA using experiment as a between-
groups factor and condition as a within-subjects factor re-
vealed a significant main effect of Experiment [F(1,37) =
6.067, p = .019, eta2 = .141, power = .670] and, importantly
for the hypothesis being tested here, the interaction of
Experiment and array condition was also significant
[F(2.49,92.16) = 3.492, p = .025, eta2 = .086, power =
.706]. The presentation of a mask after the initial test array
not only eliminated any influence of motivational salience of
array subsets but also substantially reduced the tendency to
overestimate the average circle size in the array.

General discussion

The aim of the study reported here was to determine whether
ensemble perception could be influenced by task-irrelevant,
non-sensory, i.e., learned, reward associations of elements in
the array. In two experiments, participants first learned to as-
sociate element color with reward value by engaging in an
element size ensemble judgment task in which all elements
(circles) in the array had the same color. Then, in the test
phase, the same ensemble judgment task was required, but
this time arrays were multi-colored, and no rewards were
forthcoming. Critically, on different trials, a subset of circles
that were either larger or smaller than average had the high
value color. Experiments 1 and 2 were identical except that in
the latter, a pattern mask immediately followed the brief (200
ms) array presentation during the test phase. The pattern mask
was used to interfere with the transfer of information to a more

stable form of representation such as working memory (Enns
& Di Lollo, 2000; Phillips, 1974; Sligte et al., 2009; Sperling,
1965; Vogel et al., 2006), forcing the ensemble response in the
second experiment to rely on fast parallel processing. Without
the mask (Experiment 1), ensemble size perception in the test
phase was biased towards the mean size of the subset of circles
with the high-value reward color. In addition, ensemble esti-
mates were consistently overestimated, suggesting that the
larger circles, regardless of their color, biased response. In
contrast, when test arrays were pattern masked, the value-
biasing effect was eliminated and the general tendency to
overestimate was also reduced, although not abolished.
These findings indicate that ensemble judgments are generally
more accurate and less open to bias by individual element
features when processing time is brief, and that under the latter
conditions, low level perceptual salience of individual items
can bias calculation of the ensemble statistic. However, when
more time is provided, ensemble judgments are susceptible to
bias by motivationally salient, i.e., reward-associated, as well
as physically salient, i.e., large, items in the array.

Simple, single-mechanism explanations of ensemble per-
ception cannot easily explain these results. Many current the-
ories of ensemble perception propose that ensemble judg-
ments involve rapid parallel processing of all elements in the
array without separate analysis of individual items (Ariely,
2001; Chong & Treisman, 2003, 2005; Corbett & Oriet,
2011). Others argue that ensemble perception may be based
on the selection and analysis of a few items from the array
(Myczek & Simons, 2008) and thus involves late WM pro-
cesses. Our finding that ensemble perception can be influ-
enced by element motivational and physical salience and that
such effects depend on available processing time supports a
hybrid view of these two models (e.g., de Fockert &
Marchant, 2008). Suppose a rapidly acquired array ensemble
statistic is always prioritized for rapid representation in WM
due to task demands. When additional processing time is
available, one or two especially salient array elements can also
be concurrently represented inWM. Explicit behavioral report
in such situations may be based on a combination of these
individual element representations and the ensemble statistic.
In this view, masking the ensemble array, as in Experiment 2,
means that the ensemble report can only be based on a singu-
lar ensemble representation, explaining why responses are
more accurate and less biased. Without the mask, ensemble
judgments result fromWMprocesses that combine the rapidly
acquired ensemble statistic with individual representations of
elements.

Our findings indicate that physical salience as well as mo-
tivation salience heightens the likelihood of element selection
when there is no mask, allowing such items to bias the final
report provided by the participant. Indeed, previous studies
show that both physically salient stimuli (Theeuwes, 1992)
as well as value-associated stimuli (Raymond & O’Brien,
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2009) garner preferential visual processing, perhaps
explaining why physically salient (Pedale & Santangelo,
2015) as well as motivationally salient (Gong & Li, 2014;
Krawczyk, Gazzaley, & D’Esposito, 2007; Thomas et al.,
2016; Wallis, Stokes, Arnold, & Nobre, 2015) objects are bet-
ter remembered than less salient objects when first encoun-
tered in natural scenes. Moreover, size contrast has been found
to be an important determinant of physical salience, with larger
items receiving higher visual priority (Proulx & Egeth, 2008),
a finding that specifically supports our explanation of why the
overestimation effects were so pronounced in Experiment 1.

It is important to note that value associations in the current
study were entirely irrelevant to the size-estimation task, making
their effect on ensemble judgments somewhat surprising.
Previous studies have shown that variation of a task-irrelevant
feature (e.g., color) in a size judgment task has little effect on
performance. This was found even when array processing time
was long (350 ms, unmasked) and report was delayed (Brady &
Alvarez, 2011), task features that encourage active and sustained
use of WM. Yet, here we show that value-associations can influ-
ence selection in an ensemble task evenwhen task-irrelevant and
indeed disadvantageous to accurate performance. Such findings
are consistent with previous studies measuring responses to sin-
gle targets presented within multi-item arrays (Anderson et al.,
2011b). Our current finding supports the possibility that previ-
ously acquired value-associations can be used to heighten visual
processing priority of specific objects or features over a wide
range of situations, helping to explainwhy behavioral experience
can shape perception in ways that cannot be predicted from
available sensory data alone.

In the context of ensemble perception, value-biasing sug-
gests that prior experience may influence our perception of
larger object surface textures and scene backgrounds, as well
as scene gist, as these are primary roles thought to be served
by ensemble-processing mechanisms (Im & Halberda, 2013;
Oliva & Torralba, 2006; Whitney & Leib, 2018). Such ab-
stractions enable scene gist to be rapidly extracted (Oliva &
Torralba, 2001) and contribute to the perception that a scene is
stable after moving the eyes (Corbett & Melcher, 2014;
Manassi, Liberman, Chaney, & Whitney, 2017). The current
observation that ensemble perception can be value-biased un-
derscores an emerging body of evidence that prior experience
linking stimuli with motivationally salient behavioral out-
comes shapes our perception of the world. If we consider
that ensemble perception probably functions to provide
concise descriptions of larger textured surfaces and scene
backgrounds (Im & Halberda, 2013), to support rapid ex-
traction of scene gist (Oliva & Torralba, 2006), and to
contribute to the perception that a scene is stable after
moving the eyes (Manassi et al., 2017), then the current
observation that ensemble perception can be value-biased
suggests that all these scene analysis functions are simi-
larly susceptible to bias by prior value learning.
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