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Abstract: 

Rolling-resistance plays a major role in tyre development due to its significant influence 

on energy consumption and environmental impact. Numerous efforts to minimise the 

tyre’s rolling-resistance have met with no or minor success because of the tyre’s 

complexity and the involved compromises. This paper explores a novel design solution of 

multi-chamber tyre, as a potential alternative, for low rolling-resistance while meeting 

other driving requirements; a multi-purpose generalised solution (design-for-all). A novel 

multi-chamber design (base design) with a validated finite-element (FE) model was used 

to create the different novel designs. Statistical analysis based on Design of Experiment 

(DOE) was conducted to identify the best cavity volumes and inflation settings. The 

“design-for-all” solution offered a 28% reduction in rolling-resistance, an enhanced 

cornering performance, a matching grip and a satisfactory cushioning. 

 

Keywords: 

Rolling Resistance; Multiple Chambers Tyre; Tyre Design; Cavity Volume; Tyre 
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1. Introduction 

To maintain mobility, the vehicle can spend up to 30% of its fuel to overcome the tyres’ 

rolling-resistance depending on its driving cycle.1 Based on that, the rolling-resistance 

can have a considerable influence on the vehicle’s emissions, its energy sustainability and 

hence environmental impact, especially on the global scale. This makes addressing the 

rolling-resistance one of the core requirements in tyre development.2, 3 Nevertheless, the 

attempt to lower the rolling-resistance is a difficult task to achieve without compromising 

other tyre properties because of the tyre’s structural complexity. Further insights on this 

are explored in a previous study.1 

 

As a promising substitute, the multi-chamber tyre solution has the likelihood to decrease 

rolling-resistance without undermining other tyre properties undesirably.4 In this field, 

some multi-chamber tyre solutions have been suggested as untested and patented design 

ideas. The majority of those solutions are for supporting run-flat rolling, securing the tyre 

beads’ position and/or preserving inflation-air.5-9 Generally, those solutions consist of 

multiple, self-sustained and annular chambers that are laid adjacently or concentrically to 

compensate for any failed chambers during operation. For better off-roadway grip, 

further patented designs were proposed in either concentric circular compartments or 

removable circular shoe-casing for the tyre’s tread.10-12 Yet, those patents have doubtful 

validity, practicability, and ability to achieve of the vehicle’s various driving needs 

because they target only a specific need without any solid verification given. 
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Lambe13 and Merz et al.14, each suggested a patented design that may reduce energy 

losses and ride discomfort via utilizing concentric circular twin-chambers where the 

inside compartment is set at inferior pressure to that of the outside. With no validations, 

such design is questionable because it can undermine the tyre’s grip, beads mounting 

stability, and rolling steadiness.       

 

For tyre manufacturers, each of Bridgestone15 and Goodyear16 proposed a prospective 

design idea of multi-chamber tyre for better rolling performance under diverse driving 

situations by manipulating the tyre’s outer-shape and its stiffness via altering 

compartments’ pressures individually and variously. However, those designs are 

currently under on-going research and yet to be finalised as end products. Coyote17 

produced an interior compartment for the standard tyre turning it into concentric double 

compartments where the inside cavity has a higher pressure for holding the beads firmly 

in place and supporting run-flat operation while the lower pressure outside cavity 

provides for better off-road grip. 

 

Fusion Innovation18 had an uncompleted project where Kubba19 studied a four 

compartments tyre prototype empirically and showed that the multiple cavities solution 

can decrease the rolling-resistance. In this study, Kubba built an FE tyre model through 

Abaqus/Standard which was restricted to computing the quasi-static parameters primarily 

and the lateral forces to some degree but failed to calculate the rolling-resistance and 

address the interaction between cavity-air and tyre structure. 
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Overall, the current published research has a shallow coverage of the field of multi-

chamber tyre especially in relation to rolling-resistance since it is still an immature 

research area either in designing phase or laboratory crafting with no real-world uses so 

far. Furthermore, relevant long-term development projects are under-way by both vehicle 

and tyre manufacturers but are of restricted access due to commercial confidentiality. 

Clearly, more detailed and thorough studies are required to be performed both 

analytically and experimentally. This is to identify the working principles, the various 

characteristics, and the contribution of the multi-chamber concept to the rolling-

resistance and other driving requirements as a prospective alternative solution. 

 

In this regard, this paper uses a novel multi-chamber design, from a previous work4, as a 

base design to generate further novel designs in an attempt to reach an optimum multi-

chamber design for low rolling-resistance. A multi-purpose (generalised) design is 

introduced that is tailored for low rolling-resistance while satisfying other essential 

driving requirements like grip and cushioning (i.e. design-for-all). To identify the 

optimum design, the generated designs are investigated for the effects of its chambers 

design, cavity volume, and inflation pressure on the rolling-resistance and other driving 

requirements compared to the standard tyre design. All the investigations are carried out 

using Abaqus/Explicit FE and DoE approaches. 

 
2. Study Approach 

2.1 Investigation Scope 
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To independently investigate the structural effects of the multi-chamber designs, the core 

rolling-resistance due only to the tyre’s internal losses (i.e., mechanical hysteresis) is 

evaluated which is primarily responsible for 80-95% of rolling-resistance compared to 

other secondary sources like road-slip (i.e., 5%) and aerodynamic-drag (i.e., ~15%) for 

straight rolling on flat road.1 In this respect, the targeted tyres are investigated under free-

rolling conditions over a smooth surface drum to exclude the contributions of traction, 

braking and road coarseness to the rolling-resistance. The tyres are contact driven by the 

road drum and tested once both are in full-contact at steady-state rolling of constant speed 

to eliminate or minimise any contact slippage to negligible levels. Furthermore, the 

tyre(s) will be tested at a fixed low rolling-velocity to discount the aerodynamic 

resistance effect over the tyre’s rolling-resistance.  

 

The effect of the anticipated “weight” difference between the different tyre designs is not 

considered since it is outside this paper’s scope. This is because the tyre’s rotational 

inertia has hardly any impact on rolling-resistance during straight free-rolling in which its 

influence is more perceptible in traction-and-deceleration situations. 

 

Furthermore, “design manufacturability” is another aspect that will not be covered in this 

paper’s scope but in upcoming future works as it requires extensive investigation work 

and resources of its own. The same goes for the “inflation mechanism” of the tyre. 

 

In this paper, the tyre’s rolling-resistance is calculated as the mechanical energy-lost per 

unit-distance travelled. 
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2.2 Prototype Designing and Constraints 

Several constraints were to be met in creating the novel multi-chamber designs (i.e., II-1 

designs) out of the base design (i.e., design II) in Figure 1. First, chamber re-designing is 

to involve only zones 1 and 2 in the “base design” without including the side zones (L) 

and (R) to avoid any disruptions to the flexibility of the tyre’s main sidewalls. Secondly, 

the new designs are to have no more than two chambers radially and no more than two 

chambers laterally. This is in attempt to keep the new designs simple, feasible, and cost-

effective. Thirdly, the inflation pressure is to be kept the same between the chambers 

aligned adjacently in the lateral direction in zones 1 and 2 to have a balanced tyre rolling. 

Furthermore, zone 1 chambers are to have the highest pressure followed by lower 

pressure chambers by a minimum difference of 35 KPa consecutively over zone 2 

radially as in Figure 2.17 This is to hold the tyre’s beads tightly, support zone 2 chambers, 

cope with run-flat scenarios, and avoid profile distortions. Lastly, a middle curvy inner-

wall was used in zone 2 in some designs to replace the straight inner-wall, to have a more 

dynamically balanced tyre, have fewer chambers, and avoid a permanently stiffer tyre. 

 

2.3 FE Model Development 

This study uses an experimentally validated FE model of an initial multi-chamber design 

(i.e., design II), from a previous work4, as a “base design” to produce and evaluate further 

novel designs (i.e., II-1 designs). In this previous work, as seen in Figure 1, a 225/55 R17 

standard tyre was built in Abaqus FE and validated experimentally for rolling-resistance 

and other driving requirements. Later, this standard tyre was modified to have dual 
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chambers instead of a single cavity and tested both in FE and experimentally. Using the 

validated FE model, “design II” was developed and attained after evaluation against 

different basic multi-chamber designs. 

 

 
Figure 1. FE Model for Standard and Design II (Base Design) Tyres. 

 

Using full-factorial DoE, as in Figure 2, four novel multi-chamber designs were created 

including the base design (design II), which was re-numbered to design II-1-1, to assess 

the effects of different internal chamber designs on the tyre’s rolling-resistance. Those 

novel designs have exactly the same geometrical and material tyre aspects as the “base 

design” (design II) FE model including the inner-walls for constructing the internal tyre 

chambers. The only difference is in the number, position and shape of inner-walls. 
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Figure 2. Novel Multi-Chamber II-1 Designs. 

 

Greater details on the FE model development for both the standard and the base (design 

II) tyres can be found from former investigations.4, 20 Briefly, full 3D tyre FE models 

were created using Abaqus 6.13 with analytical rigid road-drum. A groove-free tread was 

included to minimise hour-glassing and ensure an efficient model as the tread’s grooves 

have marginal influence over tyre’s rolling-resistance.1, 21-23 The tyre’s rubber sections 

were constructed using C3D8R solid elements while the reinforcements were treated as 

SFM3D4R surface elements embedded within the relevant rubber components. To 

simulate the physical process of tyre rolling, the related hyperelastic and viscoelastic 

material properties of the tyre’s rubber parts were represented using Yeoh and PRF 

(Parallel Rheological Framework) modules respectively, while the reinforcements were 

characterised by its elastic properties, in Abaqus. The insides of the tyre’s chambers were 

considered surface-based fluid-filled cavities using volume elements to represent the 

inflation air response as an ideal gas.24-26 Abaqus/Explicit is used for the tyre modelling 
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to predict the dynamical non-linearity more effectively and because the PRF material 

model is not compatible with Abaqus/Standard.  

 

2.4 Design Solution 

Based on the generated II-1 designs in Figure 2, a multi-purpose generalised design is 

targeted to meet the diverse driving requirements in which it is customized for low 

rolling-resistance while maintaining the tyre’s grip, cushioning, and cornering stiffness 

compared to the standard tyre. “Design II-1” set is assessed as it seems to have better 

manufacturability and offer more versatility to meet the intended application. 

 

Once a sub-optimum design is reached, the effect of the design’s cavity volumes on the 

driving requirements is studied with different cavity volumes within certain limits, as 

illustrated in Table 2, to maintain design feasibility. 

 

With the optimum volume settings, similarly, the effect of inflation pressure is evaluated 

within a given working range, as indicated in Table 4, to ensure maintaining tyre profile 

and operation properly. 

 

2.5 Assessment Conditions 

The new multi-chamber designs are evaluated using the validated FE model in 

Abaqus/Explicit for low rolling-resistance and meeting tyre’s gripping, cushioning and 

cornering performance. The investigation will involve assessing at straight free-rolling 

the “rolling-resistance” based on the tyre’s internal losses (i.e. hysteresis), the “grip” 
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according to the contact-patch area and the contact-pressure distribution, and the 

“cushioning” based on the radial static stiffness. At free-rolling under different slip-

angles, the “cornering” is assessed in terms of the cornering stiffness and the contact-

patch area.  

 

The methodology used in computing the tyre’s rolling-resistance, gripping, cushioning 

and cornering performances can be found in former works4, 20 for further details. Briefly, 

in the FE solution, the tyre’s rolling-resistance was determined based on the energy 

dissipated at the tyre’s footprint which was obtainable from the product of the FE outputs 

of the tyre’s hysteresis ratio (i.e. ALLCD/ALLIE) against the work done by the tyre at 

the footprint due to deformation under vertical loading.  

 

The evaluation involves running the tyres at a straight free-rolling velocity of 30 Km/h, 

under a 4000 N vertical load, and at the normal inflation mode as in Figure 2 unless 

otherwise stated. The “normal mode” is used whenever the tyre’s gripping and 

cushioning is needed for situations as traction, deceleration, cornering and/or rolling over 

bumpy roads. For cornering, the tyre(s) runs under the same vertical load at the normal 

mode but at a free-rolling velocity of 10 Km/h and different slip-angles; at multiple slip-

angles that are close to zero for cornering stiffness assessment (i.e., 0, 0.5, 1.0 and 1.5 

degrees) and at 3 degrees for footprint area evaluation. The cornering stiffness is 

calculated from the slope of the cornering force against the slip-angle. 

 

3. Design-for-All 
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In the “design-for-all”, the tyre’s “grip” will have priority for safety and driving 

performance, followed by “cornering” for turns handling and stability, “rolling-

resistance” for fuel-economy, and “cushioning” for ride comfort respectively. 

 

3.1 Multi-chamber Design 

At the normal mode, the rolling performance of the II-1 designs, shown in Figure 2, is 

assessed revealing that each design exhibits certain trade-offs with respect to the diverse 

driving requirements. For the tyre’s grip, as seen in Figure 3(a) and Table 1, both the 

contact-patch area and the contact-pressure distribution of the tyre’s footprint are 

assessed, since they are the core characteristics of the grip mechanism, similar to 

Aldhufairi et al.4. In Table 1, the pressure patterns are used as a generalised estimation of 

the footprint shape since Abaqus/Explicit does not support a contour visualization of the 

footprint area. Both designs “II-1-1” and “II-1-3” showed footprint area and shape close 

to that of the “standard design”, whereas designs “II-1-2” and “II-1-4” showed smaller 

footprints. This is due to the added radial stiffness gained by designs “II-1-2” and “II-1-

4”; because of the increase in the numbers of side inner-walls in the designs’ zone 2, 

which noticeably reduced the deformation at the contact-patch. 
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(a) Footprint Area at Straight Rolling 

(mm^2). (b) Cornering Stiffness (N/deg). 

  
(c) Footprint Area (mm^2) at 3 Degrees Slip. (d) Rolling-Resistance Coefficient. 

 
(e) Radial Static Stiffness (N/mm). 

Figure 3. II-1’s Designs Performance. 

 

For the contact-pressure, in Table 1, designs “II-1-1” and “II-1-3” exhibited quite 

different pressure pattern in contrast with the “standard design”. The difference can be 

attributed to the interference of zone 2’s side inner-walls with the loading mechanism of 

the tread region as a result of the inner-walls being a direct rigid-like link of vertical 
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loading with orthogonal orientation to the tread. Such a difference is minimised with 

designs “II-1-2” and “II-1-4” due to the middle curvy inner-wall in zone 2 acting more 

like a spring and a support, with more flexibility and friendly orientation to the tread, 

reducing the direct loading of the straight zone 2 inner-walls on the tread. 

 

Table 1. Contact-Pressure Pattern for II-1’s Designs Footprint. 

 

In cornering, as illustrated in Figure 3 (b) and (c), II-1 designs demonstrated an increased 

cornering stiffness to that of “standard design”. This is because zone 2’s side inner-walls 

would provide an added support to the tyre’s sidewalls laterally during cornering to 

counteract the relevant opposing centrifugal forces of the vehicle. All II-1 designs 

displayed smaller footprint area, with a slight difference for designs “II-1-1” and “II-1-4”, 

compared to the standard design. 

 
In II-1 designs, the further confinement of the cavity-air into separate compact spaces, 

especially in the direct path supporting the tread profile, prevented bulky air-volume 

losses from the zones supporting the tread directly at the contact-patch during tyre 

rolling; helping to reduce the tyre’s deformation. This is in line with the kinetic theory of 

Straight Free-Rolling at Normal Inflation Mode  
Standard Design  

II-1-1 
Design  
II-1-2 

Design  
II-1-3 

Design  
II-1-4 

Contact-
Pressure (MPa) 

      



15 
 

ideal gases and findings of Aldhufairi et al.4. Moreover, the utilization of the side inner-

walls, especially the straight type, in the multi-chamber construction has provided II-1 

designs with an apparent boosted radial stiffness, as shown in Figure 3(e), because it 

helped in making the vertical loading path more direct to the tread in the tyre’s structure 

agreeing with Ji27. This made II-1 designs less prone to structure deformation especially 

the tread curvature. The more inner-chambers used, particularly in zone 2, the greater the 

design’s radial stiffness would be. In Figure 3(d), such added design stiffness has reduced 

the rolling-resistance significantly but at the expense of poorer cushioning.  

 

Taken all together, none of the current II-1 designs addresses all the diverse driving 

requirements satisfactorily. Accordingly, further improvements were made to the most 

promising design in the current II-1 designs (i.e. design “II-1-1”) in an attempt to reach a 

more fulfilling design to all driving requirements. Compared to the other II-1 designs, 

design “II-1-1” was picked since it has the closest footprint area to that of the standard 

design, the lowest rough ride level, and the simplest structure with fewest parts to 

manufacture. 

 

After several re-designing trials, the modified design “II-1-1B” in Figure 4 was obtained, 

which involved altering the shape and the orientation of zone 2’s side inner-walls from 

straight rigid-like to curvy spring-like, to gain more flexibility and have more supportive 

loading path to the tread contact-patch. The overall performance of the design is shown in 

the next section. 
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Figure 4. Modified Design (II-1-1B) for “Design-for-All”. 

 

3.2 Cavity Volume Effect 

Based on full-factorial DoE, twenty-five different versions of design (II-1-1B)’s cavity 

volumes were created and evaluated for the diverse driving requirements using 

Abaqus/Explicit. This was done by altering the cross-sectional height and width of the 

“lateral inner-wall” (LW) in Figure 4 within the dimensional constraints in Table 2. 

 

Table 2. DoE’s Factors and their Levels for Cavity Volume Effect. 

No Factor Dimensional Levels (mm) 

1 Lateral Inner-Wall Height (LWH) 

30 
38 
45 
53 
60 

2 Lateral Inner-Wall Width (LWW) 

110 
121 
132 
143 
154 

 

To avoid redundancy and maintain conciseness, samples of the DoE’s run results and not 

all are presented which cover the population’s trends and findings as follow:  
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For the tyre’s grip, as shown in Figure 5 (a) and (b) for example, the footprint area was 

found to increase through either increasing the lateral inner-wall’s width at any fixed 

height above 38 mm or raising the height at the maximum width fixed at 154 mm. Such 

an effect could be due to the lay-up axes of the side inner-walls of both zones 1 and 2 

getting closer to the direct vertical loading path as the lateral inner-wall’s width increases. 

This would mean the vertical loading would be transferred more directly and largely via 

the side inner-walls to the tread region leading to greater footprint deformation.  

 

  
(a) Footprint Area vs Inner-wall’s Width. (b) Footprint Area vs Inner-wall’s Height. 

Figure 5. Footprint Area versus Lateral Inner-Wall’s Dimensions for Straight Free-
Rolling. 

 

However, increasing the lateral wall’s height had adverse impact on footprint area at any 

fixed width equal to or below 132 mm. Besides being further away from the direct-

loading path, such dimensional settings would make zone 2’s volume and its side inner-

walls smaller and stiffer that would require lesser deformational work to support the 

15500

15600

15700

15800

15900

16000

16100

16200

16300

100 120 140 160

C
on

ta
ct

 A
re

a 
(m

m
^2

) 

Lateral Inner-wall's Width (mm) 

Contact Area (mm^2) at
Wall Height of 45 mm

14800

15000

15200

15400

15600

15800

16000

16200

16400

16600

25 35 45 55 65

C
on

ta
ct

 A
re

a 
(m

m
^2

) 

Lateral Inner-wall's Height (mm) 

Contact Area
(mm^2) at Wall
Width of 154 mm
Contact Area
(mm^2) at Wall
Width of 121 mm



18 
 

tyre’s tread under vertical loading according to the kinetic theory of gases and Hooke’s 

law for spring-like objects. This is in line with the findings of Aldhufairi et al.4. 

 

In Table 3, the decrease of the lateral inner-wall’s width was found to build-up more 

pressure at the footprint centre. This is as a narrower lateral inner-wall would bring the 

orientation of the cavity volumes in zones 1 and 2 more toward the tread centre leading to 

more pressure-displacement work at the centre during loading. On the other hand, 

increasing the lateral inner-wall’s height would enhance the maximum pressure regions at 

the footprint shoulders. The enhancement is due to the reduction in both zone 2’s volume 

and the height of its springy-like side inner-walls which makes the loading transferal via 

inner-walls to the tread shoulders region more rigid and direct. Such an aspect has 

contributed to boosting the tyre’s radial stiffness with the increase of the lateral inner-

wall’s height as seen in Figure 6(a) for example. The lateral inner-wall’s width had no 

impact on the radial stiffness. 
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Table 3. Contact-Pressure Pattern vs Lateral Inner-Wall’s Dimensions. 
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(a) Radial Stiffness vs Inner-wall’s Height. (b) Rolling-Resistance vs Inner-wall’s Height. 

  
(c) Non-Uniformity vs Inner-wall’s Height. (d) Rolling-Resistance vs Inner-wall’s Width. 

Figure 6. Effect of Lateral Inner-Wall Dimensions on Various Driving Requirements for 
Straight Free-Rolling. 

 

Despite the added stiffness, a marginal increase in the rolling-resistance was observed as 

the lateral inner-wall’s height was raised from 45 up to 60 mm as in Figure 6(b) for 

example. To find out the reason behind this, in Figure 6(c), the tyre’s radial non-

uniformity (i.e. vertical force variations at wheel-spindle), due to the difference in the 

tyre’s inner-chambers design assuming negligible tyre manufacturing imperfections, was 

assessed similar to Aldhufairi et al.4. A slight increase in the tyre’s radial non-uniformity 
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was found as the lateral inner-wall’s height increased. This meant slightly higher 

continuous circumferential flexing of the tyre’s tread during rolling was incurred with 

height increase.  As the height increases, this would make zone 2’s volume and its spring-

like side inner-walls smaller, less resilient, easily disrupted, and unable to maintain tread 

profile in position more efficiently against the periodic circumferential oscillations 

induced by peristaltic-pumping effect during rolling. Nevertheless, II-1-1B’s designs had 

lower radial non-uniformity than that of the standard design (i.e. 21.8 N). 

 

At any fixed lateral inner-wall height above 30 mm, the rolling-resistance was observed 

to increase with the inner-wall’s width increase as indicated in Figure 6(d). This is 

because a greater width would cause higher footprint deformation since the side inner-

walls are moved closer to the direct vertical loading path. 

 

Out of the twenty-five different volume designs, the best three designs in terms of tyre’s 

grip were picked and further evaluated for the most balanced design for all driving 

requirements respectively. The three designs are “II-1-1B-15”, “II-1-1B-20” and “II-1-

1B-25”. 

 

In Figure 7, design “II-1-1B-20” was found to be the best choice for meeting all the 

driving requirements satisfactorily. For tyre’s grip, “II-1-1B-20” has similar footprint 

area and contact-pressure to that of the standard design unlike the other designs. As for 

cornering, both “II-1-1B-20” and “II-1-1B-25” show improved cornering capabilities 

over the standard design whereas “II-1-1B-15” shows a close performance. In “II-1-1B-
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20” and “II-1-1B-25”, the curvy side inner-walls of zone 2 provides an enhanced lateral 

stability to the tyre through offering the tyre’s sidewalls with an added cornering stiffness 

to counteract the related opposing vehicle centrifugal force(s). Also, under the direct 

support of the nearly un-deformed zone 1, zone 2 with its flexible side inner-walls 

provides a firm hold-down of the tyre’s tread against the road for added grounding and to 

maintain better contact.  
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(a) Footprint Area at Straight Rolling 

(mm^2). (b) Cornering Stiffness (N/deg). 

  
(c) Footprint Area (mm^2) at 3 Degrees 

Slip. (d) Rolling-Resistance Coefficient. 

 

Design Lateral Inner-Wall Dimensions 
Height (mm) Width (mm) 

II-1-1B-15 45 154 

II-1-1B-20 53 154 

II-1-1B-25 60 154 

(e) Radial Static Stiffness (N/mm). Designs & its Dimensional Settings. 

Figure 7. II-1-1B’s Designs Performance at Normal Inflation Mode. 

 

All three designs show lower roll-resistance than the standard design with “II-1-1B-15” 

and “II-1-1B-20” being nearly the same and the lowest. For the tyre’s cushioning, all 

three designs exhibit higher radial stiffness with “II-1-1B-20” being slightly higher than 
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the other designs. Regardless, II-1-1B-20’s stiffness is still within the acceptable limits, 

which is around 200-220 N/mm, for passenger-car tyres.4, 28, 29  

 

3.3 Inflation Pressure Effect 

Design “II-1-1B-20” was further evaluated for the effect of different inflation pressures 

on the overall performance and if a more optimum design is possible. The investigation 

involved changing the inflation pressure of the (L) and (R) side zones together with the 

same pressure to maintain a balanced run but independently from zone 2. The inflation 

levels within which those zones were inflated are shown in Table 4. The inflation levels 

were set close to that of the normal inflation mode (i.e. 220 KPa) in attempt to maintain 

the tyre’s physical properties within safe and proper limits. Zone 1’s inflation remained 

unchanged to maintain design stability. Using Full-Factorial DoE, nine different pressure 

settings were created and evaluated for the II-1-1B-20 design using Abaqus/Explicit.  

 

Table 4. DoE’s Factors and their Levels for Inflation Pressure Effect. 

No Factor Pressure Levels (KPa) 

1 Zone (2) 
200 
220 
240 

2 Side Zones (L) and (R) 
200 
220 
240 

 

Agreeing with Aldhufairi et al.4, modifications to the zone 2’s pressure have an apparent 

influence over the tyre’s physical properties, whereas the side zones (L) and (R) have no 

obvious effect. Being in direct support of the tyre’s tread, increasing zone 2’s pressure 

leads to strengthening contact-pressure at tread shoulders and increasing the tyre’s radial 
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stiffness causing a reduction in the footprint area (at straight rolling and cornering) along 

with the rolling-resistance in the process as seen in Figure 8. However, for cornering 

stiffness, zone 2’s pressure has no apparent impact. 

 

  
(a) Zone 2 Pressure vs Radial Stiffness. (b) Zone 2 Pressure vs Footprint Area. 

 
(c) Zone 2 Pressure vs Rolling-Resistance. 

Figure 8. Influence of Zone (2)’s Pressure on (a) Radial Stiffness, (b) Footprint Area, and 

(c) Rolling-Resistance Coefficient (RRC) for Straight Free-Rolling. 

 

Any pressure changes whether in zone 2 or side zones (L and R) were found to affect 

how the tyre responds to the different driving requirements with trade-offs involved 

usually as in Figure 9 for example. In that regard, “II-1-1B-20” design inflated at the 
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normal mode is concluded to still be the best choice to address the driving requirements 

as it is tailored and optimised specifically at that mode for the different driving needs.  

 

  
(a) Straight Rolling Footprint Area (mm^2). (b) Cornering Stiffness (N/deg). 

  
(c) Footprint Area (mm^2) at 3 Degrees Slip. (d) Rolling-Resistance Coefficient. 

 

Design Pressure Settings (KPa) 
Zone 1 Zone 2 Zones (L & R) 

Standard 
(220 KPa) N/A N/A N/A 

II-1-1B-
20-3 320 200 240 

II-1-1B-
20-6 320 220 240 

II-1-1B-20 320 220 220 
II-1-1B-

20-9 320 240 240 

(e) Radial Static Stiffness (N/mm). Designs & its Pressure Settings. 

Figure 9. Samples of II-1-1B-20’s Designs with different Pressures and its Performances. 
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Nevertheless, if the pressure is dynamically controlled, zone 2’s pressure can be changed 

temporarily when needed to provide the tyre with extended versatility and enhanced 

performance to better address the driving condition at hand. At straight rolling on flat 

roads with marginal acceleration or braking, zone 2’s pressure can be set at a higher level 

for reduced rolling-resistance and hence better fuel economy as is the case with the 

economy inflation mode of the “II-1-1B-20” design in Figure 10. At the economy mode, 

only zone 2 of the “II-1-1B-20” design can be further inflated to the highest pressure 

possible (i.e. 280 KPa) as per the design constraints in section (2.2) while keeping the 

other zones’ pressure at the same level as in the normal mode.  
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(a) Footprint Area at Straight Rolling (mm^2). (b) Rolling-Resistance Coefficient. 

 

M
od

e 

Design 
Pressure Settings (KPa) 

Zone 1 Zone 2 Zones (L 
& R) 

N
or

m
al

 Standard 
(220 KPa) N/A N/A N/A 

II-1-1B-20 320 220 220 

Ec
on

om
y 

Standard 
(280 KPa) N/A N/A N/A 

II-1-1B-20 320 280 220 

(c) Radial Static Stiffness (N/mm). Designs & its Pressure Settings. 
Normal Mode Economy Mode 

Standard II-1-1B-20 
Contact-
Pressure 
(MPa) 

Standard II-1-1B-20 
 Contact-
Pressure 
(MPa) 

  
    

(d) Contact Pressure Distribution (MPa). 
Figure 10. Performances of “II-1-1B-20” Design and “Standard” Design at Normal and 

Economy Modes for Straight Free-Rolling. 
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As indicated, the economy mode gives the “II-1-1B-20” design an added radial stiffness 

to further reduce rolling-resistance and improve fuel economy limited for usage in 

conditions like steady-state rolling on flat roads with minimum traction, braking and 

turning involved due to the tyre’s grip and cushioning being undermined at that mode. 

However, if the driving conditions are to be changed in which the tyre’s grip or 

cushioning is needed, the “II-1-1B-20” design is to be inflated back to the normal mode 

by just deflating zone 2’s pressure from 280 KPa back to 220 KPa. Such driving 

conditions could be traction, braking, cornering or driving over bumpy roads. 

 

The “II-1-1B-20” design in the economy mode gave a further rolling-resistance reduction 

of 7% compared to its normal mode and hence 35% to the normal mode of the standard 

design.   

 

4. Conclusion 

Design “II-1-1B-20” was found to be the best balanced “design-for-all” solution in which 

it met the targeted tyre grip, provided an improved cornering performance, and offered an 

acceptable cushioning level while lowering the rolling-resistance by ~28% compared to 

the standard design at the normal inflation mode as seen in Figure 10. The core design 

feature of the solution was the confinement of cavity-air into compact spaces in the direct 

vertical loading path to the tyre’s tread, especially zone 2, which made the tyre’s tread 

more independent from the side zones (L) and (R). Based on that, it was possible to 

maintain the tyre’s contact-patch area while having an added radial stiffness. 



30 
 

 

The “design-for-all” solution (i.e. II-1-1B-20) had fewer chambers, where zone 2 was 

constructed with curvy spring-like side inner-walls, that allowed zone 2’s structure to 

have greater elastic (stored) potential energy than the “II-1” design solutions. This has 

added more non-linear complexity to the tyre’s structure and behaviour in which 

inconsistent cavity-volumetric effects on the driving requirements were found. However, 

it was noticeable that the rolling-resistance would slightly increase if zone 2’s volume got 

smaller and/or if zone 2’s side inner-walls were to lay-up closer to the direct vertical 

loading route. 

 

“II-1-1B-20” design has the potential to provide extended versatility and more improved 

fuel economy if the inflation pressure is to be dynamically controlled during rolling. This 

is by changing zone 2’s pressure only between 220 KPa (i.e. normal mode), for the 

necessary tyre’s grip and cushioning, and 280 KPa (i.e. economy mode) for added radial 

stiffness and lower rolling-resistance according to the requirements of the driving/road 

conditions at hand. 

 

In the economy mode, the “II-1-1B-20” design can provide a further rolling-resistance 

reduction of 7% in compared to its normal mode. 

 

5. Future Work 

To further optimise the current solution(s) for practical applications, the investigation 

scope is to be expanded to include assessing the solution’s manufacturability, inflation 
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mechanisms, further operating factors, like rotational-inertia and temperature, and wider 

driving conditions like traction and braking. 

 

On the solution’s manufacturability, concepts of the potential manufacturing methods for 

future consideration are highlighted briefly below in Figures 11 and 12. For inflation 

mechanism, the “II-1-1B-20” design is to have its different cavities inflated through a 

network of flexible air channels connecting each chamber at its nearest point to a valve 

stem on the wheel rim. The “II-1-1B-20” solution can have either a single inflation mode 

(i.e. normal mode) to manually inflate and to use all time or an interchangeable mode (i.e. 

between normal and economy) depending on the driving condition which can be 

controlled through an auto-inflation system like Goodyear AMT or Aperia’s Halo. 
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Figure 11. On-Drum Building Procedure for “II-1-1B-20” Design. 
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Figure 12. Vulcanisation (Curing) Procedure for “II-1-1B-20” Design. 
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