
 
 

University of Birmingham

Future evolution and uncertainty of river flow
regime change in a deglaciating river basin
Mackay, Jonathan D.; Barrand, Nicholas E.; Hannah, David M.; Krause, Stefan; Jackson,
Christopher R.; Everest, Jez; Aðalgeirsdóttir, Guðfinna; Black, Andrew R.
DOI:
10.5194/hess-23-1833-2019

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Mackay, JD, Barrand, NE, Hannah, DM, Krause, S, Jackson, CR, Everest, J, Aðalgeirsdóttir, G & Black, AR
2019, 'Future evolution and uncertainty of river flow regime change in a deglaciating river basin', Hydrology and
Earth System Sciences, vol. 23, no. 4, pp. 1833-1865. https://doi.org/10.5194/hess-23-1833-2019

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 24. Apr. 2024

https://doi.org/10.5194/hess-23-1833-2019
https://doi.org/10.5194/hess-23-1833-2019
https://birmingham.elsevierpure.com/en/publications/22f352b9-ada2-48de-a733-76be25c23684


Hydrol. Earth Syst. Sci., 23, 1833–1865, 2019
https://doi.org/10.5194/hess-23-1833-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Future evolution and uncertainty of river flow regime change in
a deglaciating river basin
Jonathan D. Mackay1,2, Nicholas E. Barrand1, David M. Hannah1, Stefan Krause1, Christopher R. Jackson2,
Jez Everest3, Guðfinna Aðalgeirsdóttir4, and Andrew R. Black5

1School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston,
Birmingham, B15 2TT, UK
2British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG, UK
3British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh, EH14 4AS, UK
4Institute of Earth Sciences, University of Iceland, 101 Reykjavík, Iceland
5Geography and Environmental Science, University of Dundee, Dundee, DD1 4HN, UK

Correspondence: Jonathan D. Mackay (joncka@bgs.ac.uk)

Received: 21 August 2018 – Discussion started: 5 September 2018
Revised: 7 February 2019 – Accepted: 11 March 2019 – Published: 3 April 2019

Abstract. The flow regimes of glacier-fed rivers are sen-
sitive to climate change due to strong climate–cryosphere–
hydrosphere interactions. Previous modelling studies have
projected changes in annual and seasonal flow magnitude
but neglect other changes in river flow regime that also have
socio-economic and environmental impacts. This study em-
ploys a signature-based analysis of climate change impacts
on the river flow regime for the deglaciating Virkisá river
basin in southern Iceland. Twenty-five metrics (signatures)
are derived from 21st century projections of river flow time
series to evaluate changes in different characteristics (mag-
nitude, timing and variability) of river flow regime over sub-
daily to decadal timescales. The projections are produced by
a model chain that links numerical models of climate and
glacio-hydrology. Five components of the model chain are
perturbed to represent their uncertainty including the emis-
sion scenario, numerical climate model, downscaling proce-
dure, snow/ice melt model and runoff-routing model. The
results show that the magnitude, timing and variability of
glacier-fed river flows over a range of timescales will change
in response to climate change. For most signatures there is
high confidence in the direction of change, but the magnitude
is uncertain. A decomposition of the projection uncertain-
ties using analysis of variance (ANOVA) shows that all five
perturbed model chain components contribute to projection
uncertainty, but their relative contributions vary across the
signatures of river flow. For example, the numerical climate

model is the dominant source of uncertainty for projections
of high-magnitude, quick-release flows, while the runoff-
routing model is most important for signatures related to low-
magnitude, slow-release flows. The emission scenario dom-
inates mean monthly flow projection uncertainty, but during
the transition from the cold to melt season (April and May)
the snow/ice melt model contributes up to 23 % of projec-
tion uncertainty. Signature-based decompositions of projec-
tion uncertainty can be used to better design impact studies
to provide more robust projections.

1 Introduction

Mountain watersheds have been referred to as the world’s
water towers (Viviroli and Weingartner, 2004; Viviroli et al.,
2007), partly because they receive large quantities of precip-
itation relative to adjacent lowlands, but also because they
regulate runoff through the seasonal accumulation and melt
of snow and ice. The presence of snow and ice profoundly
affects characteristics of downstream river flow regime in-
cluding flow magnitude, timing and variability over a range
of timescales (Jansson et al., 2003; Mankin et al., 2015). This
is partly due to the periodic (diurnal and seasonal) variations
and longer-term (decadal) trends in meltwater inputs brought
about by fluctuations in glaciological mass balance. In ad-
dition, the dynamic water storage and release properties of
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snow and ice (runoff-routing) control downstream river flow
response to runoff over hourly to seasonal timescales (Willis,
2005). As such, glaciated basins exhibit river flow regimes
that differ from their non-glaciated equivalents. For exam-
ple, the so-called “compensation effect” has been widely
observed in the Northern Hemisphere, whereby partially
glaciated catchments demonstrate reduced intra-annual flow
variability (Fountain and Tangborn, 1985; Chen and Ohmura,
1990). Indeed, the compensation of runoff from melt inputs
can actually serve to increase mean runoff during anoma-
lously dry heatwave events (Zappa and Kan, 2007).

Mountain glaciers are retreating at unprecedented rates
(Zemp et al., 2015) while snow coverage is receding
(Vaughan et al., 2013), resulting in observable changes to
downstream river flows (Luce and Holden, 2009; Singh et al.,
2016; Hernández-Henríquez et al., 2017; Matti et al., 2017).
With near-surface air temperature projected to rise over the
coming decades (Collins et al., 2013) future changes in river
flow regimes in response to cryosphere change could have
wide-ranging socio-economic and environmental impacts.
Long-term reductions in meltwater inputs will disrupt the
supply of water available for irrigation (Nolin et al., 2010;
McDowell and Hess, 2012; Carey et al., 2014; Baraer et al.,
2015). Increased inter-annual and intra-annual flow variabil-
ity will threaten infrastructure projects such as hydroelec-
tric power stations (Laghari., 2013; Gaudard et al., 2014;
Carvajal et al., 2017). The loss of the runoff-regulating ef-
fects of snow and ice could result in more frequent short-
term very high flows putting downstream populations and
infrastructure at risk (Laghari., 2013; Stoffel et al., 2016).
Changes in flow magnitude and variability from annual to
sub-daily timescales will threaten the sustainability of some
of the world’s most pristine freshwater ecosystems (Bunn
and Arthington, 2002; Naiman et al., 2008; Beamer et al.,
2017). Therefore, it is of paramount importance to make reli-
able projections of changes in downstream river flow regimes
from glaciated watersheds so that future impacts can be
adapted to and mitigated.

Computational glacio-hydrological models (GHMs)
driven by numerical climate model projections allow us to
assess how future river flow regimes will change in glaciated
river basins. Past studies have focussed on projecting
changes in decadal, annual and seasonal variations in runoff
magnitude. Decadal changes in runoff are inevitable over
the coming century (e.g. Bliss et al., 2014; Lutz et al.,
2014; Shea and Immerzeel, 2016), where enhanced melt
will result in increased river discharge to a point in time
termed “peak water”, after which the continued loss of snow
and ice will result in an overall decrease in river flow. It has
been shown that many basins, particularly those with small
glaciers, have already reached peak water and face a future
of dwindling water supply (Huss and Hock, 2018). Seasonal
flow magnitudes are also projected to change as melt cycles
evolve and watersheds shift from glacial–nival to pluvial

runoff regimes (Kobierska et al., 2013; Duethmann et al.,
2016; Ragettli et al., 2016; Garee et al., 2017).

Some impact studies show robust changes in the magni-
tude of the highest and lowest river flows, including Wijn-
gaard et al. (2017), who projected an increase in the mag-
nitude of the 10 % exceedance flow (Q10) for river basins
across the Hindu Kush Himalayan region. Other studies for
the Rhine (Bosshard et al., 2013), upper Indus (Lutz et al.,
2016) and upper Yellow River basin (Vetter et al., 2015) show
high-flow magnitudes will increase. Stewart et al. (2015) pro-
jected a decrease in low-flow magnitude (Q90) for the snow-
covered Sierra Nevada and upper Colorado River basins due
to shifts in the snowmelt season and changes in precipita-
tion type from snow to rain. For the Hindu Kush, Wijngaard
et al. (2017) found the opposite impact with an increase in
the magnitude of low-flow events. The projected trends in
Q90 for the upper Yellow River basin by Vetter et al. (2015)
were inconclusive as they showed an even spread of positive
and negative trends under the warmest climate scenarios.

Of course, one could go beyond projecting changes in sea-
sonal to decadal mean flow magnitudes and quantiles of the
flow duration curve (FDC). A branch of streamflow analysis
that has been widely adopted in hydrology is the calculation
of river flow “signatures”, which are metrics derived from
river discharge time series that represent different character-
istics of river flow over specific timescales. These may in-
clude mean flows and FDC quantiles as well as metrics to
quantify the variability (e.g. coefficient of variation), tim-
ing (e.g. peak flow month) and flashiness (e.g. autocorrela-
tion) of flows. Signatures have been used in the past to anal-
yse catchment runoff behaviour and similarity (Yadav et al.,
2007; Ali et al., 2012). Furthermore, their ability to localise
specific aspects of runoff behaviour make them ideal diag-
nostic evaluation metrics for model hypothesis testing (Euser
et al., 2013; Coxon et al., 2014; Hrachowitz et al., 2014) and
calibration (Hingray et al., 2010; Shafii and Tolson, 2015;
Kelleher et al., 2017; Schaefli, 2016). They also offer an op-
portunity to evaluate past (Sawicz et al., 2014) and future
(Casper et al., 2012) river flow regime change. For exam-
ple, Teutschbein et al. (2015) projected changes in 14 differ-
ent river flow signatures for 14 snow-covered catchments in
Sweden and showed daily to annual river flow magnitude,
timing and variability were all sensitive to climate change.
An analysis like this is yet to be undertaken for any glaciated
river basins.

Projections of river flow regime are inherently uncertain
due to assumptions made about the formulation, parame-
terisation, and boundary conditions of the underlying GHM
(Ragettli et al., 2013; Huss et al., 2014; Jobst et al., 2018) and
climate model, be that a general circulation model (GCM) or
a combined GCM and regional climate model (GCM–RCM)
(Giorgi et al., 2009). Uncertainties may also be introduced by
intermediary steps employed to link the two sets of models
together, such as downscaling (DS). Quantifying the propa-
gation of uncertainties from all sources in the model chain
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provides a basis for assigning more robust levels of confi-
dence to river flow projections. Additionally, one can assess
the relative contributions of model chain components to the
total projection uncertainty, providing empirical evidence for
future research needs (e.g. Meresa and Romanowicz, 2017).
Ensemble-based experiments have been used in the past to
provide this understanding. Here, different components of
the model chain are perturbed, typically using a one-at-a-
time (OAT) approach where the spread in projections for
each perturbed component is evaluated. Ragettli et al. (2013)
perturbed three components of a model chain applied to the
Hunza River basin, northern Pakistan, including the GCM,
statistical DS model and parameterisation of the GHM. They
showed that all three sources contributed to annual runoff
projection uncertainty, but for the heavily glaciated subre-
gions of the catchment, the GHM parameter uncertainty ex-
ceeded the effect of other sources. Huss et al. (2014) investi-
gated uncertainty in seasonal river flow projections over the
21st century for the Findelengletscher catchment, Switzer-
land, by modifying the GCM–RCM, GHM melt model struc-
ture and initial ice volume boundary condition. Of these, they
found that the GCM–RCM and initial ice volume were most
important, while the melt model structure was of secondary
importance. Jobst et al. (2018) investigated uncertainties in
21st century river flow projections for the Clutha River basin,
New Zealand. They evaluated contributions from the emis-
sion scenario (ES), GCM–RCM, statistical DS approach and
melt model structure. Similarly to Huss et al. (2014), they
found that uncertainty in the choice of GCM–RCM domi-
nated total projection uncertainty.

The OAT method provides a first-order approximation
of the relative contribution of each component to the total
projection uncertainty. However, findings are dependent on
how the non-perturbed model components are fixed. Fur-
thermore, this approach cannot resolve interactions between
model components which may also contribute to projection
uncertainty (Pianosi et al., 2016). The analysis of variance
(ANOVA) statistical method (von Storch and Zwiers, 1999;
Tabachnick and Fidell, 2014) addresses these shortcomings
and has been adopted in a number of recent regional- and
global-scale hydrological modelling studies (Bosshard et al.,
2013; Addor et al., 2014; Giuntoli et al., 2015; Vetter et al.,
2015, 2017; Samaniego et al., 2017; Yuan et al., 2017) to
compare uncertainties stemming from the ES, climate model,
hydrological model structure and DS approach. While un-
certainties associated with future climate tend to dominate
projections of river flow, glacier-fed river flow projections
have shown been to be highly sensitive to hydrological model
structure (Addor et al., 2014; Giuntoli et al., 2015), particu-
larly in relation to high flows (Vetter et al., 2017). Further-
more, the contribution of projection uncertainty from interac-
tions between model chain components can exceed individ-
ual components (Bosshard et al., 2013; Addor et al., 2014;
Vetter et al., 2015). Several issues not considered in these
studies, however, are yet to be addressed. Firstly, none have

investigated a full range of characteristic changes in river
flow regime covering decadal to sub-daily timescales. Sec-
ond, all have incorporated hydrological model uncertainty
using multiple model codes, each with their own unique
set of process representations, resolution, time step and cli-
mate interpolation strategies, making it difficult to deter-
mine which model components contribute most to projec-
tion uncertainty. Finally, none included a fully integrated
mass-conserving, dynamic glacier evolution model compo-
nent and therefore could not fully account for atmosphere–
cryosphere–hydrosphere feedbacks.

This study uses a GCM–RCM–DS–GHM model chain to
simulate the impact of 21st century climate change on down-
stream river flow regime in the deglaciating Virkisá river
basin in southern Iceland. Five components of the model
chain are perturbed to represent uncertainty of ES, GCM–
RCM, statistical DS parameterisation and structure param-
eterisation of two primary controls on river flow regime in
the GHM: melt and runoff-routing processes. The study has
two principal aims: (i) to determine how climate change and
consequent cryospheric change will impact downstream river
flow regime over the 21st century; and (ii) to quantify the rel-
ative influence of the five model chain components to projec-
tion uncertainty across the different characteristics of river
flow regime. This study addresses each of the aforemen-
tioned gaps in previous work. Firstly, changes in river flow
regime are assessed quantitatively using 25 river discharge
signatures which define different characteristics of river flow
regime over a range of timescales. Second, a single, consis-
tent, GHM code is used that can incorporate different model
structures and parameterisations of melt and runoff-routing
processes, allowing for uncertainty stemming from these to
be localised using ANOVA. Finally, a fully integrated mass-
conserving, dynamic glacier evolution routine is included in
the GHM code.

2 Methodology

2.1 Study site

The Virkisá river basin covers an area of 22 km2 on the
western side of the ice-capped Öræfajökull stratovolcano in
south-east Iceland (Fig. 1) and forms a primary drainage
channel for accumulating ice at the mountain summit (∼
2000 m a.s.l.). The glacier flows in a south-westerly direc-
tion (average ice surface slope= 0.25) along two distinct
glacier arms, Virkisjökull and Falljökull (hereafter referred to
as Virkisjökull), around a bedrock ridge before meeting again
at the terminus (∼ 150 m a.s.l.). Virkisjökull currently covers
∼ 60 % of the river basin area but has been in a phase of re-
treat since 1990. Between 1988 and 2011 Virkisjökull lost
∼ 0.3 km3 of ice and retreated ∼ 0.5 km. A small proglacial
lake at the terminus forms the headwater of the Virkisá river.
The Virkisá flows through an 800 m bedrock-controlled sec-
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Figure 1. Location of the Virkisá river basin in Iceland with
glaciated areas highlighted in grey (a), location of Öræfajökull (b),
and detailed topographical map of the basin including major land
surface types as well as meteorological and stream gauging sta-
tions (c).

tion flanked on either side by push moraines and then over
the Skeiðarársandur floodplain, typically comprising uncon-
solidated glacial outwash sediment. The steep-sided valley
walls and glacial activity only allow for sporadic develop-
ment of thin soils with limited vegetation including mosses,
grass and shrubs.

The local climate is characterised by cool summers (∼
10 ◦C on average at automatic weather station 1, AWS1) and
mild winters (∼ 1 ◦C on average at AWS1) with an average
temperature lapse rate of −0.44 ◦C 100 m−1 (Flett, 2016).
There is a significant lateral precipitation gradient due to the
prevailing north-easterly winds and orographic effects with
more than 5 times the annual precipitation falling at the Öræ-
fajökull summit (∼ 8000 mm yr−1) compared to lower down
at the catchment outlet to the west (∼ 1500 mm yr−1) (Nawri
et al., 2017).

2.2 Climate data

2.2.1 Historical climate

Historical climate data were available from 1981 to 2016
inclusive. A detailed description of these are provided by

Mackay et al. (2018). For brevity, only a summary of these
data is provided here. The historical climate data include
continuous hourly near-surface air temperature measure-
ments from two automatic weather stations in the catchment
(Fig. 1c) which were installed in 2009 (AWS1) and 2011
(AWS4). Temperature data from the nearby Icelandic Meteo-
rological Office Fagurhólsmýri weather station (12 km south
of the study site) were used to extend the AWS1 time series
back to 1981 using a linear regression model (R2

= 0.92)
to bias-correct against the AWS data. A seasonally variable
hourly lapse rate calculated between AWS1 (156 m a.s.l.) and
AWS4 (805 m a.s.l.) was used to extrapolate near-surface air
temperature across the study region, and an on-ice temper-
ature correction function (Shea and Moore, 2010) was em-
ployed to account for katabatic cooling of air in the glacier
valleys. Continuous hourly incident solar radiation data were
also available from AWS1. A random resampling strategy
that accounted for the dependence between intraday solar ra-
diation and temperature variability was employed to gener-
ate a continuous time series back to 1981. For precipitation,
the 2.5 km gridded hourly total precipitation data produced
as part of the ICRA atmospheric reanalysis project were
used, which are currently considered the most accurate grid-
ded precipitation product over Iceland (Nawri et al., 2017).
These were bias-corrected against hourly precipitation mea-
surements from AWS1 using equidistant quantile mapping
(Li et al., 2010).

2.2.2 Regional climate projections

Future climate time series until 2100 were constructed using
regional climate projections from the Coordinated Regional
Climate Downscaling Experiment (CORDEX) (Giorgi et al.,
2009). These are based on an ensemble of RCMs driven by
GCM projections from the Coupled Model Intercomparison
Project (CMIP5) (Taylor et al., 2012). Iceland is covered
by the EURO-CORDEX and ARCTIC-CORDEX regional
model domains. Following the review by Gosseling (2017),
the EURO-CORDEX data were used as these include projec-
tions at a higher 0.11◦ spatial resolution and a larger ensem-
ble of GCM–RCM combinations allowing better exploration
of climate model uncertainty.

The 0.11◦ EURO-CORDEX simulations span the years
1950–2100 with simulations up to 2005 constituting the “re-
cent past” where influences such as atmospheric composi-
tion, solar forcing and emissions are imposed based on obser-
vations. From 2006, three future ESs or representative con-
centration pathways (RCPs) were imposed on the models,
including RCP2.6, RCP4.5 and RCP8.5, which represent an
additional radiative forcing by 2100 relative to pre-industrial
values of+2.6,+4.5 and+8.5 W m−2 respectively. All sim-
ulations are available at 3-hourly to 3-monthly resolution;
however, the 3-hourly simulations were only produced using
four GCM–RCM combinations while daily to seasonal simu-
lations were produced using 15. Given the intent of this study
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to analyse projection uncertainty, it was decided that the daily
data were most suitable. RCP2.6 was omitted as only 8 of
15 GCM–RCM combinations within the CORDEX archive
used this ES. Furthermore, the probability of achieving the
RCP2.6 targets is increasingly unlikely (Sanford et al., 2014;
Fyke and Matthews, 2015) and arguably completely infea-
sible (Mora et al., 2013) given the current global emission
trajectory.

One of the 15 GCM–RCM combinations (GCM: CNRM-
CM5, RCM: CNRM-ALADIN53) was removed from the en-
semble given that it showed an extreme negative winter tem-
perature bias and a consistently low skill when compared
to daily observed climate data (see Appendix A). Figure 2
shows the seasonal bias of each of the 14 remaining GCM–
RCM combinations when compared to observations between
1981 and 2005. For temperature, the coldest days (T1) typi-
cally show a negative bias, particularly in winter, spring and
autumn. Biases for T99 are generally positive but smaller
in magnitude. The average absolute bias in mean seasonal
temperature (Tmean) is 1.4 ◦C, but the majority of GCM–
RCM combinations show absolute biases < 1.2 ◦C. Biases
in seasonal incident solar radiation projections are almost
exclusively positive, with the largest biases associated with
SWmean and SW99, particularly in spring and summer where
they can exceed 100 W m−2. Total precipitation biases are
typically largest in winter and autumn where proportionally
biases in Pmean can exceed the magnitude of the observations
(see SON for EC-EARTH–HIRHAM5). The largest biases
however are seen in extremes (P99) which range from −86.9
to 77.5 mm d−1. While positive and negative precipitation bi-
ases are present throughout the ensemble, the sensitivity of
precipitation simulations to the RCM is clear. For example,
the CCLM4-8-17 RCM has a systematic negative bias and
the HIRHAM5 RCM has a systematic positive bias.

2.2.3 Downscaling regional climate projections

The statistical delta-change downscaling approach which has
been widely applied in hydrological impact studies (Farinotti
et al., 2012; Immerzeel et al., 2013; Kobierska et al., 2013;
Huss et al., 2014; Lutz et al., 2016) was employed. While
most studies have used monthly mean delta-change values to
capture seasonal shifts in climate, several recent investiga-
tions have used advanced quantile-based approaches which
account for changes in higher-order statistical properties of
future climate by evaluating shifts in the empirical cumu-
lative distribution functions (ECDFs) of climate variables.
Including these higher-order changes has shown to be im-
portant for evaluating shifts in extreme high flows and sub-
seasonal metrics of river flow projections (Jakob Themeßl
et al., 2011; Immerzeel et al., 2013; Lutz et al., 2016). In ad-
dition, shifts in the day-to-day variability of temperature im-
pact projections of glacier retreat as these variations control
the periodic rising of temperature above the melting point
(Beer et al., 2018). Accordingly, the advanced delta-change

approach was adopted in this study. The approach is sum-
marised in five steps which were applied to each combination
of GCM–RCM, climate variable and ES separately:

1. The climate variable time series was divided into four
25-year-long periods including the recent past (1981–
2005) and early (2006–2030), mid- (2041–2065) and
late (2076–2100) 21st century.

2. For each of the four periods, all daily data points were
further divided into 12 subsamples representing each
month of the year. An ECDF was constructed for each
month of each period.

3. For each month of each future period, 10 deltas were
calculated by taking the mean difference between the
recent past and future ECDF for each 10 % section (see
grey bars in Fig. 3a for example).

4. Given the need for transient climate time series to simu-
late glacier evolution over the 21st century, a daily delta
time series from 2006 to 2100 was constructed for each
ECDF section of each month by linearly interpolating
between the calculated deltas of each future period (e.g.
as implemented by Farinotti et al., 2012), using the
midpoints of the future periods as interpolation points
(Fig. 3b).

5. The hourly historic observation data for the recent past
were randomly sampled (with replacement) on a year-
by-year basis to generate an initial unperturbed future
climate variable time series (blue dash, Fig. 3c). The
daily deltas were applied to this time series for each
month and ECDF section separately to generate a fu-
ture perturbed climate time series at an hourly resolution
(orange dash Fig. 3c). It was noted upon visual inspec-
tion that the inter-annual variability of the future climate
time series was very sensitive to the random sampling
of the historic climate data. Accordingly, uncertainty
associated with this aspect of the DS parameterisation
was considered by using 10 different random historic
climate samples.

For temperature, catchment-average daily deltas were ap-
plied evenly across the catchment and each daily period of
the unperturbed time series. Accordingly, diurnal tempera-
ture variability and lapse rates were assumed not to change
in the future. For incident solar radiation and precipitation,
proportional deltas were used to prevent negative values and
preserve the sub-daily proportional distribution of these vari-
ables in space and time. A total of 280 future climate time
series from 2 ESs with 14 GCM–RCM models and 10 DS
parameterisations were generated for this study.

2.3 Glacio-hydrological model

The distributed GHM code implemented by
Mackay et al. (2018) was used in this study because it

www.hydrol-earth-syst-sci.net/23/1833/2019/ Hydrol. Earth Syst. Sci., 23, 1833–1865, 2019
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Figure 2. Comparison of seasonal catchment-average observed and simulated near-surface air temperature (T ), incident solar radiation (SW)
and total precipitation (P ) between 1981 and 2005 for the 14 GCM–RCM models used in this study. The top row shows the observed value
and all subsequent rows indicate the GCM–RCM biases. The 1st percentile, mean and 99th percentile are denoted by the subscripts 1, mean
and 99 respectively. All statistics are calculated for the recent past (1981–2005) for winter (DJF), spring (MAM), summer (JJA) and autumn
(SON).

Figure 3. Example of the advanced delta-change approach when applied to near-surface air temperature data based on the RCP8.5 projections
using the CNRM-CM5 GCM and CCLM4-8-17 RCM. Deltas (grey bars) derived from ECDFs (black curves) for April in the late 21st
century (a); daily delta time series for each section of the April ECDFs (green line represents 40th–50th percentile section) (b); initial and
perturbed future temperature time series when deltas for all months and ECDF sections are applied (c).

includes a dynamic, mass-conserving glacier evolution
component and also allows the user to utilise different
model structures of melt and runoff-routing processes. The
GHM resolves glacio-hydrological processes over a regular
2-D Cartesian grid of 50 m cells driven by hourly climate
data including precipitation, temperature and incident solar
radiation. Empirical index-based equations simulate the
melt of snow and ice. Snow redistribution by drift and
avalanches is calculated using the curvature and slope of
the surface (Huss et al., 2008) while the mass-conserving
1h parameterisation of glacier retreat (Huss et al., 2010)
resolves changes in the glacier geometry. A soil infiltration
and evapotranspiration model (Griffiths et al., 2008) based
on the well-established FAO56 soil moisture accounting

procedure (Allen et al., 1998) solves the water balance for
model nodes with no ice or snow coverage. This model
has been applied extensively (Mackay et al., 2014, 2015;
Jackson et al., 2016; Mansour et al., 2018) and has been
shown to compare favourably to physically based models at
the field scale where interception losses are small (Sorensen
et al., 2014). Excess soil moisture, rainfall and melt are
routed to the catchment outlet via a semi-distributed network
of linear reservoir cascades (Ponce, 1989) which represent
the average water storage and release characteristics of the
major hydrological pathways in the watershed (see Fig. 2 in
Mackay et al., 2018).
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2.3.1 Modification to 1h parameterisation of glacier
retreat

Under periods of sustained positive mass balance, simula-
tions from the 1h glacier evolution model may result in an
unrealistic build-up of ice at the glacier tongue without any
simulated areal advance. Given the potential for periods of
glacier advance under a changing climate, such behaviour
is likely to result in significant projection biases. Recently,
Seibert et al. (2018) presented an implementation of the orig-
inal 1h parameterisation that provides more realistic sim-
ulations of glacier advance. They propose running the 1h
parameterisation a priori outside of the GHM. A small neg-
ative mass balance is used to force the 1h model from an
initial glacier profile (ideally its maximum observed extent)
until the glacier has disappeared completely. At each step,
the glacier mass and geometry are stored in the form of a
lookup table. On running the GHM, the retreat/advance of
the glacier is derived from the lookup table as a function of
the simulated glacier mass. One important drawback of us-
ing this static lookup table is that it modifies the behaviour of
the 1h formulation during periods of retreat. More specifi-
cally, this approach neglects the transient annual sequencing
of glacier mass balance which influences simulated glacier
geometry due to the non-linear structure of the 1h poly-
nomial that defines the relationship between mass balance
and glacier geometry. Accordingly, a modified implementa-
tion of the Seibert et al. (2018) approach was used in this
study, which behaves like the original 1h formulation dur-
ing periods of glacier retreat and allows for the simulation of
glacier advance while accounting for mass balance sequenc-
ing effects on the model behaviour. For periods of negative
glacier mass balance the original 1h formulation was used.
The GHM was then modified so that for each simulation
year, the simulated glacier mass and geometry were stored in
memory. If a positive glacier mass balance (1M) was simu-
lated, the GHM would log the current glacier mass (Mcurrent)
and then look for the most recent historical simulated glacier
mass (Mhist) that exceeded Mcurrent+1M . The 1h model
was then run with a negative mass balance (1M∗) so that
Mhist+1M

∗
=Mcurrent+1M .

2.3.2 Melt and runoff-routing model structures

The selection of melt and runoff-routing model structures
was based on the findings of Mackay et al. (2018). They ap-
plied nine different combinations of three melt model struc-
tures and three runoff-routing model structures of varied
complexity in the GHM and evaluated their ability to cap-
ture a range of river discharge signatures derived from ob-
servation time series at automatic stream gauge 1 (ASG1
in Fig. 1c), which has been operational since 2012. They
also used observation data of ice melt and snow coverage
to derive signatures that described different aspects of these
data (see Appendix B). They showed that while introducing

model complexity did improve simulations when evaluated
against specific signatures, it did not necessarily result in bet-
ter consistency across all signatures, emphasising model se-
lection uncertainty. The most complex runoff-routing struc-
ture, however, was consistently the least efficient when com-
pared to the two simpler alternatives, particularly in relation
to capturing signatures representing high-river-flow events.
As such, this model structure was discarded, and only the re-
maining six combinations of melt and runoff-routing model
structures were used in this study. These included three melt
model structures: (i) the classic temperature-index model
(TIM1) where melt increases linearly with near-surface air
temperature above a critical threshold (e.g. Braithwaite,
1995); (ii) the enhanced temperature-index model (TIM2)
proposed by Hock (1999) which accounts for topographic ef-
fects on incident solar radiation including surface slope, as-
pect and shading from the surrounding landform; and (iii) the
enhanced temperature-index model (TIM3) proposed by Pel-
licciotti et al. (2005) which accounts for topographic ef-
fects and also includes a dynamic snow albedo parameteri-
sation (Brock et al., 2000), which accounts for the drop in
snow albedo as it ages. Each melt model structure was com-
bined with the two runoff-routing structures: (i) a single lin-
ear reservoir cascade (ROR1) which routes runoff from all
sources (ice melt, snowmelt, rainfall and excess soil water)
simultaneously; and (ii) two linear reservoir cascades in par-
allel (ROR2), where the first represents the slow percolation
of water through the snow and firn and the second represents
faster flow of water through and over bare ice and over land.
The simplest ROR1 structure assumes all catchment water
stores delay and diffuse downstream river response to runoff
in the same way, effectively fixing the runoff-routing be-
haviour of the catchment over time. The more complex ROR2
structure accounts for temporal variations in the drainage ef-
ficiency of the catchment according to changes in snow and
ice coverage.

2.4 Signatures of river flow regime

Table 1 lists the 25 signatures of river discharge used to eval-
uate future changes in river flow regime. The majority of
the signatures were selected from past studies (Yadav et al.,
2007; Yilmaz et al., 2008; Shafii and Tolson, 2015; Schae-
fli, 2016) and were chosen to reflect the types of changes that
one might expect to see in snow- and ice-covered catchments.
They also broadly follow those used in the model assessment
study of Mackay et al. (2018). The signatures are grouped
into seven different attributes and further categorised by the
characteristic(s) of flow regime that they evaluate and their
temporal scale. At the decadal timescale, two signatures were
selected. These include the “peak water”, which defines the
timing (by year) of maximum flow, as well as the inter-annual
flow range, which characterises long-term flow variability.
Changes in mean annual river flow were also evaluated,
while mean monthly flows were used to evaluate changes to
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the seasonal timing and magnitude of river flow. The range
in mean monthly flows was also chosen to evaluate intra-
annual flow variability. In addition, eight signatures were se-
lected which broadly describe the magnitude and variabil-
ity of slow-release low flows (99 %–95 % exceedance flows),
moderate flows (52 %–48 % exceedance) and quick-release
high flows (5 %–1 % exceedance). For these, the quantiles of
the FDC were used to assess changes in the magnitude of
these flow types. The standard deviation was also used to de-
fine flow variability of each flow type. Finally, the integral
scale, which measures the lag time at which the autocorrela-
tion function of the river flow time series falls below 1

e
, was

utilised as an indicator of the response time of the catchment
to runoff events (flashiness).

2.5 GHM calibration

Given the focus on projecting changes in river discharge sig-
natures, these were explicitly included in the GHM calibra-
tion procedure as this gives better signature simulations than
using traditional global objective functions (Kiesel et al.,
2017; Pool et al., 2017). Calibrating against river flow data
alone can lead to unrealistic snow and glacier melt rates, in-
hibiting model consistency and increasing projection uncer-
tainties (Konz and Seibert, 2010; Finger et al., 2011; Schaefli
and Huss, 2011; Hanzer et al., 2016). Accordingly, a novel
signature-based calibration of the GHM was undertaken by
evaluating the GHM against 20 of the river discharge sig-
natures in Table 1 for which observation data exist, calcu-
lated from hourly river discharge measurements (Macdonald
et al., 2016) at the automatic stream gauge (ASG1 in Fig. 1)
in combination with 12 signatures of ice melt and snow cov-
erage (Appendix B).

For each signature, model simulations were compared to
observations using a continuous acceptability score that is
analogous to those used in other signature-based hydrolog-
ical studies (Coxon et al., 2014; Shafii and Tolson, 2015).
This objective function explicitly accounts for uncertainty
in the observation signatures, hereafter termed “limits of ac-
ceptability” (LOA), so that decisions about model appropri-
ateness can be made within the uncertainties of observation
data. In this study the 95 % confidence bounds were used to
define the LOA for the river discharge signatures (Table 1)
and the ice melt and snow coverage signatures (Table B1).
Details of how these were derived can be found in the study
of Mackay et al. (2018). The acceptability for signature j is
defined as

sj =


0 lowj ≤ simj ≤ uppj
simj−uppj
uppj−obsj

simj > uppj
simj−lowj
obsj−lowj

simj < lowj

, (1)

where obsj and simj are the observed and simulated values,
and uppj and lowj are the upper and lower LOA. A score
of zero indicates that the model captures the signature within

the LOA. A non-zero score is given for any simulation that
falls outside of the LOA with a sign that indicates the di-
rection of bias and a magnitude that indicates the model’s
performance relative to the LOA. A score of −3 would indi-
cate that the model underestimates the signature by 3 times
the observation uncertainty. This score therefore does not pe-
nalise a model if it falls within the observation uncertainty of
a signature. It is also tolerant of projections that fall outside
of the LOA where observation uncertainty is high – a de-
sirable attribute given the range of signatures the GHM was
evaluated against.

The aim of the calibration was to extract an ensemble
of GHM compositions (TIM and ROR structure–parameter
combinations) that were most acceptable across the river dis-
charge signatures whilst broadly reproducing the snow cov-
erage and ice melt signatures. This was achieved using a two-
stage Monte Carlo procedure which was devised so that the
resultant GHM ensemble reflected the uncertainty in model
selection given the known inconsistencies of the GHM across
the signatures.

2.5.1 Stage 1: TIM calibration

The first stage aimed to extract the optimal TIM com-
positions (structure–parameter combinations) by calibrating
them against the 12 snow coverage and ice melt signatures.
Here, for each of the three TIM structures, 5000 TIM param-
eter sets were drawn from predefined uniform distributions
(Table C1 in the Appendix) using the quasi-random Sobol
sampling strategy (Brately and Fox, 1988) to sample the pa-
rameter space as efficiently as possible. For each parameter
set, the GHM was spun up for 3 years from 1985 to 1988
with a static ice geometry fixed to a 1988 ice digital eleva-
tion model (DEM) (Magnússon et al., 2016). The GHM was
then run from 1988 to the end of 2016 with a freely evolving
glacier geometry.

Given the high degree of glaciation in the study catchment,
and its recent rapid retreat, an initial emphasis of the calibra-
tion was put on the model’s ability to capture the long-term
glacier volume change signature. Accordingly, only those
TIM compositions that captured this signature within the
LOA were considered and the rest were discarded. These re-
maining compositions were then further refined by evaluat-
ing them against the remaining 11 snow and ice signatures.
First, the TIM compositions were sorted by structure (TIM1,
TIM2, TIM3). Then, for a given TIM structure, the following
steps were applied:

1. Find the TIM parameter set(s) that capture the signa-
ture within the LOA and discard the rest. If more than
one parameter set captures the current signature, go to
step 2. If none capture the current signature, discard
none and go to step 2.

2. Of the remaining models, find that which best captures
the 10 remaining snow and ice signatures overall ac-
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cording to the weighted mean scores obtained in Eq. (1).
The weights were applied to ensure that equal prefer-
ence was given to ice melt and snow coverage signa-
tures.

Twenty-four unique TIM compositions were obtained from
this calibration stage made up of eight unique parameterisa-
tions of each of the three TIM structures. In some cases the
same composition was selected more than once, which was
accounted for by weighting the simulations in the results pre-
sented throughout this study.

2.5.2 Stage 2: ROR calibration

The second calibration stage aimed to extract the opti-
mal ROR compositions when used in combination with the
24 preselected TIM compositions by calibrating them against
20 of the river discharge signatures obtained from observa-
tions of river discharge for the years 2013 and 2014 (see sig-
natures with calibration LOA in Table 1). Note that the inter-
annual flow signatures and the mean December river flow
signatures could not be calculated as there was insufficient
observation data. Furthermore, the mean annual river flow
and mean monthly flow range were not included as this infor-
mation was already accounted for in the mean monthly flow
signatures. Here, 5000 random ROR parameter sets were
drawn for each ROR structure. Each was used in combination
with the preselected TIM compositions in the GHM. Then,
the two steps outlined in calibration stage 1 were applied us-
ing the 20 calibration river discharge signatures with two no-
table differences. Firstly, for each ROR structure and each
river discharge signature, rather than selecting a unique ROR
parameter set for each of the 24 TIM compositions, a single
parameter set was selected based on its mean performance
across the 24 TIM compositions. This was done to satisfy
the ANOVA requirements so that the TIM and ROR compo-
sition uncertainty could be analysed separately. Furthermore,
for step 2, the signatures were weighted so that each of the at-
tributes in Table 1 were weighted equally. In total, 14 unique
ROR compositions made up of seven unique parameterisa-
tions of the ROR1 and ROR2 structures were selected, giving
a total of 24× 14= 336 unique GHM compositions.

2.6 ANOVA uncertainty analysis

For the 21st century runs, all 336 GHM compositions were
run to the end of 2016 using the historic observed cli-
mate to capture the evolving ice geometry as accurately
as possible. From 2017 to 2100, the 280 downscaled fu-
ture climate time series were used to drive the GHM com-
positions resulting in 94 080 individual model runs. For
each model run, projections of watershed snow and ice
coverage and the 25 river discharge signatures were ex-
tracted for six 21st century 25-year time slices centred on
the 2030s (2023–2047), 2040s (2033–2057), 2050s (2043–
2067), 2060s (2053–2077), 2070s (2063–2087) and 2080s

(2073–2097). Future changes in these were then calculated
relative to a reference 25-year period (1991–2015). This ref-
erence period was chosen because ice coverage data (used
to initialise the GHM) were only available from 1988 and
historic climate data were available up to the end of 2016.
ANOVA was used to quantify the effect size of the five com-
ponents of the model chain, hereafter termed “factors”, on
each signature for each 21st century time slice. Note that the
peak water (PW) signature can only be calculated taking into
account the full projection time series and, as such, it was
not possible to apply ANOVA to each time slice for this sig-
nature. The five factors include the 2 future ESs, 14 GCM–
RCM combinations, 10 DS parameterisations, 24 TIM com-
positions and 14 ROR compositions. ANOVA offers an in-
tuitive approach to estimate the effect size of each factor on
each signature by partitioning the total sum of squares (SStot)
in the response variable over all combinations of factor lev-
els:

SStot = SSa +SSb+SSc+SSd +SSe+SSI+SSε, (2)

where

SStot =

na∑
i=1

nb∑
j=1

nc∑
k=1

nd∑
l=1

ne∑
m=1

(yi,j,k,l,m−Y )
2, (3)

where na , nb, nc, nd and ne are the number of levels for each
factor, y is the response for a given treatment (i.e. combina-
tion of factor levels) and Y is the grand mean of the response
variable over all treatments. SSa , SSb, SSc, SSd and SSe in
Eq. (2) are the sum of squares due to the main effects, i.e.
the variability in the response variable due to varying a given
factor on its own. For example,

SSa = nbncndne
na∑
i=1
(yi,◦,◦,◦,◦−Y )

2, (4)

where ◦ indicates averaging over an index. SSI includes all
nonadditive interaction terms where the combined effect of
two or more factors is not the sum of their main effects.
For a five-factor ANOVA, one could include all unique n-
tuple combinations of factors where n= (2,3,4,5). Given
the difficulty in interpreting these higher-order interactions,
and computational requirements, it was decided to investi-
gate the nine first-order interactions only, so that

SSI = SSab+SSac+SSad +SSae+SSbc+SSbd +SSbe
+SScd +SSce+SSde. (5)

The sum of squares for a first-order interaction are calculated
as follows using factors a and b as an example:

SSab = ncndne
na∑
i=1

nb∑
j=1
(yi,j,◦,◦,◦− yi,◦,◦,◦,◦− y◦,j,◦,◦,◦+Y )

2. (6)

Finally, the SSε term includes all unexplained variance, i.e.
error in the ANOVA model.
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Having partitioned the sum of squares, the effect size, η2,
for any term in Eq. (3) can be taken as the proportion of the
total sum of squares:

η2
∗ = SS∗/SStot, (7)

where ∗ can be any of the main effects, interactions or error
term.

Bosshard et al. (2013) showed that because ANOVA is
based on a biased variance estimator that underestimates the
variance in small sample sizes, the calculated effect sizes are
biased if a different number of levels are used for each fac-
tor. Given that the number of factor levels ranges from 2 to
24, a pure application of ANOVA using all possible treat-
ments would lead to biased results. Bosshard et al. (2013)
outlined a method to correct for this which involves subsam-
pling the factor levels down to the smallest number levels
across all factors. The procedure is repeated using every pos-
sible combination of factor levels with unbiased effect size
taken as the mean across all subsamples. However, given that
there are > 108 unique combinations of factor levels when
subsampled down to two (and discarding factor level repe-
titions), it would have been infeasible to account for every
possible combination. Instead, it was decided to calculate
the effect sizes in this manner using five different subsample
sizes (101,102 . . .105). The results were then analysed to see
if the effect sizes converged. It was found that 103 subsam-
ples were sufficient to converge the effect sizes for all river
discharge signatures and projections of snow and ice cover-
age. Accordingly, this subsampling strategy was adopted in
this study.

3 Results

3.1 Evaluation of calibrated GHM compositions

The simulated river discharge time series and signatures us-
ing the calibrated GHM compositions were evaluated against
river discharge observations covering the years 2015 and
2016. Note that no data for mean January and February flows
were available for these years. Figure 4a and b show the
simulated “capture ratio” (the ratio of the 336 GHM com-
positions that capture the observation data within their 95 %
uncertainty bounds) time series projected onto the mean ob-
served river discharge for the years 2015 and 2016 respec-
tively. Also shown is the ensemble mean simulated river dis-
charge (dashed black line) which, while not indicative of a
single GHM simulation, does provide an indication of over-
all projection bias.

A total of 56 % of the observation time series were cap-
tured by at least half of the GHM compositions, while 41 %
and 28 % of the observations were captured by at least 75 %
and 90 % of the GHM compositions. A total of 12 % of the
observations were not captured by any of the GHM compo-
sitions. These included some of the low flows observed at

Figure 4. Capture ratio projected onto observed river discharge
data during evaluation period for 2015 (a), 2016 (b), and over the
FDC (c). The weighted ensemble mean simulation is shown as a
dashed black line. Also shown are the range of acceptability scores
for each of the available river discharge signatures over the evalu-
ation period (d). Acceptable simulations in (d) are those contained
within the dashed black lines.

the beginning of the year outside of the melt season, partic-
ularly in 2015, where the GHM showed consistent negative
biases. Some rainfall-induced summer peak flows were also
not captured, particularly during the late summer months of
August and September. Furthermore, the sustained summer
melt runoff discharge in between rainfall-induced peak flows
tended to be overestimated (for example during July and Au-
gust 2016). Even so, the flow duration curve in Fig. 4c shows
that almost the entire FDC was captured by all of the GHM
simulations except for some of the lowest flows on record.
Indeed, Fig. 4d reveals that GHMs were least efficient at
capturing the low-flow signatures, particularly the variabil-
ity signature (σ99–95), where simulations were positively bi-
ased by almost 4 times the observation uncertainty. For the
remaining signatures, though, the ensemble of GHMs was
remarkably efficient, with the majority of simulations (and
in most cases all of them) capturing these signatures within
their 95 % observation uncertainty bounds.
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Figure 5. Seasonal average projected changes in ECDFs for near-surface air temperature (a, d, g, j), incident solar radiation (b, e, h, k), and
total precipitation (c, f, i, l) for the late 21st century (2076–2100) relative to the recent past (1981–2005). Changes are plotted for each 10 %
section of the ECDFs. For each section, blue and yellow dots represent each of the 140 downscaled future climate time series for the RCP4.5
and RCP8.5 ES respectively (280 in total). Winter: Dec, Jan, Feb; spring: Mar, Apr, May; summer: Jun, Jul, Aug; autumn: Sep, Oct, Nov.

3.2 Future climate projections

Projections of temperature for the late 21st century (2076–
2100) consistently show an increase relative to the recent
past (1981–2005). The largest increases are projected for the
coldest days of the year during the winter (Fig. 5a), spring
(Fig. 5d) and autumn (Fig. 5j) months as shown by the posi-
tive skew in the lower sections of the ECDFs. However, these
changes are also typically associated with the greatest projec-
tion uncertainty. RCP4.5 projects annual mean near-surface
air temperature to rise by between 1.1 and 3.6 ◦C by the
late 21st century relative to the recent past with an ensem-
ble mean projection of +2.0 ◦C. RCP8.5 projects an equiva-
lent rise of between 2.3 and 4.9 ◦C with an ensemble mean
projection of +3.3 ◦C.

Projected changes in incident solar radiation span positive
and negative values, but the median projections are consis-
tently negative, indicating reductions in incident solar radia-
tion are most likely. Uncertainty in the magnitude of change
is highest during the spring and summer months (Fig. 5e and
h) when incident solar radiation peaks. Under RCP4.5 annual
mean incident solar radiation is projected to change by be-
tween−10.7 and+0.8 % by the late 21st century with an en-
semble mean projection of −4.4 %. Under RCP8.5, changes
of between −15.3 and 0.4 % are projected with an ensemble
mean projection of −7.7 %.

Projected changes in total precipitation are negligible for
the four lowest 10 % sections of the precipitation ECDFs
but significant for the two highest sections. In the winter
(Fig. 5c) and autumn (Fig. 5l) months, absolute changes ex-
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Figure 6. Correlation matrix between seasonal average climate vari-
ables calculated for the late 21st century (2076–2100) using the 280
downscaled future climate time series. Within-variable, between-
season correlation scores are contained within the green borders and
within-season, between-variable correlation scores are contained
within the purple borders. Those regions of the correlation matrix
that do not cover these two groups are shaded in black.

ceed 40 mm d−1. The direction of change is uncertain apart
from autumn where median projections are consistently pos-
itive for the upper sections of the ECDF. The magnitude of
change is also uncertain. RCP4.5 projects annual mean pre-
cipitation will change by between −13.5 and +21.6 % rela-
tive to the recent past by the late 21st century with an ensem-
ble mean projection of +1.7 %. Under RCP8.5, changes of
between −25.7 and 25.1 % are projected with an ensemble
mean projection of +1.4 %.

Figure 6 shows the correlation matrix calculated between
seasonal average climate variables for the late 21st century.
For all climate variables, between-season changes (scores
within green borders in Fig. 6) are positively correlated, in-
dicating that an increase in summer temperature typically
corresponds with an increase in winter temperature for ex-
ample. Temperature has the greatest between-season correla-
tion while precipitation is the least well correlated. Within-
season, between-variable correlation scores (within purple
border in Fig. 6) show that precipitation and incident solar
radiation are negatively correlated and that the correlation
between precipitation and temperature depends on the time
of year. For the cooler winter, spring and autumn months,
temperature and precipitation are positively correlated, but
there is a weak negative correlation for the summer months.
Temperature and incident solar radiation are negatively cor-
related, most strongly for the cooler winter, spring and au-
tumn months.

Figure 7. Projected annual mean watershed snow coverage (a)
and ice coverage (b) including the projection confidence intervals
(bands) and ensemble mean projections (thick solid lines) for the
RCP4.5 (blue) and RCP8.5 (yellow) projections. Also shown are
projection confidence levels for a reduction in coverage relative to
2016 (thin solid lines, right-hand axis).

3.3 Future evolution of snow and ice coverage

The ensemble mean projections of annual mean watershed
snow coverage (Fig. 7a) show that it will decrease from
12.2 km2 in 2016 to 9.2 km2 in 2100 (25 % reduction) under
RCP4.5 and 6.0 km2 (51 % reduction) under RCP8.5. The
95 % projection confidence intervals indicate that by 2100
the watershed could be almost entirely free of snow (2.5 km2

remaining) under RCP8.5 or could have a coverage exceed-
ing present levels (13.3 km2) under RCP4.5.

Beyond 2050, there is high confidence (≥ 95 %) that snow
coverage will reduce relative to 2016 levels under RCP8.5
(thin yellow line in Fig. 7a) and equally high levels of confi-
dence apply to projected reductions in snow coverage beyond
2066 under the cooler RCP4.5 (thin blue line in Fig. 7a).

The ensemble mean projection of ice coverage (Fig. 7b)
projects a 31 % reduction relative to 2016 by 2100 under
RCP4.5 and a more severe 63 % reduction under RCP8.5.
There is high confidence (≥ 95 %) that ice coverage will
be less than 2016 levels from 2037 onwards under RCP4.5
and from 2030 onwards under RCP8.5, but the magnitude of
change is uncertain under both emission scenarios. By 2100,
the 95 % confidence intervals for both RCP4.5 and RCP8.5
are 6.5 km2 wide (more than half the 2016 watershed ice cov-
erage).

The simulation that projected the minimum ice coverage
by 2100 under the RCP8.5 emission scenario shows sus-
tained retreat of the glacier between 2000 and 2100 result-
ing in a watershed that is almost entirely ice-free by the end
of the century (Fig. 8). In contrast, the maximum ice cover-
age simulation under the RCP4.5 emission scenario projects
two periods of glacier advance between 2010 and 2030 and
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between 2060 and 2100. By the end of the century, this sim-
ulation projects ice coverage will be similar to that in 2000.

Figure 9a, b and c show the climate projection time se-
ries that produced the minimum (dotted lines) and maxi-
mum (dashed lines) snow (blue lines) and ice (red lines)
coverage by 2100. The minimum coverage simulations were
forced with some of the highest temperature time series while
the maximum coverage simulations were forced with some
of the lowest. The maximum coverage simulations show
higher-than-average incident solar radiation inputs (Fig. 9b)
and lower precipitation volumes than the minimum cover-
age simulations. Indeed, correlation scores calculated be-
tween seasonal average climate variables and the simulated
snow and ice coverage by 2100 (Fig. 9d) show that there is
a strong negative correlation between mean temperature and
projected snow and ice coverage and a weaker positive corre-
lation between snow and ice coverage and incident solar ra-
diation. An even weaker negative correlation exists between
autumn and winter precipitation and snow and ice coverage.

3.4 Sources of uncertainty in snow and ice coverage
projections

The effect size of the main, interaction and error terms cal-
culated using ANOVA for projected changes in snow and ice
coverage is shown in Fig. 10. Note that ROR effects are not
included here as this model chain component has no influ-
ence on cryospheric processes in the GHM. The effect size
of each ANOVA term changes through the decades and also
varies between snow and ice coverage. Throughout the 21st
century, TIM uncertainty contributes < 3 % to the total pro-
jection uncertainty of snow coverage. For projections of ice
coverage, η2

TIM is greater than 0.11 up to and including the
2060s, but then gradually falls to 0.07 by the 2080s. η2

DS and
η2

I never exceed 0.1 for snow and ice coverage, and as with
η2

TIM, they gradually reduce through the latter half of the 21st
century. GCM–RCM uncertainty is the largest contributor to
ice coverage projection uncertainty in the 2030s with an ef-
fect size of 0.47. For snow coverage, ES and GCM–RCM
have similar effect sizes of 0.45 and 0.4 respectively. How-
ever, for the mid- and latter half of the 21st century ES un-
certainty dominates, contributing 73 % and 72 % of snow and
ice coverage total projection uncertainty by the 2080s respec-
tively.

3.5 Future evolution of primary runoff components

As an initial indication of the potential for downstream river
flow regime change, Fig. 11 shows the 21st century evolution
of changes in the four primary runoff components relative to
the reference period. The ensemble means (solid coloured
lines) indicate that by the end of the century rainfall will in-
crease for all months under both emission scenarios except
for August, where RCP8.5 shows a small decrease in rainfall
on average (Fig. 11a). The largest increases are shown during

the autumn (SON) and winter (DJF) months under RCP8.5.
The confidence in the direction of change by the end of the
century is ≥ 90 % for 6 months under RCP8.5 (as indicated
by the coloured bands) but only for 2 months (March and
April) under RCP4.5. However, ≥ 75 % of the projections
from both RCPs project an increase in rainfall between Oc-
tober and April (as indicated by the markers in Fig. 11a).
A comparison of the reference and 2080s monthly ensem-
ble means (inset in Fig. 11a) indicates that the peak rainfall
month will shift from September to October.

For snowmelt, the greatest changes are projected to oc-
cur in the summer months of July and August under RCP8.5
where there is ≥ 90 % confidence that melt will reduce
relative to the reference period from the 2040s onwards
(Fig. 11b). RCP4.5 also projects decreases in summer melt,
but the magnitude of change is smaller. In the winter months,
both RCPs project a small increase in melt on average by
the end of the century. The ensemble means project that total
summer (JJA) melt will reduce by 19 % under RCP4.5 and
37 % under RCP8.5 by the 2080s (inset in Fig. 11b). Annual
melt will decrease by 12 % under RCP4.5 and 26 % under
RCP8.5. A similar pattern of change is projected for ice melt
(Fig. 11c) where total summer (JJA) melt will reduce by 33 %
under RCP4.5 and 58 % under RCP8.5 by the 2080s. There
is high confidence (≥ 90 %) that mean monthly ice melt will
reduce for all months except December under RCP8.5. Un-
der RCP4.5 a small increase in winter ice melt is projected
for the early and mid-21st century, but by the 2080s winter
melt is projected to reduce near to reference levels on aver-
age. Under RCP8.5, winter ice melt is projected to reduce
relative to reference levels for the latter half of the 21st cen-
tury.

Projections consistently (≥ 90 %) show an increase in
evapotranspiration for all months of the year (Fig. 11d) with
the largest increases projected under RCP8.5 towards the end
of the 21st century. However, the volume of evapotranspira-
tion will remain a small component of the overall water bal-
ance.

3.6 Future evolution of river flow regime

Figure 12 shows the projected changes in river discharge sig-
natures relative to the reference period (except peak water
for which the raw projections are shown). Under RCP4.5 the
ensemble mean projection of peak water is 2045, while un-
der RCP8.5 peak water is projected to occur 17 years earlier
in 2028. Indeed, the RCP8.5 projections of the mean annual
flow signature (Q) show a consistent decline through the 21st
century with≥ 90 % confidence that flows will reduce by the
end of the century by 19 % on average. In contrast, under
RCP4.5 the magnitude of the decline is smaller (ensemble
mean projects a 7 % decrease for 2090s) and the direction of
change is more uncertain. Both RCPs project an increase in
inter-annual flow range (RANN) throughout the 21st century
(≥ 75 % under RCP8.5). Under RCP4.5 the ensemble mean
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Figure 8. Simulated ice thickness between 2000 and 2100 based on simulations that projected the maximum (RCP4.5) and minimum
(RCP8.5) ice coverage by 2100. Watershed outline shown in magenta.

projects a 47 % increase in RANN by the 2080s while RCP8.5
shows a 71 % increase.

Seasonally, monthly winter (DJF) flows are projected to
increase while ≥ 90 % of the ensemble projects a decrease
in summer (JJA) flows by the 2090s under both RCPs. The
absolute change in mean monthly flows is larger for sum-
mer flows on average, but proportionally the winter flows
are projected to change most, particularly in February where
the ensemble mean projects a 60 % and 67 % increase un-
der RCP4.5 and RCP8.5 respectively by the end of the cen-
tury. The combined effect of increased winter flows and de-
creased summer flows results in decreased intra-annual flow
variability. Under both RCPs, more than 90 % of the ensem-
ble projects a decrease in Rmnth relative to the reference pe-
riod from the 2050s onwards. The ensemble mean projec-
tions under RCP8.5 show a decade-on-decade reduction in
Rmnth with time and a 41 % reduction by the end of the cen-
tury.

Of those signatures with units m3 s−1, the high-flow Q01
signature shows the largest ensemble mean increase of 2.8
and 2.5 m3 s−1 for RCP4.5 and RCP8.5 respectively by the
end of the century. There is high confidence (≥ 75 %) that
Q01 will increase relative to the reference period under
RCP8.5, but the magnitude of change is uncertain under
both RCPs. For Q05, the ensemble means from both RCPs
both show a reduction throughout the 21st century; however,
the 10th and 90th percentile span positive and negative val-
ues of change for all decades. The ensemble mean projec-
tions of changes to high-flow variability (σ05–01) are positive
throughout the 21st century under both RCPs. In the latter
half of the century, ≥ 75 % of the projections under RCP4.5
show an increase in σ05–01 while ≥ 90 % of the projections
under RCP8.5 show an increase.

For moderate flows, the ensemble mean of the RCP4.5
projections shows a small reduction inQ50 of approximately

0.15 m3 s−1 throughout the 21st century while the RCP8.5
ensemble mean projects a decade-on-decade reduction in
Q50, and by the end of the century there is high confidence
(≥ 90 %) that moderate flows will reduce under this emis-
sion scenario. Moderate-flow variability (σ52–48) is projected
to reduce with high confidence under both RCPs, albeit by
only 0.03 and 0.06 m3 s−1 by the 2080s under RCP4.5 and
RCP8.5 respectively.

For the slow-release low-flow signatures, ≥ 90 % of the
projections are positive throughout the 21st century under
both RCPs, indicating an increase in the magnitude of low-
flow events (or equivalently a reduction in the frequency of
these flow events) and variability of low flows. The abso-
lute changes in the ensemble means never exceed 0.1 m3 s−1

for these signatures, although proportionally they show the
largest degree of change, particularly for Q99 where the pro-
portional change exceeds 2000 % under RCP4.5.

Finally, the response time to runoff (τ ) is projected to de-
crease throughout the 21st century under both RCPs (≥ 90 %
confidence), indicating the catchment will likely become
more flashy. The magnitude of change is small where the
ensemble mean projects a small reduction in τ of 3.9 h un-
der RCP4.5 and a slightly greater reduction of 4.7 h under
RCP8.5.

3.7 Sources of uncertainty in river flow regime
projections

Figure 13 shows the ANOVA effect sizes calculated for the
2030s and 2080s for each river discharge signature. The error
term (η2

ε ) never exceeds 0.09 and for 21 of the 25 signatures
it is < 0.03, indicating that the main effects and first-order
interaction terms explain the majority of projection uncer-
tainty. For the 2030s, ES uncertainty contributes 4 %–27 %
of the total projection uncertainty across the signatures. By
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Figure 9. Relationship between driving climate data and projected
snow and ice coverage including annual mean downscaled climate
time series of temperature (a), incident solar radiation (b), and total
precipitation (c) with time series that produced the minimum (dot-
ted lines) and maximum (dashed lines) snow and ice coverage by
the end of 2100. Also included are correlation scores calculated be-
tween seasonal average climate variables over the entire future pe-
riod (2017–2100) and simulated snow and ice coverage by the end
of 2100 (d).

the 2080s, ES contributes up to 65 % of the total projection
uncertainty. In fact, for all but four signatures, ES contributes
proportionally more to total projection uncertainty in the
2080s than the 2030s. By the 2080s the five signatures with
the highest η2

ES include the mean monthly flows from May to
August and the mean monthly flow range (Rmnth) signature
(Table 2) for which the effect sizes are at least 0.47. GCM–
RCM uncertainty is the largest contributor to total projection
uncertainty for 21 of the 25 river discharge signatures for the
2030s, and it still remains a significant contributor to projec-
tion uncertainty by the 2080s with a mean effect size across
the signatures of 0.3. Four of the five most sensitive signa-
tures to GCM–RCM uncertainty for the 2030s remain in this
top five for the 2080s (Table 2), and these include the mean
monthly winter flows in January and February and two of the
quick-release high-flow signatures (Q01 and Q05).

On average, the DS parameterisation contributes 18 % of
the total projection uncertainty across the signatures for the
2030s. In fact, η2

DS is relatively consistent across the signa-

tures, ranging from 0.1 to 0.2 for 18 of the 25 signatures.
For the 2080s, η2

DS reduces for all signatures except mean
November and December flows and the inter-annual flow
range (RANN). For RANN, DS has the largest effect size,
contributing 43 % of the total projection uncertainty. Au-
tumn and winter monthly mean flows for September, Novem-
ber, December and February make up the remainder of the
top five signatures most affected by DS uncertainty for the
2080s. On average TIM uncertainty contributes 9 % of the
total projection uncertainty across the different signatures for
the 2030s. For this period it is the largest contributor toRANN
uncertainty (η2

TIM = 0.35) and it also shows significant con-
tributions to mean monthly flow projection uncertainty for
April (η2

TIM = 0.17) and May (η2
TIM = 0.23) at the beginning

of the melt season. It is also the largest contributor to un-
certainty of projections of response time to runoff (τ ) where
η2

TIM = 0.20. For the 2080s the average η2
TIM falls slightly to

7 %, but TIM uncertainty remains an important contributor
to total projection uncertainty for τ , April and May flows,
and two of the low-flow signatures (Q95 and σ99–95) where
η2

TIM ≥ 0.12. Uncertainty stemming from the ROR model
chain component has a negligible influence on the decadal
signatures (PW and RANN) or those signatures characteris-
ing annual and monthly mean flows for the 2030s and 2080s.
For the 2030s, ROR uncertainty is important for projections
of low-flow magnitude (Q99 and Q95, η2

ROR = 0.43 and 0.20
respectively) and variability (σ99–95, η2

ROR = 0.13). In fact,
for Q99, ROR is the single largest contributor to total pro-
jection uncertainty. For the 2080s, its influence on low-flow
quantiles remains significant and it is the single largest con-
tributor to both the Q99 and τ projection uncertainty. It also
remains a significant contributor to the high-flow variability
signature, σ05–01, where η2

ROR = 0.12.
Unlike ice and snow coverage, interactions between model

components significantly contribute to the total projection
uncertainty across the signatures where η2

I ranges between
0.07 and 0.27 for the 2030s and between 0.07 and 0.32 for
the 2080s. Figure 14 shows the decomposition of the five
interaction terms with the largest effect sizes on average
for the 2030s (a) and 2080s (b). The interactions between
the ES and GCM–RCM model chain components dominate
the contribution to projection uncertainty. However, interac-
tions between the climate model chain components and the
GHM (e.g. DS–TIM) may also contribute to the projection
uncertainty. For RANN, DS–TIM interaction contributes 7 %
of the total projection uncertainty for the 2030s and 2080s.
Furthermore interactions between the TIM and ROR in the
GHM contribute some (albeit small) amounts to the total
projection uncertainty. For 16 of the signatures, the contri-
bution from interactions between model chain components
increases from the 2030s to the 2080s. These include all of
the signatures that characterise, high-, moderate- and low-
flow magnitude and variability, but the largest increases are
shown for March and October mean monthly flows.
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Figure 10. Effect size (η2) of main effects (ES, GCM–RCM, DS and TIM), interactions (I), and remaining error (ε) on projected changes in
snow and ice coverage calculated using ANOVA for the six 21st century time slices. Note that the ROR main effect is not included here as it
does not influence cryospheric processes in the GHM.

Figure 11. Projections of monthly mean runoff components including rainfall (a), snowmelt (b), ice melt (c), and evapotranspiration (d) for
RCP4.5 (blue) and RCP8.5 (yellow). For each month, the trajectory of the ensemble mean change over the 21st century time slices (2030s to
2080s) relative to the reference period (1991–2015) is shown by the solid coloured lines. These lines are marked for each time slice where
there is ≥ 75 % confidence in the direction of change. They are bounded by the 10th and 90th percentiles of the projections (bands). Inset in
each plot are ensemble mean monthly runoff volumes averaged over the reference period (black solid line) and 2080s (dashed lines).
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Figure 12. Projected changes in river discharge signatures. For each signature, the trajectory of the ensemble mean change over the 21st
century time slices (2030s to 2080s) relative to the reference period (1991–2015) is shown by the solid coloured lines. These lines are
marked for each time slice where there is ≥ 75 % confidence in the direction of change. They are bounded by the 10th and 90th percentiles
of the projections (bands). Also shown are 2080s ensemble mean change expressed as a percentage of simulated signatures for the reference
period (text). Note that the peak water (PW) signature is not expressed as a change but as the overall raw projections.

Table 2. Top five river discharge signatures ranked according to the average effect size for each of the main effects, interactions, and remaining
error on projected changes for the 2030s and 2080s. Effect sizes are included in brackets.

Decade Rank ES (η2
ES) GCM–RCM (η2

GCM–RCM) DS (η2
DS) TIM (η2

TIM) ROR (η2
ROR) I (η2

I ) ε (η2
ε )

2030s

1 QDEC (0.27) QJAN (0.59) QJUN (0.39) RANN (0.35) Q99 (0.43) PW (0.27) PW (0.09)
2 RANN (0.23) Q (0.56) QNOV (0.35) QMAY (0.23) Q95 (0.22) τ (0.23) τ (0.06)
3 QOCT (0.21) Q05 (0.53) QMAR (0.26) τ (0.20) τ (0.19) QDEC (0.21) RANN (0.05)
4 QMAR (0.20) Q01 (0.52) σ52–48 (0.21) σ52–48 (0.18) σ99–95 (0.13) RANN (0.20) σ52–48 (0.05)
5 σ05–01 (0.20) QFEB (0.52) Q (0.20) QAPR (0.17) σ05–01 (0.06) Rmnth (0.17) Q99 (0.02)

2080s

1 QJUN (0.65) Q05 (0.55) RANN (0.43) τ (0.20) Q99 (0.33) QOCT (0.32) PW (0.09)
2 QJUL (0.63) QJAN (0.53) QSEP (0.26) σ99–95 (0.14) τ (0.28) QMAR (0.29) τ (0.05)
3 QAUG (0.59) QNOV (0.49) QNOV (0.23) QMAY (0.14) Q95 (0.14) PW (0.27) σ52–48 (0.03)
4 QMAY (0.54) Q01 (0.48) QFEB (0.18) QAPR (0.12) σ05–01 (0.12) σ05–01 (0.21) RANN (0.03)
5 Rmnth (0.47) QFEB (0.45) QDEC (0.17) Q95 (0.12) Q01 (0.05) Q01 (0.20) Q99 (0.03)

4 Discussion

4.1 Future evolution of river flow regime

There is high confidence that near-surface air temperature
will increase by the late 21st century (2076–2100) relative to
conditions in the recent past (1981–2005). Precipitation and
incident solar radiation were projected to slightly increase
and decrease respectively on average – a finding that is con-
sistent with other analyses of the EURO-CORDEX projec-

tions for northern Europe (Bartók et al., 2017). The primary
driver of changes in snow and ice is near-surface air temper-
ature, while precipitation and incident solar radiation are of
secondary importance. Because of this, there is high confi-
dence that glacier ice and snow will continue to retreat as
near-surface air temperature rises throughout the 21st cen-
tury, which would leave the river basin almost free of snow
and ice by 2100 under the warmest climate projections.

The signature-based analysis undertaken in this study has
revealed how climate change will impact the magnitude, tim-
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Figure 13. Effect size (η2) of all main effects (ES, GCM–RCM, DS, TIM and ROR), interactions (I) and remaining error (ε) on projected
changes in the 25 river discharge signatures at the start (2030s, a) and end (2080s, b) of the 21st century.

ing and variability of downstream river flows over a range of
timescales in the Virkisá river basin. Projected changes in
flow seasonality broadly follow those shown for other mid-
latitude alpine river basins where the loss of snow and ice
will reduce meltwater inputs in the summer months and a
phase shift of precipitation from snowfall to rainfall com-
bined with enhanced melt during the colder months will in-
crease winter runoff (Addor et al., 2014; Huss et al., 2014;
Mandal and Simonovic, 2017; Jobst et al., 2018). Summer
runoff is projected to decrease by 24 % under RCP4.5 and
40 % under RCP8.5 by the 2080s while winter runoff is pro-
jected to increase by 59 % under RCP4.5 and 57 % under
RCP8.5 by the 2080s. The consequence of these seasonal
shifts in runoff is that intra-annual (monthly) flow variabil-
ity will reduce by 25 % (RCP4.5) and 41 % (RCP8.5) by the
2080s. Furthermore, the magnitude of very low flow events

(Q99), which typically occur during the winter months, is
likely to increase.

On average, the projections indicated that the seasonal re-
distribution of runoff will have little influence on mean an-
nual flows under RCP4.5 (−7 % by the 2080s) as changes
in summer and winter flows approximately compensate for
one another. Under RCP8.5, however, the more pronounced
reduction in summer melt inputs results in a 19 % reduction
by the 2080s. The loss of a consistent melt input to the river
basin and its evolution to a hydrological regime governed by
rainfall-runoff processes means inter-annual flow variability
(RANN) will increase by 47 % (RCP4.5) and 71 % (RCP8.5)
by the 2080s. The increase in rainfall inputs, particularly dur-
ing the storm-prone autumn and winter months, likely ex-
plains the projected increased magnitude of very high flow
events (Q01), a finding that is in agreement with other stud-
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Figure 14. Effect size (η2) of the five most significant interactions on projected changes in the 25 river discharge signatures at the start
(2030s, a) and end (2080s, b) of the 21st century.

ies that have investigated changes in high-flow magnitudes
in glaciated river basins (Lutz et al., 2016). It is likely that
the intensification of peak flow magnitudes will be further
exacerbated by the projected decrease in river flow response
time to runoff (τ ), which is an artefact of losing the runoff-
regulating ice and snow water stores. Accordingly, the river
basin will become more flashy and flood-prone in the future.

Increased flood frequency has major implications for lo-
cal infrastructure in the vicinity of the Virkisá river basin.
In particular, the southern section of the Route 1 highway
which passes over the Skeiðarársandur floodplain navigates a
large number of glacier-fed rivers including the Virkisá. Due
to the unconsolidated nature of the floodplain lithology, the
morphology of these rivers can change rapidly, particularly
during high-flow events (Marren, 2005), and often at consid-
erable expense to the road authority (Björnsson and Pálsson,
2008). Accordingly, the projected increase in frequency and

severity of high-flow events will likely incur further expenses
to maintain this transport link in the future.

Beyond local implications, one should be cautious in ex-
trapolating the findings from this study to other glaciated
catchments in Iceland or beyond, but it is clear that the
timing, magnitude and variability of glacier-fed river flows
over a range of timescales are sensitive to climate change.
For Iceland, these changes could impact glacier-fed hydro-
electric dams, which are a primary source of electricity for
the country. Increased frequency and magnitude of high-
flow events could render current dams unsafe if their de-
signed flood capacity can no longer meet regulation require-
ments (Thorsteinsson and Björnsson, 2012). The redistribu-
tion and levelling out of seasonal flows, however, could actu-
ally have a beneficial effect on the running costs and capacity
to produce electricity from such projects (Jóhannesson et al.,
2007).
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4.2 Uncertainties in projections of river flow regime

Projections of the direction of change relative to the refer-
ence period were well constrained for the majority of river
discharge signatures, particularly towards the end of the 21st
century and for the warmer RCP8.5 emission scenario. Even
so, there was considerable spread in the projected magnitude
of these changes due to uncertainties in the driving climate
data (ES, GCM–RCM, DS) and representation of glacio-
hydrological processes (TIM, ROR) in the model chain. Un-
certainty in future snow and ice coverage primarily stemmed
from the ES due to its control on future near-surface air tem-
perature. In fact, the proportional contribution of the ES to
projection uncertainties increased throughout the 21st cen-
tury and, consequently, the ES was also found to be the dom-
inant source of uncertainty for projections of mean monthly
flows during the melt season by the 2080s. The growing
influence of the ES over time was also shown by Addor
et al. (2014) for six alpine catchments in Switzerland and
by Duethmann et al. (2016) for two mountain river basins
in the Tian Shan. Interestingly though, these studies along
with the recent study of Jobst et al. (2018) found that cli-
mate model uncertainty was still the dominant source for
projections of monthly river flows. Jobst et al. (2018) pos-
tulated that this was likely because of the high uncertainty in
future precipitation across the climate models. Indeed, oth-
ers have also attributed future runoff uncertainty in glaciated
river basins to variability in precipitation projections (Lutz
et al., 2016), a finding which is compounded by an increas-
ingly warm and thus rainfall-dominated precipitation input.
In this study, however, the GCM–RCM model chain compo-
nent only dominated river flow projection uncertainty during
the winter months while summer flow uncertainty was dom-
inated by the ES. There are two key reasons that could ex-
plain this. Firstly, precipitation uncertainty across the GCM–
RCM combinations showed to be especially high during win-
ter (Fig. 5), which coupled with the fact that rainfall is the pri-
mary source of runoff during winter likely explains the dom-
inant role GCM–RCM plays in projection uncertainty during
the winter months. Furthermore, it should be noted that the
Virkisá river basin has a much higher proportional glacier
coverage (60 %) compared to the aforementioned studies
(1.8 %–22.3 %). Therefore, it is postulated that the influence
of the ES in the summer is related to the relatively high pro-
portion of melt runoff that the Virkisá river receives during
these months and the fact that the ES showed to be the dom-
inant contributor to future ice coverage uncertainty. Impor-
tantly, this finding also serves to highlight the need to rep-
resent atmosphere–cryosphere–hydrosphere feedbacks ade-
quately in future studies, particularly where glacier coverage
is high, through the inclusion of a dynamic glacier evolution
model in the model chain like that implemented in this study.

For projections of the inter-annual flow range, the DS pro-
cedure was the largest contributor to projection uncertainty
by the end of the 21st century, which should be expected

given that the perturbation of this procedure accounted for
uncertainty in the random year-by-year sampling of the his-
toric climate data. Uncertainty in the TIM structure param-
eterisation was the dominant contributor to the spread in
projections of moderate monthly flows during the transition
from the cold to melt season, which corroborates the model
comparison study of Mackay et al. (2018), who found that
the structural representation of melt was important for con-
trolling the initiation of the melt season due to the contrasting
sensitivity of the models to temperature and incident solar
radiation. Mackay et al. (2018) also concluded that signa-
tures derived from the flow duration curve as well as those
representing flashiness were most sensitive to the configu-
ration of the ROR component of the GHM. Indeed, here it
was found that uncertainty in the ROR structure parameter-
isation significantly contributed to the total projection un-
certainty of slow-release low-flow signatures as well as the
response time (flashiness) of the catchment to runoff. Sim-
ilar sensitivities in low-flow metrics to the choice of hy-
drological model have been shown for non-glaciated river
basins by Yuan et al. (2017), and they postulated that these
might stem from differences in water-storage-release pro-
cesses in the models. However, a key drawback of this study
and other studies that have investigated the role of hydrolog-
ical model uncertainty in glaciated river basins (e.g. Giuntoli
et al., 2015; Vetter et al., 2017) is that they have implemented
multiple model codes and therefore cannot make any definite
conclusion about the source of the projection uncertainties.
For example, Addor et al. (2014) concludes that the sensitiv-
ity to the choice of hydrological model could stem from any
number of differences between model codes including the
structure, climate interpolation method and calibration strat-
egy. In this study, it has been demonstrated that, by using a
single but flexible model code, it is possible to separate out
the sources of projection uncertainties down to the process
level. Such insights can be used to help prioritise those as-
pects of the GHM that require (i) additional refinement (e.g.
through model development) and (ii) adequate representation
of their uncertainty to improve projection robustness.

Furthermore, the signature-based analysis undertaken in
this study has shown that the importance of these different
sources, be it from the GHM or the climate projections, is de-
pendent on which signature of river discharge is being evalu-
ated. It is clear, therefore, that signature-based analyses could
be used to help prioritise uncertainty sources based on the
characteristic of flow one is interested in. For example, the
results from this study indicate that for evaluating changes
in monthly melt season runoff only, it may be beneficial to
ignore ROR uncertainty and focus time and computational
resources on quantifying uncertainties stemming from the re-
maining model components. In this respect, the time frame of
the projections should also be considered, given the apparent
change in effect sizes with time demonstrated for projections
of snow and ice coverage and river flow signatures (see Ap-
pendix D).
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More broadly, the results from this study emphasise the
need for impact studies to represent uncertainties stemming
from model chain components that control future climate
and glacio-hydrological behaviour, the second of which has
been widely neglected. The need for this is compounded by
the fact that interactions between model chain components
exceeded individual main effects for some river discharge
signatures. Accordingly, an ensemble that includes perturba-
tions of multiple components of the model chain simultane-
ously will provide the most rigorous quantification of projec-
tion uncertainty.

4.3 Limitations

While some characteristics of projected river flow regime
change are broadly in agreement with other studies in sim-
ilar mid-latitude alpine settings (e.g. changes in flow sea-
sonality and projected increase in high-flow magnitude), it is
important to emphasise that the projected river flow regime
shifts should not be generalised across glaciated river basins.
Indeed, recent regional (Ragettli et al., 2016) and global
(Huss and Hock, 2018) studies have shown that local catch-
ment characteristics such as climate and glacier hypsometry
largely influence seasonal river flow response to 21st cen-
tury climate change. In this study a small absolute increase
in low-flow magnitude was projected, indicating that climate
change and deglaciation could help to limit periods of water
scarcity. However, in more arid regions, where rainfall can-
not compensate for reductions in melt, the opposite effect has
been shown (Stewart et al., 2015). One might also expect to
see much greater changes in the river flow response time to
runoff as snow and ice retreat in other river basins. For the
Virkisá river basin, a relatively small reduction in response
time (τ ) was projected on average by the end of the 21st cen-
tury. This, perhaps, should not be surprising given the small
size of the river basin and the fact that previous investiga-
tions have shown that Virkisjökull has a well developed con-
duit drainage system that routes runoff efficiently year-round
(Phillips et al., 2014; Flett et al., 2017). For larger river basins
with more expansive cryospheric water stores, changes in the
response time to runoff could be much greater, substantially
increasing the risk of pluvial flooding.

Similar inter-catchment variability should also be ex-
pected with regards to the dominant sources of projection
uncertainty. Indeed, as already noted in this discussion, some
of the results from this study contrast the limited number
of studies that have investigated uncertainty sources in other
glaciated basins. Addor et al. (2014) suggests that catchment
elevation influences the importance of the ES on projection
uncertainty whereby runoff from higher elevation catchments
with more snow and ice is more sensitive to the ES. It is
therefore vital that signature-based evaluations like the one
undertaken in this study are applied to other glaciated river
basins in the future so that regional variations in river flow
regime change and uncertainty sources can be evaluated.

It is also important to consider potential deficiencies in
the calibrated GHMs. In fact, the model evaluation demon-
strated that they were able to capture the majority of the
observed river discharge signatures within their observation
uncertainty bounds. Even so, it should be noted that there
are several limitations in the calibration approach that could
have hindered the efficiency of the calibrated models. Firstly,
given the distributed structure of the GHM and the fact that
it runs on an hourly time step, running the GHM over mul-
tiple years required considerable computation time, which
limited the number of runs that could be undertaken in the
Monte Carlo calibration procedure. A total of 5000 runs was
adopted as an appropriate compromise, balancing the den-
sity of parameter sampling with available computational re-
sources. Even so, it is recognised that, particularly for the
more complex model structures which employ more calibra-
tion parameters, a denser parameter sampling could help to
find more efficient model parameterisations. It should also
be noted that the models were calibrated and evaluated on
4 years of river flow data only. This detail is particularly im-
portant given the conceptual nature of the GHM and thus
the potential for the calibration parameters to become less
applicable when applied to periods outside of the calibra-
tion data. Additionally, it is important to highlight possible
model deficiencies brought about by the two-step GHM cal-
ibration procedure employed, in which the TIM and ROR
model chain components were calibrated independently. This
was necessary so that the main effects (Eq. 4) and interaction
terms (Eq. 6) for both components could be calculated sepa-
rately (thus achieving the second aim of the study). However,
the drawback of implementing this stepwise calibration pro-
cedure over one that calibrates both model components si-
multaneously is that it neglects any interactions between the
TIM and ROR models. Of course, its should be noted that the
ANOVA results showed that TIM and ROR interactions are
negligible except for two of the 25 signatures evaluated.

In the previous model evaluation study undertaken by
Mackay et al. (2018), they highlighted the historic observed
precipitation data as source of model deficiencies. They
noted the lack of available precipitation data at higher ele-
vations, making the gridded dataset employed in this study
less reliable near the basin summit. They also analysed the
effectiveness of the bias-correction procedure applied to the
precipitation dataset and showed that it resulted in time se-
ries that were well correlated to the AWS data over a 3-
day time step but that this correlation degraded at shorter
daily and hourly time steps, which could have contributed to
the model’s inability to capture snow coverage observations
higher up in the catchment and river discharge signatures re-
lating to the timing of flows.

Indeed, uncertainties in the historic precipitation data were
not included as part of this study, partly because there was
almost no information that would have allowed one to quan-
tify these uncertainties (e.g. rain gauge errors), particularly
higher up in the catchment where measurements are least
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reliable. Additionally, though, it would have meant further
increasing the size of the model chain ensemble which was
already at the very limit of what was computationally feasi-
ble. This, however, raises an important broader limitation of
the study in that the total projection uncertainties reported are
not indicative of the “true” uncertainty. Further insights could
undoubtedly be gained by perturbing other model chain com-
ponents including the historic climate time series and compo-
nents related to key glacio-hydrological processes such as the
snow redistribution routine and glacier evolution model. Cer-
tainly, Jobst et al. (2018) calculated that the bias correction of
precipitation contributed up to 22 % of seasonal streamflow
projection uncertainty.

Furthermore, the representations of uncertainty in the five
components evaluated in this study are themselves not ex-
haustive. It is well established that uncertainties in climate
model ensembles are under-represented (Daron and Stain-
forth, 2013), and steps were taken in this study to limit
the total ensemble size so that the experiments were com-
putationally feasible. For example, only 10 random DS se-
quences were generated, and indeed other aspects of the
downscaling procedure could have also been modified (e.g.
replacing the linear interpolation of change factors with a
moving-average model). Additionally, the melt and runoff-
routing model structures implemented represent a subset of a
much larger population of available models. For example, we
adopted simplified energy balance models and the concept of
linear reservoirs to route runoff. However, other model struc-
tures that employ more complex physically based energy bal-
ance approaches and hydraulic models that simulate discrete
flow pathways through the glacier (e.g. Arnold et al. 1998)
could also be implemented to provide a more accurate repre-
sentation of the true projection uncertainty.

5 Conclusions

Twenty-first century climate change is projected to alter the
magnitude, timing and variability of river flows over decadal
to sub-daily timescales in the Virkisá river basin. Relative to
the 1990s reference period, there was high confidence in the
direction of change for the majority of the 25 river discharge
signatures over the 21st century. The magnitude of change,
however, was more uncertain. The application of ANOVA
demonstrated that the climate model chain components (ES,
GCM–RCM, DS) were the main sources of this uncertainty.
However, uncertainty relating to glacio-hydrological process
representation in the model chain (TIM, ROR) was the domi-
nant source of projection uncertainty for some river discharge
signatures. Furthermore, interactions between model chain
components can exceed individual main effects. Based on
these findings, we make several recommendations for future
studies that aim to assess climate change impact on glacier-
fed river flows:

1. Studies should seek to evaluate multiple characteris-
tics of river flow regime change (magnitude, timing and
variability) over different timescales where possible so
that a more thorough understanding of potential envi-
ronmental and socio-economic impacts can be deduced
from projections. Signatures of river discharge provide
the ideal tool to evaluate these changes quantitatively.
Changes in the magnitude of river flows over decadal to
seasonal timescales are already known to be highly site-
specific and therefore we should expect that other sig-
natures of regime change will also show considerable
inter-catchment variation.

2. Studies should account for uncertainties stemming from
both the climate projections and glacio-hydrological
process representations so that more robust projections
of river flow regime change are produced. The latter has
largely been neglected in studies to date.

3. Careful consideration of which model chain compo-
nents are the dominant sources of projection uncertainty
(through the use of methods such as ANOVA) would
help to prioritise resources (e.g. computational) to fur-
ther enhance projection robustness. The results from
this study indicate that such decisions will depend on
the signatures of river flow regime change that one is
interested in projecting.

Data availability. EURO-CORDEX data are freely available to
download via the Earth System Grid Federation data nodes.
Information on accessing these nodes is available on the
EURO-CORDEX website (http://www.cordex.org/, last access:
20 March 2019). MOD10A1 MODIS data can be downloaded
for free directly from the National Snow and Ice Data Cen-
ter (https://nsidc.org/data/mod10a1/, last access: 20 March 2019).
Automatic weather station data are available to download for
free from the British Geological Survey (https://www.bgs.ac.uk/
research/glacierMonitoring/, last access: 20 March 2019). The
stream gauge data are available upon request from JE. The ICRA
precipitation data were provided by the Icelandic Meteorological
Office upon request.
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Appendix A: EURO-CORDEX models

A total of 15 unique GCM–RCM combinations using six
GCMs and seven RCMs were available to use in this
study (Table A1). Figure A1 shows the EURO-CORDEX
0.11◦ RCM grids. After comparing monthly average simu-
lations from each GCM–RCM over the recent past (1981–
2005) against the observed climate data, it was found that
the CNRM-CM5–ALADIN53 GCM–RCM has anomalously
large negative temperature biases, particularly during the
winter months of the year (see red line in Fig. A2d). In
addition to this, a root mean squared error (RMSE) score
was calculated for each climate variable by comparing
monthly observed and simulated empirical distribution func-
tions constructed from catchment-average daily climate data
(Fig. A2a–c). When ranked according to their RMSE scores,
the CNRM-CM5–ALADIN53 GCM–RCM ranked 14, 13
and 15 out of 15. Given the anomalously high biases in tem-
perature and the importance of temperature for driving hy-
drological change in the catchment (both in terms of melt rate
and the proportion of precipitation falling as rainfall), cou-
pled with the fact that the model was relatively poor across
all three climate variables, it was deemed appropriate to re-
move this model from the ensemble.

Table A1. List of GCMs and RCMs used in this study.

Model name Institution Type Driving GCMs

CNRM-CM5 National Centre for Meteorological Research GCM –
EC-EARTH Europe-wide consortium GCM –
IPSL-CM5A-MR Institut Pierre-Simon Laplace GCM –
HadGEM2-ES Met Office Hadley Centre GCM –
MPI-ESM-LR Max Planck Institute for Meteorology GCM –
NorESM1-M Norwegian Climate Center GCM –
CCLM4-8-17 Climate Limited-area Modelling Community RCM CNRM-CM5, EC-EARTH, HadGEM2-ES,

MPI-ESM-LR
ALADIN53 National Centre for Meteorological Research RCM CNRM-CM5
RCA4 Swedish Meteorological and Hydrological Institute, RCM CNRM-CM5, EC-EARTH, HadGEM2-ES,

Rossby Centre MPI-ESM-LR
HIRHAM5 Danish Meteorological Institute RCM EC-EARTH, NorESM1-M
RACMO22E Royal Netherlands Meteorological Institute RCM EC-EARTH, HadGEM2-ES
WRF331F Institut Pierre Simon Laplace and Institut National RCM IPSL-CM5A-MR

de l’Environnement industriel et des RISques
REMO2009 Helmholtz-Zentrum Geesthacht, Climate Service Center, RCM MPI-ESM-LR

Max Planck Institute for Meteorology
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Figure A1. EURO-CORDEX 0.11◦ RCM grid lines. RCM nodes are situated at grid line intersects. All RCMs utilise the green grid except
for REMO2009 which uses the blue grid.

Figure A2. Root mean squared error scores calculated by comparing monthly empirical distribution functions constructed from catchment-
average daily observed and simulated (GCM–RCM) total precipitation (a), incident solar radiation (b), and near-surface air tempera-
ture (c) data over the recent past (1981–2005). Also shown are the observed and simulated monthly mean near-surface air temperatures
for the recent past (d).
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Appendix B: Ice melt and snow coverage signatures
used for model calibration

Twelve signatures of ice melt and snow coverage which were
previously derived by Mackay et al. (2018) were used for
model calibration and are shown in Table B1. These signa-
tures include (i) measurements of winter and summer ice
melt in the main ablation zone between 2012 and 2014
which were derived from ablation stake data; (ii) an esti-
mate of long-term glacier volume change calculated using
two DEMs of the ice for 1988 and 2011; and (iii) estimates
of the average seasonal snow coverage for spring (March
and April), early summer (May and June) and late sum-
mer (July and August) in the lower (77–587 m a.s.l.), middle
(587–776 m a.s.l.) and upper (776–1123 m a.s.l.) sections of
the glacier-free basin area. These were calculated from the
remotely sensed MOD10A1 MODIS product for the years
2001 to 2015 inclusive (Riggs and Hall, 2015).

Table B1. Summary of 12 ice melt and snow coverage signatures used to calibrate the GHM with their limits of acceptability. Note that snow
coverage is expressed as a proportion of the glacier-free basin area.

Attribute Signature Limits of acceptability

Seasonal ice melt on tongue
2013 summer ice melt 5.22–6.44 m w.e.
2012–2013 winter ice melt 0.64–0.78 m w.e.

Long-term glacier volume change Change in ice volume (1988–2011) −0.36 to −0.28 km3

Snow coverage in lower catchment
Mean snow coverage in spring 0.32–0.45
Mean snow coverage in early summer 0.02–0.08
Mean snow coverage in late summer 0.00–0.03

Snow coverage in mid-catchment
Mean snow coverage in spring 0.70–0.80
Mean snow coverage in early summer 0.17–0.27
Mean snow coverage in late summer 0.00–0.04

Snow coverage in upper catchment
Mean snow coverage in spring 0.81–0.90
Mean snow coverage in early summer 0.51–0.64
Mean snow coverage in late summer 0.02–0.09
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Appendix C: GHM calibration parameters

Table C1 lists all of the calibration parameters and their pre-
defined calibration ranges for the melt and runoff-routing
model structures used during the GHM calibration proce-
dure. The three melt model structures include the classic
temperature-index model (TIM1), the enhanced temperature-
index model proposed by Hock (1999) (TIM2) and the en-
hanced temperature-index model proposed by Pellicciotti
et al. (2005) (TIM3). The two runoff-routing model struc-
tures include the single linear reservoir cascade (ROR1) and
two linear reservoir cascades in parallel (ROR2).

Table C1. Calibration parameters for the melt and runoff-routing model structures.

Structure Parameter Description Calibration range Units

TIM1
aice Temperature factor for bare ice 2.0e-4–7.0e-4 m w.e. ◦C−1 h−1

asnow/firn Temperature factor for snow/firn 4.0e-7–2.0e-4 m w.e. ◦C−1 h−1

TIM2

aice Temperature factor for bare ice 2.0e-4–7.0e-4 m w.e. ◦C−1 h−1

asnow/firn Temperature factor for snow/firn 4.0e-7–2.0e-4 m w.e. ◦C−1 h−1

bice Radiation factor for bare ice 4.0e-7–2.0e-6 m3 w.e. W−1 ◦C−1 h−1

bsnow/firn Radiation factor for snow/firn 4.0e-8–4.0e-7 m3 w.e. W−1 ◦C−1 h−1

TIM3

aice Temperature factor for bare ice 1.5e-4–3.0e-4 m w.e. ◦C−1 h−1

asnow/firn Temperature factor for snow/firn 6.0e-5–2.0e-4 m w.e. ◦C−1 h−1

bice Radiation factor for bare ice 1.0e-5 -8.0e-5 m3 w.e. W−1 h−1

bsnow/firn Radiation factor for snow/firn 2.0e-7–4.0e-6 m3 w.e. W−1 h−1

p2 Dynamic snow albedo parameter for Brock et al. (2000) model 0.01–0.4

ROR1
k Mean residence time of reservoir 1–30 h
n Number of reservoirs 1–5

ROR2

kice/soil Mean residence time of runoff from ice and soil 0.1–5 h
ksnow/firn Mean residence time of runoff from snow and firn 20–100 h
nice/soil Number of reservoirs in ice/soil cascade 1–5
nsnow/firn Number of reservoirs in snow/firn cascade 1–5
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Appendix D: Decadal changes in effect size for river
discharge signatures

Figure D1. Effect size of all main effects, interactions and remaining error on projected decadal changes in the 25 river discharge signatures
for all future time slices centred on the 2030s to the 2080s.
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