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Gravitational waves emitted by coalescing compact objects carry information about the spin
of the individual bodies. However, with present detectors only the mass-weighted combination
of the components of the spin along the orbital angular momentum can be measured accurately.
This quantity, the effective spin χeff , is conserved up to at least the second post-Newtonian order.
The measured distribution of χeff values from a population of detected binaries, and in particular
whether this distribution is symmetric about zero, encodes valuable information about the underlying
compact-binary formation channels. In this paper we focus on two important complications of using
the effective spin to study astrophysical population properties: (i) an astrophysical distribution
for χeff values which is symmetric does not necessarily lead to a symmetric distribution for the
detected effective spin values, leading to a selection bias; and (ii) the posterior distribution of χeff

for individual events is asymmetric and it cannot usually be treated as a Gaussian. We find that
the posterior distributions for χeff systematically show fatter tails toward larger positive values,
unless the total mass is large or the mass ratio m2/m1 is smaller than ∼ 1/2. Finally we show that
uncertainties in the measurement of χeff are systematically larger when the true value is negative
than when it is positive. All these factors can bias astrophysical inference about the population when
we have more than ∼ 100 events and should be taken into account when using gravitational-wave
measurements to characterize astrophysical populations.

I. INTRODUCTION

With the first two scientific runs of the advanced LIGO
and VIRGO detectors [1, 2] now completed, observations
of gravitational waves (GWs) emitted by coalescing binary
black holes (BBHs) and binary neutron stars (BNSs) are
becoming routine [3–8]. Rates inferred for the merger
of compact objects imply that dozens of sources will be
detected every year by current ground-based detectors at
design sensitivity [8–11]. Such rates will allow us to move
beyond characterizing individual objects to characterizing
whole populations, revealing details about the underlying
astrophysics of compact binaries.
The spins of the two merging objects are among the

cleanest indicators of the underlying formation channels
(though others have been proposed, e.g. the orbital eccen-
tricity; see Refs. [12–16]). In fact, the main proposed for-
mation pathways for compact-binary coalescences (CBCs)
result in different distributions for the orientations of the
component spins [17]. Systems formed via dynamical in-
teractions in globular clusters [18] or stellar clusters near
active galactic nuclei [19] are typically expected to have
a random distribution of the spins’ angles. Conversely,
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binaries formed through common envelope evolution in
galactic fields [20] are expected to have spins preferentially
aligned with their orbital angular momentum.
The exact degree of alignment and randomness pre-

dicted by both channels is still an open question. Recent
cluster observations [21] found that the progenitor cloud’s
angular momentum might have a strong impact on the
stellar spins, thus imprinting some preferential direction
to the spins of the resulting compact objects. For field
binaries, assumptions on the supernova natal kicks, mass
transfer, and tidal interactions have all been shown to be
crucial in predicting the residual misalignments [22–28].

The first quantitative studies on inferring the formation
channel of binaries using GW observations had the mea-
surement of individual spin parameters as their starting
point. The authors of Refs. [29, 30] showed that if both
formation channels (dynamical and in the field) operate,
their branching ratio can be measured after ∼ 100 events
from the measurement of the misalignment angles. How-
ever, a combination of the two-component spins exists
which is measured better than either of them [31–33].This
is the mass-weighted combination of the projection of the
two spins along the orbital angular momentum, usually
called the effective spin parameter,

χeff =
S1/m1 + S2/m2

m1 +m2
· L̂ . (1)

Furthermore, χeff is a constant of motion (up to at
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least the second post-Newtonian order [34, 35]) and it is
therefore well suited to parametrize the binary evolution
[36, 37].
A key signature of the formation channels is whether

the intrinsic distribution of χeff values is symmetric about
zero. Since formation in galactic fields is more likely to
yield spins roughly aligned with the angular momentum,
systems coming from this channel will have a distribution
weighted towards positive χeff (although individual events
with χeff < 0 are possible; see Ref. [27]). On the other
hand, all spin orientations are expected to be equally
likely in binaries assembled via dynamical interactions,
which results in a distribution for χeff symmetric about
zero. The authors of Refs. [38, 39] exploited this idea to
show that if all sources come from the same formation
channel the required number of BBH detections to iden-
tify it can be as small as a few tens. If both channels
operate simultaneously, hundreds of events are required
to calculate their branching ratio and characteristic pa-
rameters [40]. Similar reasonings have also been applied
to BNS systems; see e.g. Ref. [41].
In this paper we point out several important caveats

that can affect astrophysical inference based solely on the
χeff distribution of detected events. First, the length of
the GW signal depends on the sign of χeff : for the same
masses, systems with χeff > 0 take longer to merge and
are thus easier to detect than systems with negative χeff .
This implies that, even if the underlying population were
to be perfectly symmetric, the χeff distribution of detected
sources will show a bias toward positive values. Second,
the individual posterior distributions of χeff present a
different morphology, depending on whether the true value
is positive or negative (with other binary parameters
fixed). We show that it is easier to exclude negative
values in the inferred value of χeff if the true value of χeff

is positive, than the other way around, unless the two
component masses are very different. In addition, the
uncertainty in the measurement of χeff is systematically
larger when the true value of χeff is negative than if it
is positive. Finally, we show how these factors can bias
astrophysical inference on the underlying populations.

In the Appendixes we present an analytical toy model
to explain the shape of the χeff posteriors and a recipe to
generate synthetic posteriors and likelihoods. A webpage
where users can create their own realistic synthetic poste-
riors has been set up at superstring.mit.edu/welcome.
html.

II. ASYMMETRY IN THE DETECTED χeff

DISTRIBUTION

If all CBCs formed via dynamical interaction, one would
expect a symmetric distribution for the inferred values of
χeff , centered around zero. However, binaries with spins
positively aligned with the orbital angular momentum
have to dissipate more angular momentum and therefore
take longer to merge (this is known as the orbital hang-up

effect; see e.g. Refs. [42–44]). The waveform is therefore
longer for systems with χeff > 0 than for those with
χeff < 0.
Given the presence of a threshold in the SNR of de-

tectable events, this results in an observational bias in
the distribution of χeff for detectable sources. The net
result is that even if the true population had χeff values
perfectly symmetric around zero, the detected population
will show a preference for positive χeff . If not modeled,
this can potentially be mistaken for the presence of a sec-
ond population (e.g. galactic field binaries) contributing
preferentially to the positive χeff branch.

Before we report results, we should emphasize that the
orbital hang-up effect is not the only reason why there
might be a selection bias. Other mechanisms are known
which can introduce selection effects. For example, the
template bank used by the search algorithms [45–49] can
introduce selection effects on various parameters. Cur-
rently, the waveforms used for searches assume spins are
aligned with the orbital angular momentum, the absence
of higher-order modes, and perfectly circular orbits. How-
ever, spin-aligned waveforms can have a large mismatch
with strongly precessing waveforms at large mass-ratios.
This can result on a loss of signal-to-noise ratio (SNR)
and thus a selection bias that favors the observation of
small or aligned spins and/or low mass-ratios [50]. Like-
wise, sources with high eccentricity also lose SNR when
matched to quasi-circular templates [51, 52], which dis-
favors the detection of highly eccentric binaries. In the
intermediate mass regime (M > 100M�), the search per-
formance deteriorates because the astrophysical signals
are shorter, and harder to distinguish from noise arti-
facts [53]. The search performance in this regime has a
strong dependence on mass and spin [54]. Finally, the
absence of higher-order modes in the template bank can
results in a ∼ 10% loss in detection volume [55] in the
intermediate- and extreme-mass-ratio regime. In this
work we focus on the asymmetry in the χeff distribution
introduced by the hang-up effect, and neglect other possi-
ble contributions. To quantify the size of this effect, we
simulate a perfectly symmetric distribution of sources,
and we measure the distribution of χeff of the sources
which survive the SNR cut. We simulate waveforms cor-
responding to the inspiral merger and ringdown of BBHs,
using the IMRPhenomPv2 waveform model [56, 57]

First, we draw spin directions which are isotropic on the
unit sphere, such that our intrinsic population presents a
symmetric χeff distribution peaked at zero. Next, we need
to generate values for the magnitude of the individual
spins. The impact of the orbital hang-up will critically
depend on the dimensionless magnitude of the individual
spins χi = |Si|/mi ∈ [0, 1]. We therefore consider five
different distributions of spin magnitude χ: (i) uniform
in χ: p(χ) = 1; (ii) linear-low : p(χ) ∝ 1− χ; (iii) linear-
high: p(χ) ∝ χ; (iv) Gaussian-low : p(χ) = N (0, 0.05); (v)
Gaussian-high: p(χ) = N (0, 0.25). These choices facili-
tate comparisons with Refs. [38, 39, 58]. We also include
a uniform-aligned distribution, which has uniform spin

superstring.mit.edu/welcome.html
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magnitude (p(|χ·L̂|) = 1/2) parallel to the orbital angular
momentum (χ× L̂ = 0). The component masses m1,m2

are drawn from a power-law distribution as parametrized
in Ref. [5], whereas the sky position and distance are
sampled uniformly in comoving volume, with the binary
randomly oriented.
The SNR for each signal is calculated using different

noise spectral densities, representative of the expected
performance improvement of the LIGO/Virgo network
over the next few years: O2 (2016-17), O3 (2018-19) and
Design (2020) [59]. For O2 and O3 we use the top and
bottom of the band labeled “2016-17” in Ref. [59]. Sources
that have a SNR above a threshold of 8 in each detector
are considered detected [60, 61]. We have verified that
results look qualitatively similar, with a slightly smaller
(larger) bias, if the more relaxed (strict) threshold of 5
(11) is used.

Figure 1 shows the underlying (blue dashed) χeff dis-
tribution as well as the χeff distribution of detectable
binaries (green solid) using the O2 sensitivity curve for
the uniform-aligned spin distribution. From Eq. (1), χeff

is defined between −1 (both spins are maximal and an-
tialigned with the angular momentum) and +1 (both spins
are maximal and coaligned with the angular momentum).
Negligible values of χeff can be due to either small spin
magnitudes or spin vectors perpendicular to the angular
momentum. The distribution of χeff for detectable events
is clearly biased toward positive values: 62% of detectable
sources have χeff > 0, compared to 50% of the underlying
population. This selection bias needs to be taken into
account, for example by reweighting the χeff -dependent
visible volume [62], or directly applying SNR selection in
population models like the green curve in Fig. 1.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
χeff

0.0

0.2

0.4

0.6

0.8

1.0

P
(χ

eff
)

True

Observed

FIG. 1. The true (blue dashed) and observed (green solid)
distribution of χeff using the O2 sensitivity curve when the
true spin magnitudes are uniform-aligned. While the true dis-
tribution is symmetric around zero, the detectable distribution
shows a bias toward positive values.

The uniform-aligned population shown in Fig. 1, how-
ever, corresponds to the worst-case scenario, as it has
the highest probability for large values of χeff . While
for this distribution p(|χ · L̂|) is constant, for all other

O2 O3 Design

Uniform-aligned 12% 11% 11%
Uniform in χ 6% 6% 6%
Linear-high 9% 8% 7%
Linear-low 4% 4% 4%
Gaussian-high 3% 3% 2%
Gaussian-low 0.3% 0.3% 0.3%

TABLE I. The percent excess of χeff > 0 in the distribution of
detectable binaries under various spin distributions and noise
levels. 0% means that the distribution is symmetric while,
e.g., +12% means that 62% of sources have positive χeff .

distributions p(|χ · L̂|) decreases with |χ · L̂|. This results
in a smaller probability for χeff to be large (in magnitude)
and consequently smaller biases (Table I). As expected,
the bias becomes negligibly small if the population has
preferentially small spin magnitudes (linear-low). In the
uniform-in-χ case, the effect is small enough that, even
if unaccounted for, it will probably not play a role until
O(100) of BBHs are detected (which would reduce the
statistical uncertainties to the few-percent level, compa-
rable with the bias we find). It is worth noting that the
uniform-in-χ distribution has been used as a prior in most
GW data analysis to date (cf. Ref. [58]). For distributions
with larger biases, such as the uniform-aligned one illus-
trated here, not only is the offset from symmetry larger,
but also fewer sources are required to obtain that level of
statistical uncertainty (larger component spins are easier
to measure; see e.g. Ref. [33]).

III. ASYMMETRIES IN THE INDIVIDUAL
POSTERIORS

The measurement of χeff for many, potentially hun-
dreds, of sources is required to draw conclusions about
the underlying astrophysical population. It is therefore
natural to first focus on what spin inferences can be made
about individual systems, and in particular how often one
of the two signs of χeff can be excluded (cf. Ref. [33] for
a previous partial investigation). Thus far, a significant
measurement of the sign of χeff has been possible only
for GW151226, which has χeff > 0 [4] independent of the
prior [58]. For GW170608, most of the posterior for χeff

is positive, but χeff = 0 is found within the 90% credible
interval [6]. Posteriors for all the other events do not show
a strong preference for either positive or negative values
of χeff . We argue here that parameter correlations need
to be addressed carefully before strong conclusions on the
underlying astrophysical population can be made.
We start by addressing the following question: if we

detected a system like GW151226, but with negative χeff ,
would we be able to exclude positive values with high
confidence? To answer this question, we have created 20
simulated signals with masses and spins compatible with
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the estimates quoted in Ref. [4] for GW151226, rescaling
the distances to achieve a SNR of either ∼ 12.5 (similar to
the SNR of GW151226) or ∼ 33 (a representative SNR for
a loud source). For each source we then create its flipped
version with the same parameters but Si → −Si (thus
χeff → −χeff) and a rescaled distance such that the SNR is
unchanged. The last step is critical as the orbital hang-up
effect would cause the system with negative χeff to have
a lower SNR, thus biasing the comparison. Statistical
inference is then performed using the LALInference
pipeline [63] and the reduced-order quadrature (ROQ)
approximation to the likelihood [64]. The analyses are
done with a zero-noise realization, which ensures the
results are representative of the underlying physics, and
not due to noise fluctuations [65, 66].

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

q

GW151226-like

Spin-flipped

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
χeff

0

5

P
(χ

eff
|d

)

FIG. 2. The joint q − χeff posterior distribution for a
GW151226-like BBH with positive (blue) or negative (red)
χeff . While the two events differ in the sign of χeff , all other
parameters, including the SNR, are the same. The SNR for
this event is ∼ 12.3. The dashed lines indicate the true values
of χeff and the mass ratio.

Our results indicate that when the true χeff is positive it
is nearly always possible to exclude negative values. How-
ever, the opposite is not true: if the true χeff is negative,
it is rarely the case that the posterior excludes positive
values. This is illustrated in Fig. 2, where we show the
joint and the marginalized posterior distributions for χeff

and the binary mass ratio q = m2/m1 ∈ [0, 1] for two
of our simulated sources. The island on the right is the
joint posterior distribution for a GW151226-like source
(χeff ∼ 0.14), while the one on the left corresponds to
the same source with flipped spins (χeff ∼ −0.14). For
both positive and negative χeff , the marginalized poste-
rior distributions show a clear asymmetry around their
median, with a longer tail toward larger (and positive)
χeff , and a much sharper tail on the negative side. The
immediate consequence of this asymmetry is that, for this
mass ratio, when the true value of χeff is positive, the
posterior distribution is more likely to exclude negative
values than it is to exclude positive values when the true
χeff is negative.
The longer tails toward positive values of χeff can be

understood in terms of the well-known q−χeff inspiral de-
generacy [67–72]. As shown in Fig. 2 below (see also, e.g.,
Fig. 4 in Ref. [9]), joint posterior distributions of these
two parameters tend to show a pronounced degeneracy,
with low (large) values of q paired to large (low) values
of χeff . These tails are present in all our GW151226-like
simulations, regardless of the sign of χeff . However, as is
already visible in Fig. 2, tails tend to be more pronounced
when the injected χeff is negative. Ultimately, this re-
sults in higher measurement uncertainties for negative
χeff sources than positive ones. For our GW151226-like
simulations, the 90% credible interval for negative χeff is
typically ∼ 1.5 larger than for positive ones. We discuss
a simple model for these features further in Appendix A.

It is worth stressing that this degeneracy is only present
in the inspiral part of the signal. It is therefore expected to
be milder for heavier BBHs, which present fewer inspiral
cycles in band, and more prominent for lighter BBHs,
such as GW151226, and BNSs. In order to verify this,
and to check the generality of these trends, we generate
another set of simulated signals covering a broader range
of system parameters. We consider BBHs with spins
0 ≤ |χeff | ≤ 0.7 (in steps of 0.1 in χeff) and seven different
values of detector-frame component masses, (m1,m2) =
(30-30), (30-15), (30-10), (15-15), (15-7.5), (15-5), (5-
5)M�. We also simulate BNSs with (m1,m2) = (2.2-1.3),
(2.0-1.4), (1.4-1.4) M� and effective spins 0 ≤ |χeff | ≤ 0.2
(in steps of 0.05). We generate the BNS signals with the
same waveform family used for BBHs [56, 57] and do
not include tidal terms. For both BNSs and BBHs, we
considered two values of spin tilts (10◦ and 30◦), which
are defined as the angle between the spins and the angular
momentum vector at a GW frequency of 20 Hz, and two
values of the network SNR (15 and 30).

−0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7
Injected χeff

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

S
ke

w
n
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s
γ

(30, 30)M�
(30, 15)M�
(30, 10)M�

(15, 15)M�
(15, 7.5)M�
(15, 5)M�

(5, 5)M�
(1.4, 1.4)M�

(2.0, 1.4)M�
(2.2, 1.3)M�

FIG. 3. The skewness coefficient for the χeff posterior distri-
butions of all simulated runs. Component masses are given in
the legend. For most runs, the skewness is positive, indicating
a large tail toward larger χeff .

Figure 3 shows the skewness coefficient γ of the
marginalized χeff posterior for injections with different
masses at a fixed SNR of 30 and spin tilt angle of 10◦
(other runs present very similar results, cf. Appendix D).
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Here the skewness coefficient γ is also known as the third
standardized moment of a probability distribution,

γ = E

[(
X − µ
σ

)3
]
, (2)

where E [·] is the expectation operator, X is the random
variable, µ is the mean and σ is the standard deviation.
Values of γ > 0 indicate a posterior distribution with
a larger tail towards positive values. The skewness is
positive for all q = 1 and q = 1/2 BBHs, and for all
BNSs.

The skewness approaches zero for heavy BBHs, which is
expected since the merger and ringdown phase breaks the
q − χeff degeneracy. Conversely, the skewness increases
for BNS injections, reaching γ ∼ 2. For comparison, the
skewness for the two posteriors in Fig. 2 are γ = 1.0 (1.4)
for positive (negative) χeff .
A few of our simulated sources with q = 1/3 present

negative values of γ. These are cases where χeff and q are
generally not measured well, with either a posterior peak
not centered at the true value or a very broad posterior
distribution (or both); see Appendix D. For these systems
with small q, the best measured parameter is a different
combination of masses and spins, namely the 1.5 post-
Newtonian (PN) phase coefficient [67, 68, 73, 74]. We
verified that for all sources with negative skewness the
1.5PN coefficient is measured accurately, although χeff is
not. Furthermore, we have verified that in our recovered
posteriors this phase term is approximately uncorrelated
with the mass ratio.

In Appendix A we present a simple toy model that
shows how Gaussian and uncorrelated likelihoods for the
mass ratio and the 1.5PN phase term can result in a
skewed likelihood and posterior for χeff . By generating
Gaussian likelihood distributions for the symmetric mass
ratio and the 1.5PN phase term, performing the appro-
priate change of coordinates, and taking into account
prior bounds, we find that the q–χeff likelihood profiles
have shapes similar to what is obtained from the actual
posterior samples and shown in Fig. 2.
Returning to our discussion of the injected and recov-

ered signals, we find that irrespectively of the sign of γ,
negative χeff values are harder to constrain than positive
ones. Figure 4 shows the ratios of the 90% credible in-
tervals for χeff of our systems and of their spin-flipped
versions. As expected, we find that this ratio depends on
the total mass, and it is smaller for heavier systems. For
30-30 M� BBHs the ratio reaches at most ∼ 2. Lighter
systems present much larger ratios. Sources of 15-7.5 M�,
similar to GW151226, can have an uncertainty for nega-
tive χeff = −0.4 up to 4 times larger than for χeff = +0.4.
This factor reaches ∼ 8 for |χeff | ∼ 0.7. The χeff ∼ 0.1
case is similar to the GW151226-like simulations pre-
sented above, where the uncertainty in the measurement
of negative χeff is typically 1.5 times larger than that of
the same event with positive χeff . BNS sources follow a
similar trend, with ratios of ∼ 2 at χeff = |0.2|. Already

at |χeff | = 0.05, uncertainties for negative χeff can be a
few tens of percent larger than for positive ones. The
ratio of standard deviation looks numerically similar.
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(2.2, 1.3)M�
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FIG. 4. Ratio between the 90% credible intervals for sources
with negative over positive χeff . The x axis gives the absolute
value of the simulated χeff . Component masses are given in
the legend.

We conclude this section with a discussion on the ac-
curacy of the individual χeff posteriors and the role of
priors. As shown in Ref. [58] the measurement of χeff

can be significantly impacted by the priors one is using
in the Bayesian analysis. In the analyses presented in
this section, we have used the same priors used by the
LIGO-Virgo Collaboration for all the events detected up
to the second science run (the authors of Ref. [58] referred
to these priors as P1). For each compact object, the prior
of the spin direction is random on the unit sphere, while
the prior of the spin magnitude is uniform in the range
[0, 0.89], and is discussed further in Appendix A. This
results in a prior for χeff which is peaked at zero (cf. Fig. 5
of Ref. [5]).

We find that this choice leaves a clear imprint in the
posterior distribution of the individual events, pushing
their medians toward the region of higher prior, i.e. to-
ward zero. This is shown in Fig. 5, where on the y axis we
report the difference between the median χeff posterior
and the true value, divided by the 90% uncertainty for
the systems with SNR 30 and BBH tilt of 10◦. For all the
events, the shift is indeed in the direction of χeff closer
to zero, and usually smaller than half of the 90% credible
interval. The three curves for the BNS sources have been
shifted vertically as described in Appendix C. For the
runs with a SNR of 15, the shifts are larger, consistent
with the intuition that the prior should matter more for
weaker signals. These findings are in agreement with the
results of Ref. [75] on the difficulty of measuring large
spins from GW data. We tabulate all relevant statistics
in Tables II–XXV.
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FIG. 5. The offset in the median of the χeff posterior for the
simulated events with a SNR of 30 and tilt (for the BHs only)
of 10◦, normalized by the width of the 90% credible interval.
See Appendix D for medians of more choices of SNRs and
spins.

IV. IMPACT ON ASTROPHYSICAL
INFERENCE

All the effects we have described thus far can, in prin-
ciple, affect how precisely and accurately one can study
the spin distribution of the detected GW sources, and
infer their formation channels. In Sec. II we saw how
the population of the detectable BBH sources will have
higher χeff than that of the true underlying population.
In Sec. III we have shown that negative χeff are harder
to measure, and that the posterior distributions for χeff

are often skewed and affected by the priors.
It is natural to ask which of these factors can signif-

icantly affect astrophysical inference. For example, the
effects of priors should not matter when one does hierar-
chical modeling, since in that case the likelihood is used,
that is: one divides the posterior by the prior used in
the analysis. On the other hand, the correlation between
mass ratio and χeff can impact inference solely based on
χeff .
As an example, we repeat one of the analyses per-

formed in Ref. [38]. In particular, we assume that two
formation channels are possible: one which results in an
isotropic distribution of spins, and the another which
gives roughly aligned spins. Here we focus on the effect
of the correlation and do not include selection bias in our
simulated population; as discussed in Sec. II the selection
bias can be readily removed. We assume that all black
hole sources come from a channel that results in uniform
spin magnitudes and isotropic orientations (this is the
model “flat-isotropic” or FI in Ref. [38]). We focus on
5-5 M� BBH sources, and assume that all of them have a
SNR of 15. We create a catalog of synthetic BBH sources,
having true χeff drawn from the isotropic distribution
(for simplicity, we neglect at first the selection bias de-
scribed in Sec. II; its effect will be described later), and
for each of them we create a synthetic posterior distri-

bution. Our goal is to calculate the odds ratio between
the isotropic spin and the aligned-spin models (this is the
model “flat-aligned” or FA in Ref. [38]): Oalign

iso .
First, we perform an (unrealistic) analysis where each

χeff posterior is a perfect Gaussian centered at the true
value with a width of 0.1. Each posterior is divided by
its χeff prior to obtain likelihood distributions suitable
for a hierarchical analysis. Using this approach we obtain
the curve labeled “Unrealistic” in Fig. 6. Then, we repeat
the same analysis by generating synthetic posterior dis-
tributions for all sources using the recipe we provide in
Appendix B, which results in skewed posteriors. Criti-
cally, we do not assume that the posteriors are centered
at the true values, but rather we use the results from the
previous section to inform the typical offset. Here too
we divide each posterior by its prior. These results are
labeled “Measurement" in Fig. 6.

Figure 6 shows how the cumulative natural log of Oali
iso

evolves as a function of the number of detected sources.
The error band reports the spread on the measurement
obtained by creating 100 random realizations of the cata-
log.

We see that the odds ratios for the generalized model are
less negative (i.e. favor the isotropic model less) than what
is obtained with the unrealistic Gaussian model centered
at the true values. This is consistent with the fact that
for light equal-mass systems posteriors and likelihoods
are typically biased toward higher χeff (see Tables XX,
XXI, XXII and XXIII). After less than 100 events, the
results obtained with a realistic approach vs one in which
the true positions of χeff are known start being clearly
different.
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FIG. 6. Odds ratio between a model where all events have
aligned spins vs one where spins are isotropic. The true
population has isotropic spins. This is for 5-5 M� and a SNR
of 15. The unrealistic curve assumes that all χeff posteriors
are centered at the true value.

The fact that in this case the generalized model does
“worse” (gives odds which favor the right model less
strongly) is just a consequence of having simulated a
population with only perfectly isotropic spins. In a more
general situation, both approaches would give biased an-
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swers, for different reasons.
To see this we create catalogs where both aligned and

isotropic spins are present. Specifically, a fraction fa
of events will have aligned spins drawn from the flat-
aligned distribution, while a fraction (1 − fa) will have
random spins, coming from the flat-isotropic distribution.
First, we perform inference using the realistic posteriors
informed by our Markov chain Monte Carlo runs, this
is the curve labeled “Measurement” in Fig. 7, where we
show the posterior distribution for fa as a function of
the number of detected events, when the true underlying
value of fa is 0.5. For each value of N , we create 100
random catalogs of N BBHs and calculate the posterior
distribution of fa. Here, too, we focus on 5-5 M� BBH
sources, and assume that all of them have a SNR of 15.
The colored bands in Fig. 7 are the 90% credible intervals
averaged over the 200 catalogs. We see how a clear bias
is present: after roughly 180 events, the true value of
fa is excluded with high confidence. Ultimately, the
measurement converges to a value of fa ∼ 0.58. To verify
that the algorithm works as expected, we also consider
the (unrealistic) case where each posterior distribution
is a Gaussian centered at the true value, with a width
informed by our MCMC simulations. This is labeled
“Unrealistic” in Fig. 7, and we see how in this idealized
scenario the posterior for fa converges to the true value.

We have verified that the main contributor to the bias
in the “Measurement” curve is not the skewness of the
individual posteriors, but rather the fact that for 5-5 M�
BBHs, the median of the χeff posterior is systematically
offset to the right in our simulations. This median-bias
depends quite strongly on the actual properties of the
underlaying distribution, including mass and mass ratio.
For example, if most of the detected BBHs were heavy and
roughly equal mass, more detections would be required for
the bias to be significant. Our analysis suggests that while
tests based on a single parameter, χeff in this case, might
yield reasonable results when only a few tens of sources
are detected, in the long term more sophisticated methods
will be required. To properly account for correlations and
selection effects, higher-dimension hierarchical models
should be considered, where all relevant parameters and
hyper-parameters are measured at once. This, in turn,
might increase the number of sources required to achieve
a given level of precision.

V. CONCLUSIONS

Measurements of the effective spin χeff with GW ob-
servations can shed light on the formation pathways of
black hole and neutron star binaries. In particular, a
population with a χeff distribution symmetric about zero
is generally believed to be a solid signature of dynamical
formation channels.
In this paper we have shown that such astrophysical

statements must be made with care. Even if the underly-
ing population were perfectly symmetric in χeff , several
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FIG. 7. The posterior on the fraction of aligned-spin sources,
fa, as a function of the number of detected events. This is for
5-5 M� and a SNR of 15. The unrealistic curve assumes that
all χeff posteriors are centered at the true value.

kinds of asymmetries and selection biases affect the final
measured distribution.
Because of the orbital hang-up effect, systems with

positive χeff have longer inspirals and hence higher SNRs.
They will therefore be detected more easily than sources
with negative χeff . Significant asymmetries also exist in
the analysis of each event. Due to correlations between the
mass ratio and the effective spin, the posterior distribution
of χeff will typically present a prominent tail toward larger
(and more positive) χeff , while no significant tail is present
toward more negative values. Furthermore, these tails are
generally fatter for sources with negative true χeff .
This observation carries two key consequences: (i) ex-

cluding negative χeff when the true value is positive is
more likely than excluding positive values when the true
χeff is negative, and (ii) if the true χeff is negative, mea-
surements of it come with larger uncertainties, at fixed
SNR.
In other words, measuring positive χeff is easier, as

tentatively confirmed by the GW detections reported to
date. For light BBHs like GW151226, we find that an
injected negative χeff yields 90% credible intervals 150%
larger than an identical system with a positive χeff of
the same magnitude and same SNR. These effects are
milder for heavier BBHs, as they accumulate significant
signal to noise from the merger and ringdown phases,
which helps break the degeneracy between χeff and mass
ratio. Conversely, BNSs suffer even more from these
observational effects.

It is worth noting that most of the existing studies in the
literature that use χeff to infer properties of the underlying
population have generated synthetic Gaussian posteriors
distributions for χeff , centered at the true values, with
uncertainties informed by the LIGO’s detections [38, 39,
41]. These studies do not differentiate in any way the
correlations present in sources with opposite signs of χeff

and thus do not capture the different morphologies that
we have documented in this work.
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We have provided a simple recipe to produce synthetic
χeff distributions that are more representative of what is
encountered in the actual analysis of gravitational-wave
data and used them to verify how the effects described in
this paper affect astrophysical inference. We have shown
that when using more realistic posterior distributions for
χeff , astrophysical inferences may be biased. However, this
will not be a problem until a few hundreds of detections
are made. Once hundreds of events are available, one
should use a more elaborate inference scheme, in which all
relevant parameters are measured at once. While methods
have been proposed to account for low-significance or
undetectable sources [76], this is still an area of very
active research [77–79]. Multidimensional inference is
bound to increase the overall uncertainty, implying that
uncovering the formation pathways of compact binaries
is likely to require more events than claimed in existing
work.
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Appendix A: Model for skewed posteriors

In this appendix, we present a simple model which
recovers the skewed posterior probabilities for χeff . We
consider a PN approximation to the frequency domain
waveform, truncating at the 1.5PN term where the first
spin contributions appear [34, 74]. The 1.5 PN contribu-
tion to the phase depends on four parameters: the chirp
massM, the symmetric mass ratio η = q/(1 + q)2, and
the components of each of the two spin vectors aligned
with the orbital angular momentum, χz,i. We can alter-
natively parametrize the spin dependence by a different
pair of independent spin variables, for example χeff and
χa = (χz,1 − χz,2)/2. Using the stationary phase ap-
proximation, the 1.5PN phase term can be written as
[67]

ψ1.5 = (πMf)−2/3ψ , (A1)

where

ψ = η−3/5

[
(113− 76η)χeff + 76 δ η χa

128
− 3π

8

]
, (A2)
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FIG. 8. Model for the skewness of χeff posteriors, using Gaus-
sian likelihoods for η and ψ and flat priors in q and χeff . The
likelihoods are centered on (η0, χeff,0) = (0.25,−0.8) (red),
(η0, χeff,0) = (0.25, 0) (purple) and (η0, χeff,0) = (0.25, 0.8),
(blue), with ση = 0.02 and σψ = 0.05. Top: Equally spaced
contours of constant likelihood in (η, ψ) coordinates. Mid-
dle: Equally spaced contours of constant posterior probability
in (q, χeff) coordinates, using flat priors in q and χeff . Bot-
tom: Marginalized χeff posteriors, displaying positive skew
and shifted maxima.

δ =
m1 −m2

m1 +m2
. (A3)

The coefficient of this phase term is measured accu-
rately from the GW signal, and we have verified that in
our simulated and recovered signals it is approximately
uncorrelated with the mass ratio. It is the coordinate
transformation from ψ to χeff , along with the physical
requirement that η ≤ 0.25, that allows to explain the
shape of the two-dimensional q − χeff posteriors and the
skewness of the marginalized χeff posteriors.

To see this, we consider an uncorrelated Gaussian like-
lihood in η and ψ for measured GW strain data d. In
this model, we fixM to a fiducial value in order to rep-
resent the fact that M is well measured. As a further
simplification, we neglect the spin on the less massive
body, setting χz,2 = 0, so that χeff = χ1,z/(1 + q) and
χa = χ1,z/2. This results in a two-dimensional model,
and the likelihood factorizes as

L(d|η, ψ) = N (η0, ση)N (ψ0, σψ) . (A4)
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Importantly, in this model it is possible for the likeli-
hood to extend to the unphysical regime η > 0.25 and
|χeff | > 1, and it is the priors that restrict η and χeff to
their physical ranges. The top panel of Fig. 8 illustrates
three example likelihoods selected to mimic the recovered
posteriors for our injected signals. Next, we derive the
resulting posterior probability densities after changing
parameters from θa = (η, ψ) to θa

′
= (η, χeff). Recall

that the likelihood of the data given a GW model and set
of extrinsic parameters is the same whether we label those
extrinsic parameters with θa

′
or θa. Thus the likelihood

simply transforms as L(d|q, χ) = L(d|η(q), ψ(q, χeff)).
Meanwhile, the posterior probability is proportional to

the product of the likelihood and the prior probabilities
on the extrinsic parameters p(θa). These priors transform
according to the Jacobian of ∂θa

′
/∂θa, but we can simply

state the priors in terms of q and χeff directly. To keep
our analysis simple, we select flat priors in 0 ≤ q ≤ 1 and
−1 ≤ χeff ≤ 1, so that in these ranges our model for the
posterior is

p(θa
′ |d) ∝ p(q, χeff)L(d|q, χeff) ∝ L(d|q, χeff) . (A5)

We plot the three posteriors in (q, χeff) in the middle
panel of Fig. 8 for the same three likelihoods illustrated in
the top panel. The resulting posteriors takes on the char-
acteristic “banana” shape seen in the posteriors recovered
from our simulated signals.

Finally we can consider the marginalized posteriors in
χeff in this model. We find that these posteriors have
positive skew, as seen in Fig. 8. It is clear from the
likelihoods how the tilted posteriors and boundary of η
generate skewed posteriors once projected onto χeff , and
why the effect is greater for likelihoods peaked at more
negative χeff . In addition, the maximum of the posterior
is shifted rightward relative to the maximum likelihood
in all cases.

We note that while previous studies have discussed how
the combination [67, 68]

β =
113− 76η

12
χeff +

76 δ η

12
χa (A6)

is better measured than χeff during the inspiral and re-
duces degeneracies (see e.g. Ref. [70]), here we find that
it is ψ that is well measured and weakly correlated with
η. We also find that it is the mapping between (η, ψ) and
(q, χeff) which reproduces the observed degeneracy.

Appendix B: A recipe for generating simulated χeff

posteriors

In this appendix we provide a simple recipe for gener-
ating simulated posterior distributions for χeff which go
beyond the simple Gaussian approximation, and include
the effects we have described in Sec. III.
We find that posterior distributions for χeff can be

parametrized well with a generalized normal distribution
(GND) of type II [80].

The GND of a random variable x can be parametrized
by a scale α, a location ξ and a shape κ, as

p(x) =
φ(y)

α− κ(x− ξ) , (B1)

where φ(y) is the standard normal distribution of a ran-
dom variable y, defined as

y (x;α, ξ, κ) =

{
− 1
κ log

[
1− κ(x−ξ)

α

]
if κ 6= 0,

x−ξ
α if κ = 0.

(B2)

To generate a synthetic posterior distribution for χeff ,
we can relate the median x̃, standard deviation σ and
skewness γ of the χeff posterior to GND parameters as
follows:

x̃ = ξ, (B3)

σ2 =
α2

κ2
eκ

2
(
eκ

2 − 1
)
, (B4)

γ =
3eκ

2 − e3κ2 − 2

(eκ2 − 1)3/2
sign(κ). (B5)

These can be inverted to obtain the α, ξ and κ necessary
to simulate the posterior.
A recipe for producing synthetic χeff posteriors is as

follows.

1. Generate a value for the median from the desired
astrophysical distribution. This can be assumed to
be the same as the true value, or can be offset from
it using the values in Appendix D.

2. Solve Eq. (B5) numerically for κ. The relevant γ
can be read from Fig. 3.

3. Solve Eq. (B4) for α. This equation depends on
both σ and κ. The σ of each true χeff obtained
from our MCMC runs are given in Appendix D.

4. Use ξ, α and κ so determined with
Eqs. (B1) and (B2) to get p(χeff).

An illustrative example is shown in Fig. 9 for two posteri-
ors (histograms) and the corresponding synthetic version
obtained with the method described above (lines).
In order to make use of these posteriors with alterna-

tive prior assumptions, the next step is to divide out the
prior probability distribution for χeff used in our injec-
tion and recovery. The prior on χeff is nontrivial, and
combines the priors on the components of the spins χi · L̂,
and on the component masses. The former assumes that
the spins are isotropic in direction and that their dimen-
sionless magnitudes are uniform between zero and 0.89,
a restriction chosen as the limit where the accelerated,
reduced-order-quadrature likelihood we use is validated
over [64]. The prior on the aligned spin components has
the simple analytic form given an upper magnitude χ∗,

p(χi · L̂) =
ln(|χ∗/χ|)

2χ∗
. (B6)
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FIG. 9. Posterior distribution for χeff for two example BBH
sources (histograms) together with the synthetic posteriors
produced using the method described in Appendix B. The
only difference between the two sources is the sign of χeff ,
given in the legend.

Meanwhile, the mass priors are uniform in the m1 −m2

plane but constrained to lie within a range of constant
M and with additional bounds on the maximum mass
and minimum mass ratio [64].

We find that we can fit the normalized prior distribution
for χeff with an analytic ansatz dependent on a single
width parameter w. The model is based on the double-
exponential distribution, further constrained to require
that χeff fall smoothly to zero at the maximum possible
value χ∗, which is a property inherited from the prior on
χi · L̂. Our functional form is

p(χeff) =
1− e−(|χeff |−χ∗)/w

2χ∗ + 2w(1− eχ∗/w) . (B7)

Fitting to each prior individually yields a mean value
w = 0.23 with a root-mean-square deviation σw = 0.005.
We find that w = 0.23 gives an adequate fit to all the χeff

priors used in this study.
A webpage where the readers can generate synthetic

χeff posterior distributions (or likelihood) for the masses,
spins and SNRs used in this paper can be found at
superstring.mit.edu/welcome.html.

Appendix C: Offsets from reduced-order
quadratures

As mentioned in the main body, we have used a ROQ
approximation to the likelihood [64] implemented within
the stochastic parameter estimation code LALInference.
By expressing the overlap between the gravitational-wave
data and the model waveform using a reduced basis, a
ROQ likelihood can achieve speed-up factors between
∼ 10–300 of a generic parameter estimation analysis. The
basis applicable for low-mass analyses (e.g. neutron star
binaries) has recently been found to suffer from a issue [81]

which, for some combination of masses, spins and SNRs,
results in biased posteriors for the chirp mass and other
intrinsic parameters, including χeff . No appreciable bias
is observed in the extrinsic parameters (e.g. distance).
Thus, the original posteriors we obtained for χeff for the
BNS runs were biased away from their true value.

To correct for this bias we reanalyzed the BNS systems
for which χeff = 0 (all three mass ratios) using the same
waveform family as before, but without enabling the ROQ
likelihood. Not using the ROQ likelihood causes the
analysis to become significantly more computationally
expensive, which is why we only ran the sources with
χeff = 0, taking them to be representative for all BNS
spins. The reanalysis gave posteriors that, while not
perfectly centered at the true value, were significantly
closer to it. We have thus calculated the shift between
the χeff median of the ROQ and the non-ROQ runs, and
applied those shifts to all the BNS runs, obtaining the
points shown in Fig. 5.
We note that BBH systems analyzed with the ROQ

method are not observed to be affected by this issue. This
implies that none of the results published by the LIGO
and Virgo collaborations suffer from this issue, since the
ROQ method was not used to measure the mass and spins
of GW170817 [8].

Appendix D: Useful tables

In this section we report key statistics for the poste-
rior distributions of χeff obtained with the simulations
described in Sec. III.

superstring.mit.edu/welcome.html
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TABLE II. 90% credible intervals for BBHs at network SNR of 15. The BHs’ tilt angles at 20 Hz are 10◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 0.351 0.344 0.334 0.319 0.307 0.286 0.247 0.227 0.226 0.216 0.203 0.183 0.172 0.159 0.149
30-15 0.471 0.506 0.499 0.484 0.423 0.355 0.294 0.237 0.218 0.195 0.175 0.156 0.135 0.111 0.097
30-10 0.627 0.617 0.588 0.549 0.510 0.449 0.408 0.378 0.322 0.292 0.275 0.241 0.191 0.135 0.088
15-15 0.659 0.613 0.533 0.447 0.375 0.286 0.232 0.179 0.171 0.150 0.136 0.122 0.104 0.092 0.074
15-7.5 0.603 0.633 0.568 0.587 0.525 0.442 0.354 0.278 0.241 0.215 0.185 0.165 0.146 0.107 0.073
15-5 0.562 0.534 0.576 0.542 0.540 0.516 0.539 0.412 0.333 0.289 0.235 0.232 0.182 0.146 0.089
5-5 0.548 0.522 0.499 0.427 0.362 0.292 0.238 0.191 0.181 0.161 0.164 0.138 0.122 0.100 0.062

TABLE III. 90% credible intervals for BBHs at network SNR of 30. The BHs’ tilt angles at 20 Hz are 10◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

30-30 0.205 0.189 0.183 0.171 0.165 0.153 0.143 0.121 0.122 0.112 0.104 0.093 0.088 0.083 0.078
30-15 0.219 0.231 0.222 0.240 0.222 0.212 0.192 0.146 0.141 0.121 0.106 0.088 0.071 0.056 0.050
30-10 0.257 0.276 0.305 0.326 0.325 0.282 0.210 0.182 0.187 0.185 0.160 0.128 0.088 0.064 0.045
15-15 0.253 0.226 0.200 0.180 0.180 0.168 0.127 0.093 0.090 0.079 0.066 0.059 0.049 0.043 0.038
15-7.5 0.367 0.466 0.506 0.518 0.441 0.353 0.272 0.210 0.169 0.140 0.131 0.120 0.093 0.064 0.043
15-5 0.520 0.467 0.512 0.543 0.461 0.397 0.407 0.334 0.313 0.266 0.211 0.212 0.163 0.122 0.067
5-5 0.263 0.265 0.277 0.238 0.231 0.208 0.167 0.141 0.131 0.113 0.103 0.089 0.081 0.074 0.048

TABLE IV. 90% credible intervals for BBHs at network SNR of 15. The BHs’ tilt angles at 20 Hz are 30◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 0.346 0.343 0.328 0.318 0.304 0.282 0.247 0.228 0.225 0.220 0.199 0.189 0.169 0.160 0.148
30-15 0.407 0.441 0.477 0.467 0.428 0.365 0.292 0.239 0.216 0.194 0.171 0.153 0.135 0.111 0.096
30-10 0.524 0.567 0.557 0.545 0.500 0.479 0.413 0.381 0.324 0.287 0.271 0.239 0.183 0.122 0.081
15-15 0.676 0.598 0.533 0.447 0.360 0.283 0.210 0.185 0.163 0.156 0.133 0.118 0.104 0.089 0.075
15-7.5 0.604 0.654 0.643 0.573 0.517 0.446 0.350 0.284 0.227 0.221 0.191 0.164 0.143 0.105 0.071
15-5 0.491 0.576 0.566 0.528 0.468 0.516 0.525 0.427 0.344 0.289 0.249 0.235 0.178 0.140 0.081
5-5 0.578 0.537 0.485 0.425 0.354 0.294 0.220 0.208 0.190 0.180 0.166 0.146 0.131 0.100 0.062

TABLE V. 90% credible intervals for BBHs at network SNR of 30. The BHs’ tilt angles at 20 Hz are 30◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 0.204 0.195 0.184 0.168 0.162 0.152 0.141 0.120 0.119 0.114 0.102 0.095 0.088 0.085 0.078
30-15 0.220 0.219 0.219 0.232 0.235 0.216 0.186 0.147 0.138 0.124 0.101 0.087 0.072 0.055 0.049
30-10 0.324 0.292 0.298 0.321 0.333 0.287 0.227 0.176 0.186 0.176 0.168 0.125 0.081 0.055 0.043
15-15 0.230 0.201 0.193 0.183 0.183 0.164 0.121 0.097 0.085 0.076 0.066 0.057 0.051 0.043 0.038
15-7.5 0.390 0.452 0.505 0.483 0.412 0.338 0.260 0.214 0.183 0.158 0.132 0.115 0.094 0.063 0.041
15-5 0.346 0.391 0.459 0.473 0.425 0.371 0.374 0.357 0.310 0.260 0.243 0.203 0.157 0.111 0.055
5-5 0.246 0.262 0.267 0.244 0.238 0.209 0.170 0.136 0.125 0.102 0.099 0.092 0.085 0.071 0.044
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TABLE VI. 90% credible intervals for BNSs at network SNR of 15. The spins are aligned with the orbital angular momentum.

χeff

m1 −m2 [M� ] -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
1.4-1.4 0.237 0.204 0.184 0.152 0.138 0.136 0.126 0.120 0.110
2.0-1.4 0.272 0.241 0.214 0.185 0.167 0.153 0.139 0.142 0.129
2.2-1.3 0.309 0.270 0.239 0.204 0.184 0.167 0.152 0.139 0.135

TABLE VII. 90% credible intervals for BNSs at network SNR of 30. The spins are aligned with the orbital angular momentum.

χeff

m1 −m2 [M� ] -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
1.4-1.4 0.089 0.088 0.081 0.072 0.059 0.056 0.054 0.053 0.051
2.0-1.4 0.122 0.115 0.110 0.097 0.081 0.076 0.073 0.068 0.066
2.2-1.3 0.148 0.144 0.130 0.118 0.097 0.082 0.077 0.072 0.072

TABLE VIII. Standard deviation for BBHs at network SNR of 15. The BHs’ tilt angles at 20 Hz are 10◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 0.106 0.104 0.102 0.098 0.094 0.087 0.075 0.068 0.069 0.066 0.062 0.056 0.053 0.048 0.045
30-15 0.140 0.150 0.149 0.147 0.131 0.111 0.092 0.072 0.067 0.059 0.053 0.047 0.041 0.034 0.029
30-10 0.199 0.199 0.189 0.177 0.160 0.136 0.121 0.113 0.097 0.091 0.086 0.076 0.060 0.041 0.027
15-15 0.216 0.204 0.181 0.147 0.123 0.093 0.072 0.057 0.054 0.047 0.043 0.038 0.032 0.028 0.023
15-7.5 0.195 0.207 0.178 0.181 0.163 0.141 0.114 0.090 0.077 0.069 0.058 0.052 0.045 0.032 0.022
15-5 0.180 0.166 0.180 0.166 0.161 0.154 0.161 0.132 0.105 0.093 0.076 0.073 0.057 0.046 0.027
5-5 0.163 0.162 0.165 0.142 0.120 0.096 0.077 0.064 0.058 0.054 0.053 0.044 0.038 0.031 0.019

TABLE IX. Standard deviation for BBHs at network SNR of 30. The BHs’ tilt angles at 20 Hz are 10◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 0.062 0.058 0.056 0.052 0.049 0.047 0.044 0.037 0.037 0.034 0.032 0.029 0.027 0.025 0.024
30-15 0.067 0.069 0.067 0.072 0.067 0.063 0.059 0.044 0.043 0.037 0.032 0.027 0.022 0.017 0.015
30-10 0.078 0.083 0.094 0.099 0.098 0.086 0.065 0.055 0.057 0.057 0.049 0.039 0.027 0.020 0.014
15-15 0.081 0.073 0.065 0.058 0.057 0.052 0.040 0.030 0.028 0.025 0.021 0.018 0.015 0.013 0.011
15-7.5 0.116 0.140 0.156 0.158 0.135 0.112 0.090 0.067 0.055 0.046 0.041 0.038 0.030 0.020 0.013
15-5 0.152 0.145 0.159 0.168 0.145 0.120 0.117 0.095 0.095 0.087 0.069 0.068 0.054 0.039 0.021
5-5 0.089 0.080 0.088 0.078 0.074 0.071 0.055 0.044 0.043 0.037 0.034 0.030 0.027 0.023 0.015
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TABLE X. Standard deviation for BBHs at network SNR of 15. The BHs’ tilt angles at 20 Hz are 30◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 0.105 0.104 0.100 0.097 0.092 0.086 0.075 0.069 0.069 0.067 0.061 0.058 0.051 0.048 0.045
30-15 0.124 0.132 0.145 0.144 0.132 0.114 0.091 0.072 0.067 0.059 0.052 0.047 0.041 0.034 0.029
30-10 0.162 0.176 0.177 0.173 0.155 0.145 0.124 0.111 0.098 0.090 0.084 0.076 0.057 0.037 0.025
15-15 0.222 0.199 0.178 0.148 0.118 0.090 0.067 0.058 0.052 0.049 0.042 0.036 0.032 0.027 0.023
15-7.5 0.195 0.213 0.200 0.174 0.156 0.143 0.114 0.091 0.075 0.069 0.060 0.052 0.044 0.032 0.022
15-5 0.151 0.177 0.181 0.161 0.142 0.154 0.159 0.136 0.110 0.092 0.080 0.073 0.057 0.044 0.025
5-5 0.168 0.167 0.153 0.146 0.116 0.095 0.073 0.067 0.062 0.059 0.053 0.045 0.040 0.031 0.019

TABLE XI. Standard deviation for BBHs at network SNR of 30. The BHs’ tilt angles at 20 Hz are 30◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 0.061 0.060 0.056 0.051 0.049 0.046 0.042 0.036 0.036 0.035 0.031 0.029 0.027 0.026 0.024
30-15 0.067 0.065 0.066 0.070 0.071 0.065 0.056 0.044 0.042 0.038 0.030 0.026 0.022 0.017 0.015
30-10 0.099 0.088 0.090 0.098 0.101 0.087 0.069 0.054 0.057 0.053 0.051 0.038 0.025 0.017 0.013
15-15 0.075 0.064 0.061 0.060 0.057 0.051 0.039 0.030 0.027 0.024 0.020 0.017 0.016 0.013 0.011
15-7.5 0.116 0.135 0.157 0.149 0.129 0.107 0.085 0.068 0.059 0.051 0.042 0.036 0.030 0.019 0.012
15-5 0.106 0.118 0.141 0.148 0.136 0.112 0.111 0.102 0.089 0.084 0.077 0.064 0.049 0.033 0.017
5-5 0.080 0.083 0.088 0.079 0.077 0.070 0.056 0.044 0.040 0.035 0.033 0.030 0.027 0.022 0.014

TABLE XII. Standard deviation for BNSs at network SNR of 15. The spins are aligned with the orbital angular momentum.

χeff

m1 −m2 [M� ] -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
1.4-1.4 0.078 0.067 0.060 0.051 0.046 0.044 0.040 0.039 0.036
2.0-1.4 0.091 0.081 0.072 0.061 0.054 0.050 0.047 0.047 0.042
2.2-1.3 0.103 0.090 0.079 0.068 0.060 0.054 0.051 0.046 0.045

TABLE XIII. Standard deviation for BNSs at network SNR of 30. The spins are aligned with the orbital angular momentum.

χeff

m1 −m2 [M� ] -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
1.4-1.4 0.030 0.029 0.026 0.024 0.020 0.019 0.018 0.018 0.017
2.0-1.4 0.041 0.038 0.036 0.032 0.027 0.025 0.024 0.022 0.022
2.2-1.3 0.050 0.046 0.042 0.038 0.033 0.027 0.025 0.024 0.023
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TABLE XIV. Skewness for BBHs at network SNR of 15. The BHs’ tilt angles at 20 Hz are 10◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 0.100 0.119 0.065 0.085 -0.052 -0.120 -0.213 0.004 0.077 -0.073 -0.150 -0.120 -0.110 -0.065 -0.085
30-15 0.745 0.658 0.524 0.378 0.219 0.021 0.128 0.285 0.583 0.400 0.357 0.318 0.043 -0.109 -0.072
30-10 0.159 0.069 -0.150 -0.581 -0.633 -0.750 -0.605 -0.197 0.265 0.572 0.562 0.391 0.143 -0.179 -0.179
15-15 0.209 0.246 0.372 0.318 0.618 0.751 1.007 1.556 1.403 1.363 1.232 1.011 0.693 0.330 -0.004
15-7.5 -0.738 -0.777 -0.721 -0.595 -0.329 0.027 0.402 1.161 1.549 1.744 1.579 1.478 1.138 0.692 0.261
15-5 -1.008 -1.201 -0.996 -1.153 -1.178 -0.762 -0.382 0.091 0.593 1.630 1.556 1.353 1.110 0.770 0.366
5-5 0.538 0.200 0.254 0.408 0.443 0.710 1.204 1.712 1.757 1.818 1.712 1.530 1.297 0.710 0.353

TABLE XV. Skewness for BBHs at network SNR of 30. The BHs’ tilt angles at 20 Hz are 10◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 -0.021 -0.002 -0.146 -0.087 -0.082 -0.032 -0.143 0.001 -0.120 -0.050 -0.076 -0.101 -0.047 -0.008 -0.057
30-15 -0.047 -0.092 0.046 0.050 0.106 -0.006 -0.104 -0.105 0.134 0.073 0.009 0.089 -0.014 -0.062 0.004
30-10 0.148 0.260 0.140 0.065 -0.037 -0.414 -0.534 -0.524 0.034 -0.269 -0.272 -0.440 -0.342 -0.138 0.061
15-15 0.535 0.968 1.098 1.471 1.444 1.165 0.838 1.276 1.125 1.046 0.964 0.773 0.509 0.139 0.019
15-7.5 1.132 0.668 0.531 0.310 -0.030 -0.069 0.268 0.560 1.105 1.091 1.223 1.026 0.926 0.695 0.455
15-5 0.153 0.543 0.288 -0.318 -0.831 -0.735 -0.871 -0.534 0.082 0.768 0.901 0.831 0.459 0.331 0.351
5-5 0.696 0.623 0.814 1.142 1.077 0.888 1.121 1.628 1.305 1.463 1.600 1.818 1.548 1.049 1.076

TABLE XVI. Skewness for BBHs at network SNR of 15. The BHs’ tilt angles at 20 Hz are 30◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 0.052 0.071 0.092 0.037 0.036 -0.139 -0.233 0.001 0.062 -0.122 -0.138 -0.129 -0.098 -0.077 -0.133
30-15 0.609 0.611 0.517 0.363 0.157 0.155 0.094 0.338 0.548 0.463 0.350 0.235 0.047 -0.104 -0.046
30-10 -0.133 0.057 -0.166 -0.393 -0.672 -0.774 -0.570 -0.249 0.251 0.629 0.628 0.481 -0.002 -0.135 -0.194
15-15 0.175 0.067 0.272 0.519 0.518 0.809 0.990 1.419 1.491 1.302 1.171 0.947 0.576 0.248 0.061
15-7.5 -0.371 -0.633 -0.671 -0.655 -0.400 0.105 0.541 1.242 1.652 1.502 1.492 1.414 1.184 0.749 0.231
15-5 -0.027 -0.190 -0.547 -1.015 -1.027 -0.710 -0.242 0.159 0.759 1.464 1.531 1.361 1.032 0.574 0.223
5-5 0.571 0.447 0.189 0.324 0.379 0.633 1.125 1.586 1.556 1.932 1.672 1.609 1.144 0.770 0.374

TABLE XVII. Skewness for BBHs at network SNR of 30. The BHs’ tilt angles at 20 Hz are 30◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 0.056 -0.115 -0.091 0.003 -0.008 -0.135 -0.077 -0.128 -0.060 -0.068 -0.072 -0.067 -0.049 -0.039 -0.076
30-15 -0.152 -0.130 0.231 0.159 0.045 -0.008 -0.160 -0.055 0.137 0.032 0.057 -0.010 0.006 0.029 0.029
30-10 0.320 0.009 0.017 0.032 -0.115 -0.373 -0.505 -0.289 -0.001 -0.319 -0.435 -0.361 -0.171 -0.020 0.080
15-15 1.128 1.128 1.266 1.375 1.426 1.168 0.934 1.265 1.128 1.004 1.033 0.776 0.393 0.185 -0.079
15-7.5 0.929 0.758 0.481 0.271 0.074 -0.050 0.050 0.630 1.057 1.193 1.194 1.161 0.676 0.588 0.321
15-5 0.193 0.054 0.134 -0.000 -0.582 -0.874 -0.814 -0.431 0.145 0.668 0.608 0.246 0.355 0.109 0.128
5-5 1.036 0.662 0.783 1.052 1.139 0.658 0.899 1.663 1.501 1.814 2.006 1.819 1.611 1.435 1.150
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TABLE XVIII. Skewness for BNSs at network SNR of 15. The spins are aligned with the orbital angular momentum.

χeff

m1 −m2 [M� ] -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
1.4-1.4 0.962 1.031 1.059 1.413 1.668 1.605 1.769 1.777 1.748
2.0-1.4 0.787 0.911 1.107 1.250 1.540 1.705 1.684 1.889 1.831
2.2-1.3 0.593 0.720 0.895 1.201 1.279 1.621 1.711 1.739 1.759

TABLE XIX. Skewness for BNSs at network SNR of 30. The spins are aligned with the orbital angular momentum.

χeff

m1 −m2 [M� ] -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
1.4-1.4 1.996 1.837 1.798 1.814 1.961 2.181 1.938 2.065 2.040
2.0-1.4 1.840 1.626 1.538 1.518 1.667 2.069 2.035 1.965 1.934
2.2-1.3 1.803 1.474 1.417 1.330 1.424 1.830 1.902 1.951 1.708

TABLE XX. Median of χeff for BBHs at network SNR of 15. The BHs’ tilt angles at 20 Hz are 10◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 -0.486 -0.430 -0.367 -0.292 -0.216 -0.131 -0.049 0.017 0.097 0.195 0.290 0.382 0.474 0.565 0.657
30-15 -0.510 -0.462 -0.391 -0.324 -0.235 -0.150 -0.085 -0.015 0.059 0.161 0.266 0.367 0.475 0.578 0.680
30-10 -0.384 -0.336 -0.268 -0.164 -0.131 -0.082 -0.054 -0.024 0.010 0.076 0.190 0.311 0.439 0.562 0.674
15-15 -0.352 -0.329 -0.305 -0.214 -0.195 -0.123 -0.046 0.024 0.117 0.215 0.309 0.406 0.503 0.598 0.693
15-7.5 -0.112 -0.112 -0.086 -0.093 -0.094 -0.096 -0.067 -0.035 0.038 0.140 0.246 0.352 0.465 0.578 0.685
15-5 -0.167 -0.089 -0.083 -0.055 -0.046 -0.062 -0.049 -0.057 -0.027 0.020 0.138 0.262 0.391 0.525 0.658
5-5 -0.443 -0.321 -0.280 -0.237 -0.170 -0.103 -0.050 0.028 0.120 0.216 0.313 0.411 0.511 0.616 0.711

TABLE XXI. Median of χeff for BBHs at network SNR of 30. The BHs’ tilt angles at 20 Hz are 10◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 -0.629 -0.549 -0.459 -0.373 -0.279 -0.182 -0.083 0.004 0.098 0.195 0.294 0.392 0.489 0.585 0.683
30-15 -0.618 -0.556 -0.476 -0.392 -0.293 -0.192 -0.095 -0.006 0.073 0.180 0.281 0.380 0.484 0.584 0.688
30-10 -0.608 -0.550 -0.471 -0.376 -0.260 -0.149 -0.064 -0.001 0.066 0.168 0.272 0.382 0.484 0.581 0.682
15-15 -0.595 -0.540 -0.449 -0.368 -0.273 -0.172 -0.073 0.013 0.109 0.206 0.302 0.399 0.497 0.596 0.694
15-7.5 -0.492 -0.488 -0.383 -0.323 -0.199 -0.140 -0.095 -0.023 0.040 0.144 0.249 0.354 0.464 0.575 0.684
15-5 -0.438 -0.458 -0.373 -0.225 -0.113 -0.099 -0.053 -0.014 0.013 0.062 0.161 0.289 0.421 0.549 0.667
5-5 -0.613 -0.480 -0.417 -0.351 -0.242 -0.156 -0.066 0.017 0.119 0.213 0.311 0.404 0.506 0.607 0.704

TABLE XXII. Median of χeff for BBHs at network SNR of 15. The BHs’ tilt angles at 20 Hz are 30◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 -0.470 -0.419 -0.366 -0.293 -0.219 -0.133 -0.050 0.019 0.095 0.193 0.290 0.385 0.478 0.567 0.655
30-15 -0.487 -0.451 -0.389 -0.307 -0.230 -0.155 -0.080 -0.017 0.054 0.158 0.266 0.370 0.475 0.580 0.686
30-10 -0.276 -0.316 -0.262 -0.199 -0.126 -0.081 -0.055 -0.024 0.010 0.074 0.185 0.304 0.453 0.575 0.685
15-15 -0.358 -0.281 -0.270 -0.252 -0.186 -0.125 -0.047 0.026 0.118 0.215 0.310 0.407 0.505 0.600 0.693
15-7.5 -0.185 -0.128 -0.092 -0.076 -0.083 -0.088 -0.078 -0.034 0.037 0.141 0.249 0.357 0.468 0.583 0.692
15-5 -0.366 -0.297 -0.155 -0.066 -0.042 -0.053 -0.077 -0.052 -0.028 0.025 0.140 0.270 0.400 0.542 0.675
5-5 -0.463 -0.377 -0.264 -0.236 -0.155 -0.095 -0.040 0.028 0.125 0.219 0.315 0.410 0.516 0.616 0.711
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TABLE XXIII. Median of χeff for BBHs at network SNR of 30. The BHs’ tilt angles at 20 Hz are 30◦.

χeff

m1 −m2 [M� ] -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30-30 -0.611 -0.537 -0.454 -0.371 -0.282 -0.184 -0.086 0.004 0.098 0.196 0.296 0.395 0.491 0.589 0.684
30-15 -0.573 -0.526 -0.467 -0.389 -0.294 -0.191 -0.090 -0.006 0.079 0.183 0.282 0.384 0.484 0.587 0.695
30-10 -0.493 -0.464 -0.419 -0.365 -0.260 -0.146 -0.063 -0.005 0.070 0.166 0.274 0.382 0.485 0.587 0.690
15-15 -0.644 -0.546 -0.454 -0.368 -0.271 -0.172 -0.075 0.014 0.109 0.206 0.302 0.401 0.500 0.597 0.697
15-7.5 -0.520 -0.475 -0.359 -0.284 -0.208 -0.137 -0.078 -0.029 0.043 0.144 0.253 0.358 0.474 0.584 0.691
15-5 -0.498 -0.451 -0.383 -0.267 -0.118 -0.091 -0.058 -0.020 0.018 0.058 0.197 0.332 0.437 0.570 0.684
5-5 -0.638 -0.496 -0.421 -0.340 -0.255 -0.138 -0.054 0.017 0.117 0.212 0.306 0.404 0.505 0.607 0.706

TABLE XXIV. Median of χeff for BNSs at network SNR of 15. The spins are aligned with the orbital angular momentum.

χeff

m1 −m2 [M� ] -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
1.4-1.4 -0.144 -0.101 -0.057 -0.016 0.024 0.071 0.118 0.167 0.216
2.0-1.4 -0.147 -0.109 -0.070 -0.026 0.014 0.056 0.105 0.155 0.203
2.2-1.3 -0.144 -0.113 -0.076 -0.039 0.006 0.045 0.093 0.142 0.194

TABLE XXV. Median of χeff for BNSs at network SNR of 30. The spins are aligned with the orbital angular momentum.

χeff

m1 −m2 [M� ] -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
1.4-1.4 -0.187 -0.135 -0.086 -0.037 0.012 0.060 0.109 0.158 0.207
2.0-1.4 -0.205 -0.153 -0.102 -0.051 -0.003 0.044 0.094 0.145 0.195
2.2-1.3 -0.221 -0.168 -0.117 -0.068 -0.016 0.030 0.082 0.133 0.183
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