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The dynamics of precessing binary black holes (BBHs) in the post-Newtonian regime has a strong
timescale hierarchy: the orbital timescale is very short compared to the spin-precession timescale which, in
turn, is much shorter than the radiation-reaction timescale on which the orbit is shrinking due to
gravitational-wave emission. We exploit this timescale hierarchy to develop a multiscale analysis of BBH
dynamics elaborating on the analysis of Kesden et al. [Phys. Rev. Lett. 114, 081103 (2015)]. We solve the
spin-precession equations analytically on the precession time and then implement a quasiadiabatic
approach to evolve these solutions on the longer radiation-reaction time. This procedure leads to an
innovative “precession-averaged” post-Newtonian approach to studying precessing BBHs. We use our new
solutions to classify BBH spin precession into three distinct morphologies, then investigate phase
transitions between these morphologies as BBHs inspiral. These precession-averaged post-Newtonian
inspirals can be efficiently calculated from arbitrarily large separations, thus making progress towards
bridging the gap between astrophysics and numerical relativity.

DOI: 10.1103/PhysRevD.92.064016 PACS numbers: 04.25.dg, 04.30.-w, 04.70.Bw

I. INTRODUCTION

Observations suggest that astrophysical black holes are
generally spinning [1–3] and can form binary systems [4].
Spinning binary black holes (BBHs) are a promising source
of gravitational waves (GWs) [5–7] for current and future
detectors [8–15]. BBH dynamics is remarkably complex
and interesting, especially when both BBHs are spinning.
BBH systems have three angular momenta, the two spins
and the orbital angular momentum, all coupled to each
other. Spin-orbit and spin-spin couplings cause these
angular momenta to precess, changing their orientation
in space on the precession timescale [16,17]. On the longer
radiation-reaction timescale, GWs take energy and momen-
tum out of the system, thus shrinking the orbit [18,19].
These emitted GWs encode all the richness of the preces-
sional dynamics but are also more challenging to detect and
characterize than GWs emitted by nonprecessing systems
[20–27].
Expanding on the analysis in our previous paper [28], we

introduce a multi-timescale analysis of the dynamics of

spinning, precessing BBHs. Multi-timescale analyses are
commonly used in binary dynamics. For example, in
eccentric binaries the orbital period, periastron precession,
and radiation-reaction timescales usually differ by orders of
magnitude; the dynamics of these systems can be studied
using techniques that explicitly exploit this timescale hier-
archy, such as osculating orbital elements [29] or the variation
of constants [30]. Exploiting timescale hierarchies leads to
deeper understanding of the dynamics because different
physical processes are decoupled and individually analyzed.
Precessing BBHs evolve on three distinct timescales:
(1) BBHs orbit each other (changing the binary sepa-

ration r) on the orbital time torb ∼ r3=2=ðGMÞ1=2;
(2) the spins and the orbital angular momentum

change direction on the precession time
tpre ∼ c2r5=2=ðGMÞ3=2;

(3) the magnitudes of the orbital energy and angular
momentum decrease on the radiation-reaction time
tRR ∼ c5r4=ðGMÞ3.

Here r ¼ jrj is the magnitude of the binary separation,M is
the total mass of the binary, and prefactors of order unity
have been omitted. In the post-Newtonian (PN) regime,
r ≫ GM=c2 and these timescales are widely separated:

torb ≪ tpre ≪ tRR: ð1Þ
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BBHs complete many orbits before their angular momenta
appreciably precess, and the angular momenta complete
many precession cycles before the separation decreases
significantly.
The first inequality (torb ≪ tpre) has been widely exploited

to understand spin dynamics and approximate theGWsignal.
This approximation forms the foundation of the orbit-
averaged spin-precession equations for adiabatic quasicircu-
lar orbits examined extensively in the pioneering study of
Apostolatos et al. [16] and later extended by Arun et al.
[31,32]. Using these equations, several authors have system-
atically explored the physics of spin precession and their
implications for GW detection [33,34] and astrophysics
[35,36]. Following the early work by Schnittman on spin-
orbit resonances [37], PN spin dynamics has been used to
predict the final spins [36] and recoils [35,38] followingBBH
mergers, select initial conditions for numerical-relativity
simulations [39], characterize formation scenarios for stellar-
mass BH binaries [40], and address the distinguishability of
these scenarios by future GWobservations [41–43].
The second inequality (tpre ≪ tRR) has received less

attention because until now there were no explicit solutions
for generic spin precession (unlike the Keplerian orbits that
readily allowed orbit averaging in previous work). Our new
solutions for spin precession allow us to fully exploit the
timescale hierarchy of Eq. (1), expanding and detailing the
ideas put forward in our previous paper [28]. We showed
that spin precession is quasiperiodic implying that the
relative orientations of the three angular momenta are fully
specified by a single parameter, the magnitude of the total
spin, that oscillates on the precession time. As is common
in multi-timescale analyses, once the dynamics on the
shorter time has been solved, the behavior of the system on
the longer timescale can be studied as a quasiadiabatic
process. We evolve our precessional solutions during the
inspiral by double averaging the PN equations over both
the orbital and the precessional timescales. Semianalytical
precession-averaged inspirals turn out to be extremely
efficient and can be carried out from infinitely large
separation with negligible computational cost.
While our focus in this work is on spin precession, our

study benefits from several recent investigations which also
used separation of timescales to efficiently and accurately
approximate both the dynamics and the associated GW
signal. A series of papers by Klein et al. [26,44,45] used a
multiscale analysis to construct semianalytic approxima-
tions to the frequency-domain waveforms for generic two-
spin precessing binaries. Lundgren and O’Shaughnessy
[46] used this timescale hierarchy to construct semianalytic
approximations to the inspiral of precessing binaries with a
single significant spin. The GWs emitted during the full
inspiral-merger-ringdown of spinning, precessing binaries
were also investigated using phenomenological models
based on a single “effective spin” approximation [47–49]
and the effective-one-body framework [50].

This paper is organized as follows. In Sec. II we derive
explicit solutions for generic BBH spin precession at 2PN
order on timescales short compared to the radiation-
reaction time tRR. These solutions allow spin precession
to be classified into three different morphologies charac-
terized by the qualitative behavior of the angle between the
components of the two spins in the orbital plane. In Sec. III,
we use our new solutions to precession average the
radiation reaction on the binary at 1PN order and demon-
strate how this precession averaging improves the computa-
tional efficiency with which GW-induced inspirals can be
calculated compared to previous approaches relying solely
on orbit averaging. Precession-averaged evolution does not
preserve the memory of the initial precessional phase, just
like orbit-averaged PN evolutions do not track the orbital
phase. Section IV explores phase transitions between the
three precessional morphologies, which are readily iden-
tified using our new formalism and have potentially
interesting observational consequences. Finally, we con-
clude in Sec. V, highlighting the relevance of our new PN
approach to both the theoretical understanding of BBHs
and observational GW astronomy. We mainly focus on the
relative orientation of the momenta; the evolution of the
global orientation of the system will be addressed
elsewhere [51]. Throughout the paper, we use geometrical
units (G ¼ c ¼ 1) and write vectors in boldface, denoting
the corresponding unit vectors by hats and their magnitude
as (e.g.) L ¼ jLj. Latin subscripts (i ¼ 1; 2) label the BHs
in the binary. Binaries are studied at separations r ≥ 10M,
taken as a simple but ad hoc threshold for the breakdown
of the PN approximation [52–54]. Animated versions of
some figures are available online at the URLs listed
in Ref. [55].

II. ANALYTIC SOLUTIONS ON THE
PRECESSIONAL TIMESCALE

In this section we focus on the binary dynamics on the
precessional time. Angular momentum conservation
(Sec. II A) and the existence of a further constant of motion
(Sec. II B) provide a simple parametrization of the binary
dynamics through the identification of effective potentials.
Solutions are classified according to the precession geometry
(Sec. II C) and eventually expressed in an inertial frame
(Sec. II D).

A. Parametrization of precessional dynamics

Let us consider BBHs on a circular orbit.1 Letm1 andm2

denote the BBH masses, in terms of which we can define

1Our approach can be readily generalized to nonzero eccen-
tricity without complicating the geometry since the orbital
pericenter precesses on a shorter timescale than the BBH spins
do. We restrict our attention to circular orbits since radiation
reaction is expected to suppress the eccentricity at large sepa-
rations for most astrophysical systems [18,19].
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the mass ratio q ¼ m2=m1 ≤ 1, the total mass M ¼
m1 þm2, and the symmetric mass ratio η ¼ m1m2=M2.
The spin magnitudes Si ¼ m2

i χi (i ¼ 1; 2) are most con-
veniently parametrized in terms of the dimensionless Kerr
parameter 0 ≤ χi ≤ 1, while the magnitude of the orbital
angular momentum is related to the binary separation r
through the Newtonian expression L ¼ ηðrM3Þ1=2.
The three angular momenta L, S1 and S2 in principle

constitute a nine-dimensional parameter space. However,
there exist numerous constraints on the evolution of these
parameters, greatly reducing the number of degrees of
freedom. At the PN order considered here, the magnitudes
of both spins are conserved throughout the inspiral (see
e.g. Ref. [52]), reducing the number of degrees of freedom
from nine to seven. The magnitude of the orbital angular
momentum is conserved on the precession time (although it
shrinks on the radiation-reaction time), further reducing the
number of degrees of freedom from seven to six. The total
angular momentum J ¼ Lþ S1 þ S2 is also conserved on
the precession time, reducing the number of degrees of
freedom from six to three. As described in greater detail in
the next subsection, the projected effective spin ξ [56,57] is
also conserved by both the orbit-averaged spin-precession
equations at 2PN and radiation reaction at 2.5PN order,
providing a final constraint that reduces the system to just
two degrees of freedom. In an appropriately chosen non-
inertial reference frame precessing about J, precessional
motion associated with one of these degrees of freedom can
be suppressed, implying that the relative orientations of the
three angular momenta L, S1 and S2 can be specified by
just a single coordinate! Wewill provide an explicit analytic
construction of this procedure in this and the following
subsection.
We begin by introducing two alternative reference

frames in which the relative orientations of the three
angular momenta can be specified explicitly. As shown
in the left panel of Fig. 1, one may choose the z0 axis to lie
along L, the x0 axis such that S1 lies in the x0z0 plane, and
the y0 axis to complete the orthonormal triad. In this frame
only three independent coordinates are needed to describe
the relative orientations of the angular momenta; we choose
them to be the angles

cos θ1 ¼ Ŝ1 · L̂; ð2aÞ

cos θ2 ¼ Ŝ2 · L̂; ð2bÞ

cosΔΦ ¼ Ŝ1 × L̂

jŜ1 × L̂j ·
Ŝ2 × L̂

jŜ2 × L̂j ; ð2cÞ

where the sign of ΔΦ is given by (cf. Fig. 1)

sgnΔΦ ¼ sgnfL · ½ðS1 ×LÞ × ðS2 ×LÞ�g: ð2dÞ

The relative orientations of the three angular momenta
can alternatively be specified in a frame aligned with the
total angular momentum J. For fixed values of L, S1, and
S2, the allowed range for J ¼ jJj is

Jmin ≤ J ≤ Jmax ð3aÞ

where

Jmin ¼ maxð0; L − S1 − S2; jS1 − S2j − LÞ; ð3bÞ

Jmax ¼ Lþ S1 þ S2: ð3cÞ

As shown in the right panel of Fig. 1, one can choose the z
axis parallel to J and the x axis such that L lies in the xz
plane:

J ¼ Jẑ and L ¼ L sin θLx̂þ L cos θLẑ: ð4Þ

The third unit vector ŷ ¼ ẑ × x̂ completes the orthonormal
triad. The total spin S ¼ S1 þ S2 ¼ J −L will also lie in
the xz plane:

S ¼ −L sin θLx̂þ ðJ − L cos θLÞẑ; ð5Þ
implying

cos θL ¼ J2 þ L2 − S2

2JL
: ð6Þ

We can also define a unit vector

FIG. 1. Reference frames used in this paper to study BBH spin
precession. The angles θ1, θ2, ΔΦ, and θ12 are defined in a frame
aligned with the orbital angular momentum L (left panel). The
binary dynamics can also be studied in a frame aligned with the
total angular momentum J (right panel). Once L is taken to lie in
the xz plane, its direction is specified by S through the angle θL.
The angle φ0 corresponds to rotations of S1 and S2 about the total
spin S. The two frames pictured here are not inertial because the
direction of L changes together with the spins to conserve J.
These angles are defined in Eqs. (2), (4) and (9).
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Ŝ⊥ ¼ ðJ − L cos θLÞx̂þ L sin θLẑ
S

ð7Þ

which also lies in the xz plane but is orthogonal to Ŝ.
While the magnitudes L and J of the orbital and total

angular momenta are conserved on the precession time-
scale, the same is not true for the total-spin magnitude S,
which oscillates within the range

Smin ≤ S ≤ Smax; ð8aÞ

where

Smin ¼ maxðjJ − Lj; jS1 − S2jÞ; ð8bÞ

Smax ¼ minðJ þ L; S1 þ S2Þ: ð8cÞ

S can be used as a generalized coordinate to specify the
directions of the angular momenta J, L, and S; we can see
from Eqs. (4)–(6) that it is the only coordinate needed to
specify these directions in the xyz frame.
Specifying the directions of the individual spins S1 and

S2 in the xyz frame requires an additional generalized
coordinate, which can be chosen to be the angle φ0 between
Ŝ⊥ in Eq. (7) and the projection of S1 into the plane
spanned by Ŝ⊥ and ŷ, as shown in the right panel of Fig. 1.
This angle corresponds to rotations of S1 and S2 about S
and is given analytically by

cosφ0 ¼ Ŝ1 · Ŝ⊥
jŜ1 × Ŝj : ð9Þ

In terms of the two coordinates S and φ0 varying on the
precession timescale, the three angular momenta in the xyz
frame are

L ¼ A1A2

2J
x̂þ J2 þ L2 − S2

2J
ẑ; ð10aÞ

S1 ¼
S2 þ S21 − S22

2S
Ŝþ A3A4

2S
ðcosφ0Ŝ⊥ þ sinφ0ŷÞ

¼ 1

4JS2
½−ðS2 þ S21 − S22ÞA1A2

þ ðJ2 − L2 þ S2ÞA3A4 cosφ0�x̂þ 1

2S
A3A4 sinφ0ŷ

þ 1

4JS2
½ðS2 þ S21 − S22ÞðJ2 − L2 þ S2Þ

þ A1A2A3A4 cosφ0�ẑ; ð10bÞ

S2 ¼
S2 þ S22 − S21

2S
Ŝ −

A3A4

2S
ðcosφ0Ŝ⊥ þ sinφ0ŷÞ

¼ −
1

4JS2
½ðS2 þ S22 − S21ÞA1A2

þ ðJ2 − L2 þ S2ÞA3A4 cosφ0�x̂ −
1

2S
A3A4 sinφ0ŷ

þ 1

4JS2
½ðS2 þ S22 − S21ÞðJ2 − L2 þ S2Þ

− A1A2A3A4 cosφ0�ẑ; ð10cÞ

where we defined

A1 ≡ ½J2 − ðL − SÞ2�1=2; ð11aÞ

A2 ≡ ½ðLþ SÞ2 − J2�1=2; ð11bÞ

A3 ≡ ½S2 − ðS1 − S2Þ2�1=2; ð11cÞ

A4 ≡ ½ðS1 þ S2Þ2 − S2�1=2: ð11dÞ

All the Ai’s are real and non-negative in the ranges
specified by Eqs. (3) and (8).

B. Effective potentials and resonances

As anticipated in the previous subsection, there is an
additional conserved quantity that can be used to eliminate
φ0 and thereby specify L, S1, and S2 with the single
generalized coordinate S. This quantity is the projected
effective spin [56,57]

ξ≡M−2½ð1þ qÞS1 þ ð1þ q−1ÞS2� · L̂ ð12Þ
which is a constant of motion of the orbit-averaged spin-
precession equations at 2PN order and is also conserved by
radiation reaction at 2.5PN order. Using Eqs. (10a)–(10c),
we can express ξ as a function of S and φ0:

ξðS;φ0Þ ¼ fðJ2 −L2 − S2Þ½S2ð1þ qÞ2 − ðS21 − S22Þð1− q2Þ�
− ð1− q2ÞA1A2A3A4 cosφ0g=ð4qM2S2LÞ: ð13Þ

Conservation of ξ restricts binary evolution to one-
dimensional curves ξðS;φ0Þ ¼ ξ in the Sφ0 plane as shown
in the right panel of Fig. 2. The simple dependence
of ξðS;φ0Þ on φ0 motivates us to define two “effective
potentials” [28] corresponding to the extreme cases
cosφ0 ¼ ∓1 for which L, S1 and S2 are all coplanar:

ξ�ðSÞ ¼ fðJ2 − L2 − S2Þ½S2ð1þ qÞ2 − ðS21 − S22Þð1 − q2Þ�
� ð1 − q2ÞA1A2A3A4g=ð4qM2S2LÞ: ð14Þ

At Smin and Smax

ξ−ðSminÞ ¼ ξþðSminÞ; ξ−ðSmaxÞ ¼ ξþðSmaxÞ; ð15Þ
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because one of the Ai’s defined in Eqs. (11a)–(11d)
vanishes if S ¼ Smin or S ¼ Smax. The functions ξ�ðSÞ
thus form a loop that encloses all allowed values of S and ξ,
as shown in the left panel of Fig. 2. BBHs are constrained to
evolve back and forth along horizontal line segments of
constant ξ bounded by the two effective potentials ξ�ðSÞ.
The turning points in the evolution of S are given by the
solutions of ξ�ðSÞ ¼ ξ, where the binary meets an effective
potential. Once squared, the equation ξ�ðSÞ ¼ ξ reduces to
the following cubic equation in S2:

σ6S6 þ σ4S4 þ σ2S2 þ σ0 ¼ 0; ð16aÞ

where

σ6 ¼ qð1þ qÞ2; ð16bÞ

σ4 ¼ ð1þ qÞ2½−2J2qþ L2ð1þ q2Þ þ 2LM2ξq

þ ð1 − qÞðS22 − qS21Þ�; ð16cÞ

σ2 ¼ 2ð1þ qÞ2ð1 − qÞ½J2ðqS21 − S22Þ
− L2ðS21 − qS22Þ� þ qð1þ qÞ2ðJ2 − L2Þ2
− 2LM2ξqð1þ qÞ½ð1þ qÞðJ2 − L2Þ
þ ð1 − qÞðS21 − S22Þ� þ 4L2M4ξ2q2; ð16dÞ

σ0 ¼ ð1 − q2Þ½L2ð1 − q2ÞðS21 − S22Þ2
− ð1þ qÞðqS21 − S22ÞðJ2 − L2Þ2
þ 2LM2qξðS21 − S22ÞðJ2 − L2Þ�; ð16eÞ

which admits at most three real solutions for S > 0. The
number of solutions in the range allowed by Eqs. (8a)–(8c)
must be even because the two effective potentials form a
closed loop and the Jordan curve theorem requires the
number of intersections between a continuous closed loop
and a line to be even [58] (although these intersections can
coincide at extrema). Since two is the largest even number
less than three, the equation ξ�ðSÞ ¼ ξ will generally have
two solutions which we denote by S� (S− ≤ Sþ).
The total-spin magnitude Swill oscillate between S− and

Sþ implying that spin precession is regular or quasiperiodic
(this will be shown explicitly in Sec. II D below). The
motion of the spins is not fully periodic because in an
inertial frame the basis vectors x̂ and ŷ will generally not
precess about J by a rational multiple of π radians in the
time it takes S to complete a full cycle from S− and Sþ and
back again. The turning points S ¼ S� lie on the effective
potentials, implying from the definition cosφ0 ¼ ∓1 that
all three vectors L, S1, and S2 are coplanar. The qualitative
evolution of φ0 is related to the nature of the turning points
S�. This is illustrated in Fig. 2, where horizontal lines in
the effective-potential diagram (left panel) correspond to

FIG. 2 (color online). Left: Effective potentials ξ�ðSÞ for BBHs with q ¼ 0.6, χ1 ¼ χ2 ¼ 1, r ¼ 100M, and J ¼ 2.34M2.
Conservation of the projected effective spin ξ constrains the BBH spins to precess along horizontal lines bounded by the
effective-potential curves. The horizontal dashed lines intersecting the effective potentials at Smin and Smax (marked by empty
squares) divide BBH spin precession into three different morphological phases distinguished by whether the angle φ0 defined by Eq. (9)
oscillates about π (top orange region), circulates from 0 to 2π (middle grey region), or oscillates about 0 (bottom purple region). The
effective potentials admit two extrema ξmin and ξmax (marked by empty triangles) corresponding to the spin-orbit resonances discovered
in Ref. [37]. Right: Contours of constant ξðS;φ0Þ given by Eq. (13) for the same binary parameters. As BBH spins precess along the
horizontal dashed lines in the left panel, they move along the curves in the Sφ0 plane in the right panel illustrating the three
morphological phases.
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contours of constant ξðS;φ0Þ, computed using Eq. (13)
(right panel). Three different cases are possible.
(1) Both turning points lie on ξþ:

ξþðSþÞ ¼ ξþðS−Þ ¼ ξ: ð17aÞ

φ0 oscillates about π never reaching 0 (orange region
in Fig. 2).

(2) One turning point is on ξ− and the other is on ξþ:

ξ�ðS−Þ ¼ ξ∓ðSþÞ ¼ ξ: ð17bÞ

φ0 monotonically circulates from −π to π during
each precession cycle (grey region in Fig. 2).

(3) Both turning points lie on ξ−:

ξ−ðSþÞ ¼ ξ−ðS−Þ ¼ ξ: ð17cÞ

φ0 oscillates about 0 never reaching π (purple region
in Fig. 2).

The boundaries between the three regions are given by
those values of ξ at which one of the turning points S�
coincides with either Smin or Smax (dashed lines in Fig. 2).
Note that ξðSminÞ may be less or greater than ξðSmaxÞ
depending on the values of q, χi, r and J.
The two turning points are degenerate ðSþ ¼ S−Þ at the

extrema ξmin and ξmax of the effective potentials. At these
extrema the derivatives

dξ�
dS

¼ 1þ q
2qM2S3L

�
ð1 − qÞðJ2 − L2ÞðS21 − S22Þ − ð1þ qÞS4

� 1 − q
A1A2A3A4

½S8 − ðJ2 þ L2 þ S21 þ S22ÞS6

þ ðJ2 þ L2ÞðS21 − S22Þ2S2 þ ðS21 þ S22ÞðJ2 − L2Þ2S2

− ðS21 − S22Þ2ðJ2 − L2Þ2�
�

ð18Þ

vanish and S ¼ S− ¼ Sþ is constant. Since

lim
S→Smin

dξþ
dS

≥ lim
S→Smin

dξ−
dS

; ð19aÞ

lim
S→Smax

dξþ
dS

≤ lim
S→Smax

dξ−
dS

; ð19bÞ

and at most two turning points can exist, it follows that ξþ
admits a single maximum in ½Smin; Smax� and ξ− admits a
single minimum in ½Smin; Smax�. The effective potentials
therefore have exactly two distinct extrema for each value
of the constants J, r, q, χ1 and χ2. As clarified below, these
special configurations correspond to the spin-orbit reso-
nances discovered by other means in Ref. [37].
The equal-mass limit q → 1 corresponds to ξþðSÞ ¼

ξ−ðSÞ [cf. Eq. (14)] implying that S is constant for all values

of ξ [note that ξ�ðSminÞ ≠ ξ�ðSmaxÞ]. This fact was noted at
least as early as 2008 by Racine [57] and it was recently
exploited in numerical-relativity simulations [39,59], but
the constancy of S is a peculiarity of the equal-mass case
and does not hold for generic binaries.

C. Morphological classification

Although the evolution of φ0 already provides a way to
characterize the precessional dynamics (Fig. 2), a more
intuitive understanding can be gained by switching back to
the L-aligned frame illustrated in the left panel of Fig. 1.
Substituting Eqs. (10) and (13) into Eq. (2), we can express
the angles θ1, θ2 and ΔΦ as functions of S, J and ξ. This
yields the remarkably simple expressions [28]

cos θ1 ¼
1

2ð1 − qÞS1

�
J2 − L2 − S2

L
−
2qM2ξ

1þ q

�
; ð20aÞ

cosθ2¼
q

2ð1−qÞS2

�
−
J2−L2−S2

L
þ2M2ξ

1þq

�
; ð20bÞ

cosΔΦ ¼ cos θ12 − cos θ1 cos θ2
sin θ1 sin θ2

; ð20cÞ

where the angle θ12 ¼ arccos Ŝ1 · Ŝ2 between the two spins
can also be written in terms of S:

cos θ12 ¼
S2 − S21 − S22

2S1S2
: ð20dÞ

Equations (20a)–(20d) parametrize double-spin binary
precession using a single parameter S. Some examples of
the evolution of these angles over a precessional cycle are
given in Fig. 3. The evolution of θ1 and θ2 is monotonic as
S evolves between its two turning points S�; over a full
precessional cycle these angles oscillate between two
extrema lying on the effective potentials (dotted curves
in Fig. 3). The evolution of ΔΦ can be classified into three
morphological phases similar to that of φ0:
(1) ΔΦ oscillates about 0 (never reaching π) if

ΔΦðS−Þ ¼ ΔΦðSþÞ ¼ 0; ð21aÞ

(2) ΔΦ circulates through the full range ½−π; π� if

ΔΦðS�Þ ¼ 0 and ΔΦðS∓Þ ¼ π; ð21bÞ

(3) ΔΦ oscillates about π (never reaching 0) if

ΔΦðS−Þ ¼ ΔΦðSþÞ ¼ π: ð21cÞ
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The evolution of ΔΦ allows us to unambiguously catego-
rize the precessional dynamics into the three different
classes listed above. We refer to these classes as morphol-
ogies because of the different shapes traced out by the BBH
spins over a precession cycle. We show some examples of
how the allowed region inside the effective-potential loop is
divided between these three morphologies in Fig. 4. BBHs
in the two oscillating morphologies are adjacent to the
extrema of the effective potentials (ξmin and ξmax), while
circulating binaries (if present) fill the gap in between.
Schnittman’s spin-orbit resonances [37] can be reinter-
preted as the limits of the two oscillating morphologies
when the “precessional amplitude” Sþ − S− goes to zero at
ξmin and ξmax, much like how circular orbits are the limits of
eccentric orbits as the amplitude of the radial oscillations
goes to zero.
According to the criteria listed in Eqs. (21a)–(21c),

boundaries between the three morphologies (shown by
horizontal dashed lines in Fig. 4) occur at values of ξ where
cosΔΦ given by Eq. (20c) changes discontinuously at one
of the turning points S� along the effective-potential loop
ξ�ðSÞ. We know that ΔΦ is either 0 or π along ξ�ðSÞ
because L, S1, and S2 are coplanar when cosφ0 ¼ �1 (see
Fig. 1). A discontinuity can only occur when the denom-
inator of Eq. (20c) vanishes, i.e. where one of the spins is
either aligned or antialigned with the orbital angular
momentum (sin θi ¼ 0). These discontinuities can only
happen at the turning points S� because of the monotonic
evolution of θi during each half of the precession cycle, as
shown in the top and middle panels of Fig. 3. The four
contours cos θi ¼ �1 (sin θi ¼ 0) are shown by dotted
curves in Fig. 4; we see that a boundary between mor-
phologies occurs whenever these curves are tangent to the
effective-potential loop ξ�ðSÞ. These boundaries had pre-
viously been described as unstable resonances [37].
The geometrical constraints imposed by Eqs. (3a)–(3c)

and (8a)–(8c) imply that some morphologies may not be
allowed for given values of L; J; q; χ1, and χ2. Three
qualitatively different scenarios can occur, exemplified
by the three panels of Fig. 4:
(1) Left panel: BBH spins precess in all three of the

morphologies listed in Eqs. (21a)–(21c). Libration
about the coplanar configuration ΔΦ ¼ 0 occurs for
values of ξ close to ξmin, libration about the ΔΦ ¼ π
configuration is found near ξmax, and ΔΦ circulates
for intermediate values of ξ. Our analysis in Ref. [28]
was restricted to this case.

(2) Middle panel: ΔΦ oscillates about π for ξ close to
both ξmin and ξmax, with circulation still allowed for
intermediate values of ξ.

(3) Right panel: ΔΦ oscillates about π for all values
ξmin < ξ < ξmax (circulation and oscillation about 0
are both forbidden).

To distinguish these scenarios, it is useful to examine the
values of ΔΦ on the effective-potential loop at the extrema

FIG. 3 (color online). Analytical solutions given by Eq. (20) for
the evolution of the angles θ1 (top panel), θ2 (middle panel), and
ΔΦ (bottom panel) during a precession cycle. The evolution of
three binaries with ξ ¼ 0.25 (blue), 0.3 (green) and 0.35 (red) is
shown for q ¼ 0.8, χ1 ¼ 1, χ2 ¼ 0.8, r ¼ 20M and J ¼ 1.29M2.
The evolution of θ1 and θ2 is monotonic during each half of a
precession cycle and is bounded by the dotted lines for which
cosφ ¼ ∓1 [these curves can be found by substituting ξ�ðSÞ for
ξ in Eq. (20)]. Three classes of solutions are possible and define
the binary morphology: ΔΦ can oscillate about 0 (ξ ¼ 0.25),
circulate (ξ ¼ 0.3) or oscillate about π (ξ ¼ 0.35). An animated
version of this figure is available online at Ref. [55], where
precession solutions are evolved on tRR.

MULTI-TIMESCALE ANALYSIS OF PHASE TRANSITIONS … PHYSICAL REVIEW D 92, 064016 (2015)

064016-7



ξmin and ξmax. Although it is straightforward to evaluateΔΦ
numerically at ξmax, one can gain more intuition by instead
evaluating it at Smin. The value of ΔΦ is the same at these
two points since the slope of the effective-potential loop
ξþðSÞ connecting them is positive while that of the cos θi ¼
�1 contours is negative (as can be seen in Fig. 4). The
curves therefore cannot be tangent to each other implying
that ΔΦ must remain constant on this portion of the
loop. Equation (8b) requires that Smin equals the greater
of jJ − Lj and jS1 − S2j; in the former case L and J are
antialigned, while in the latter case S1 and S2 are anti-
aligned. In either case, the components of S1 and S2

perpendicular to L are antialigned (ΔΦ ¼ π). This implies
that ΔΦ will oscillate about π near ξmax for all values of J,
L, S1, and S2 (as can be seen in all three panels of Fig. 4).
The values of ΔΦ on the effective-potential loop at ξmin

and Smax are also the same because the segment of the curve
connecting them has a positive slope. Equation (8c) indi-
cates that Smax equals the lesser of jJ þ Lj and jS1 þ S2j; in
the former case L and J are antialigned, while in the latter
case S1 and S2 are aligned. The former case again requires
the components of S1 and S2 perpendicular to L to be
antialigned (ΔΦ ¼ π) but now the latter case requires these
components to be aligned (ΔΦ ¼ 0). For values of J, L, S1,
and S2 for which this latter case applies, ΔΦ will oscillate

about 0 near ξmin and we have determined that all three
morphologies are possible, as shown in the left panel
of Fig. 4.
To distinguish the remaining two scenarios (whether or

not ΔΦ circulates for intermediate values of ξ), we must
examine the intersections of the cos θi ¼ �1 contours with
the effective-potential loop ξ�ðSÞ. There can be either zero
or two of such intersections. If no intersections occur, ΔΦ
remains equal to π around the entire loop just as it is at ξmax
and only oscillations about this value are possible, as shown
in the right panel of Fig. 4. If there are two intersections,
they must happen on the two portions of the loop with
negative slopes (the segment connecting Smin and ξmin and
the segment connecting Smax and ξmax). If both intersections
happen on the same segment, ΔΦ switches from π to 0 and
back again as one traverses the loop from ξmax to ξmin
resulting in the introduction of a circulating phase before
restoring oscillations about π near ξmin, as seen in the
middle panel of Fig. 4. If the two intersections happen on
different segments, ΔΦ switches to 0 at the first turning
point and then to π at the other leading to oscillations about
0 near ξmin, as seen previously in the left panel of Fig. 4.
To summarize, the number of allowed morphologies in

the effective-potential diagrams of Fig. 4 depends on the
magnitude of the total angular momentum J:

FIG. 4 (color online). Effective potentials ξ�ðSÞ of Eq. (14) for values of L, J, S1, and S2 leading to three different sets of spin
morphologies. The loop formed by the two curves encloses all allowed configurations for the constants listed in the legends. As in the
left panel of Fig. 2, empty squares mark the extrema of S (Smin and Smax), empty triangles mark the extrema of ξ (ξmin and ξmax), and
conservation of ξ restricts the BBH spins to precess along horizontal lines between the turning points S�. BBH spin precession can be
classified into three different morphologies by the behavior of ΔΦ during a precession cycle: oscillation about 0 (blue region),
circulation from −π to π (green region), or oscillation about π (red region). The dashed boundaries between these morphologies occur at
values of ξ where the dotted curves cos θi ¼ �1 intersect the effective-potential loop, as shown by the empty circles. All three
morphologies are present if one intersection occurs on ξþðSÞ and a second occurs on ξ−ðSÞ (left panel), oscillation of ΔΦ about 0 is
forbidden if two intersections occur on either ξþðSÞ or ξ−ðSÞ (middle panel), and only oscillations about π are allowed if there are no
such intersections (right panel).
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(1) All three phases are allowed if

J > S1 þ S2 − L: ð22Þ

This condition implies Smax ¼ S1 þ S2 and hence
ΔΦðξminÞ ¼ 0 (Fig. 4, left panel).

(2) For lower values of J such that

L − jS1 − S2j < J < S1 þ S2 − L; ð23Þ

ΔΦ will oscillate about π near ξmin and ξmax and
circulate from −π to π for intermediate values of ξ
(Fig. 4, middle panel). The first inequality ensures
that two (anti)aligned configurations (sin θi ¼ 0) can
be found, while the second prevents ΔΦ ¼ 0.

(3) Finally, for

J < minðS1 þ S2 − L;L − jS1 − S2jÞ; ð24Þ

the condition sin θi ¼ 0 cannot be satisfied and ΔΦ
must oscillate about π (Fig. 4, right panel).

Whether these conditions can be satisfied is determined by
the limits on J given by Eqs. (3a)–(3c). In particular, Jmin ¼
L − S1 − S2 is a sufficient but not necessary condition for
all three morphologies to coexist, while Jmin ¼ 0 is a
necessary but not sufficient condition for the single-phase
case. The three-phase case was considered in our paper [28]

and is the only allowed case at sufficiently large binary
separations (L > S1 þ S2).
The Jξ plane shown in Fig. 5 shows all BBH spin

configurations for fixed values of q, χ1, χ2 and r at once.
Since J and ξ are constant on the precession time tpre,
the position of BBHs in this figure is fixed on this
timescale. The effective-potential diagrams of Fig. 4 can
be thought of as vertical sections of Fig. 5 at fixed J where
the S direction has been expanded. Each panel of Fig. 5
refers to a different choice of Jmin from Eq. (3b). ΔΦ can
only oscillate about 0 if J > jL − S1 − S2j. From Eq. (12),
the limit J ¼ jL − S1 − S2j corresponds to the lowest
allowed value of ξ. For separations large enough that
L > S1 þ S2, this configuration also corresponds to Jmin
in which case ΔΦ can oscillate about 0 for all allowed
values of J (Fig. 5, left panel). If L is sufficiently small to
admit values of J such that J < jL − S1 − S2j, a new region
of the parameter space where ΔΦ ¼ 0 is forbidden appears
at small J (middle and right panels of Fig. 5). If even lower
values J < jS1 − S2j − L can be reached (i.e., if Jmin ¼ 0),
the leftmost region of the Jξ plane does not even allow a
circulating phase (right panel of Fig. 5).
The center and right panels of Fig. 5 reveal that the

regions for which ΔΦ oscillates (shown in blue and red) are
very small for L < S1 þ S2. This follows from the fact that
these small values of the orbital angular momentum can
only be achieved in the PN regime (r≳ 10M) for low mass
ratios. Oscillation of ΔΦ relies upon coupling between the

FIG. 5 (color online). The (J; ξ) parameter space for BBHs with different minimum allowed total angular momentum Jmin. BBH spin
morphology is shown with different colors, as indicated in the legend. The extrema ξminðJÞ and ξmaxðJÞ of the effective potentials
constitute the edges of the allowed regions and are marked by solid blue (red) curves for ΔΦ ¼ 0ðπÞ. Dashed lines mark the boundaries
between the different morphologies. The parameters q, χ1, χ2 and r are chosen as in Fig. 4, whose panels can be thought of as vertical
(constant J) “sections” of this figure (where we suppress the S dependence). The lowest allowed value of ξ occurs at J ¼ jL − S1 − S2j
in all three panels. Three phases are present for each vertical section with J > jL − S1 − S2j. This condition may either cover the entire
parameter space (left panel) or leave room for additional regions where vertical sections include two different phases in which ΔΦ
oscillates about π and a circulating phase in between (center panel) or only a single phase where the spins librate about ΔΦ ¼ π (right
panel). An animated version of this figure evolving on the radiation-reaction time tRR is available online [55].
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two BBH spins, and the spin S2 becomes increasingly
ineffective at maintaining this coupling as q → 0
(cf. Sec. IV B below for more details). Nonetheless, a
small region of the parameter space is always occupied by
librating binaries as ξ approaches the resonant values ξmin
and ξmax. For each value of ξ (horizontal sections of Fig. 5),
one ΔΦ ¼ 0 resonance and one ΔΦ ¼ π resonance occur
at the largest (ΔΦ ¼ 0) and the lowest (ΔΦ ¼ π) allowed
values of J. The effective spin ξ is therefore a good
parameter to identify the resonant solutions, as we pointed
out in Ref. [41].

D. Time dependence

Although S fully parametrizes the precessional dynam-
ics, time-dependent expressions may be useful as well.
The BBH spins obey the 2PN precession equations
[17,57,60,61]

dS1

dt
¼ 1

2r3

�
ð4þ 3qÞL −

3qM2ξ

1þ q
L̂þ S2

�
× S1; ð25aÞ

dS2

dt
¼ 1

2r3

��
4þ 3

q

�
L −

3M2ξ

1þ q
L̂þ S1

�
× S2; ð25bÞ

which include the quadrupole-monopole interaction com-
puted in Ref. [57]. These equations are averaged over the
binary’s orbital period torb and describe the evolution of
the spins on the precession timescale tpre. Equations (25a)
and (25b) imply that the orbit-averaged evolution of
S ¼ jS1 þ S2j is given by

dS
dt

¼ −
3ð1 − q2Þ

2q
S1S2
S

ðη2M3Þ3
L5

�
1 −

ηM2ξ

L

�

× sin θ1 sin θ2 sinΔΦ: ð26Þ

Integrating Eq. (26) yields solutions SðtÞ, and that specifies
L, S1, and S2 as functions of time through substitution into
Eqs. (10a)–(10c). Some examples of SðtÞ for different
values of ξ are shown in the top panel of Fig. 6.
These time-dependent solutions confirm the scenario

outlined in Sec. II B, with S oscillating between two turning
points S− and Sþ at which dS=dt ¼ 0. At these turning
points, the three angular momenta are coplanar [from
Eq. (26), dS=dt ¼ 0 implies either sinΔΦ ¼ 0 or
sin θi ¼ 0] and the BBHs lie on the effective potentials
(ξ�ðS�Þ ¼ ξ). The spin-orbit resonances ξmin and ξmax are
shown with dashed lines in Fig. 6 and correspond to the
zero-amplitude limits of the generic oscillatory solutions.
From Eq. (26), we can define the precessional period τ as
the time needed to complete a full cycle in S,

τðL; J; ξÞ ¼ 2

Z
Sþ

S−

dS
jdS=dtj : ð27Þ

The precession timescale tpre ∼ ð2πM=ηÞðr=MÞ5=2 pro-
vides an order-of-magnitude estimate for this exact preces-
sional period. The period τ remains finite at the spin-orbit
resonances ξmin and ξmax in much the same way that the
period of a simple harmonic oscillator remains finite in the
limit of small oscillations.
The time evolution of the three angular momenta L, S1

and S2 is fully given by Eqs. (10a)–(10c) and (26) when
described in the noninertial frames of Fig. 1. However, J
andLwill generally not be confined to a plane in an inertial
frame. The direction of J is fixed on the precession

FIG. 6 (color online). Time-dependent solutions for the total-
spin magnitude S (top panel) and the orbital-angular-momentum
phase ΦL (bottom panel). We set q ¼ 0.7, χ1 ¼ 0.7, χ2 ¼ 0.9,
r ¼ 30M and J ¼ 1.48M2 and integrate Eq. (26) for three values
of ξ corresponding to the three different spin morphologies: ΔΦ
oscillates about 0 (ξ ¼ 0.17, blue), circulates (ξ ¼ 0.25, green),
and oscillates about π (ξ ¼ 0.34, red). Initial conditions have been
chosen such that S ¼ S− and ΦL ¼ 0 at t ¼ 0. The oscillations in
S induce small wiggles in ΦL on top of a mostly linear drift. Spin-
orbit resonances (horizontal dashed lines, top panel) correspond
to configurations for which S is constant and can be interpreted
as zero-amplitude limits of generic oscillatory solutions. The
projections of the effective potentials, i.e. parametric curves
½τðξÞ=2; SþðξÞ� and ½τðξÞ; S−ðξÞ�, are shown with dotted lines.
An animated version of this figure is available online [55].
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timescale tpre, and hence so is ẑ. The two remaining basis
vectors will precess about the z axis:

dx̂
dt

¼ Ωzẑ × x̂ ¼ Ωzŷ;
dŷ
dt

¼ Ωzẑ × ŷ ¼ −Ωzx̂:

ð28Þ
The solution to these two equations gives x̂ðtÞ and ŷðtÞ and
hence LðtÞ, S1ðtÞ, and S2ðtÞ in an inertial frame from
Eqs. (10a)–(10c) and (13). The orbital angular momentum
L precesses about J with frequency Ωz given by [28]

Ωz ¼
J
2

�
η2M3

L2

�
3
�
1þ 3

2η

�
1−

ηM2ξ

L

�

−
3ð1þ qÞ
2qA2

1A
2
2

�
1−

ηM2ξ

L

�
½4ð1− qÞL2ðS21 − S22Þ

− ð1þ qÞðJ2 −L2 − S2ÞðJ2 −L2 − S2 − 4ηM2LξÞ�
�
:

ð29Þ

This equation can be derived by substituting Eqs. (25a)–(25b)
and (28) into the time derivative of Eq. (5). For concreteness,
let us specify an inertial frame such thatL lies in the xz plane
at S ¼ S−. At the point on a precession cycle specified
by the total-spin magnitude S, the direction of L is specified
by the polar angles θL from Eq. (6) and the azimuthal angle

ΦL ¼
8<
:

R
S
S−
Ωz

dS
jdS=dtj for S∶ S− → Sþ

α
2
þ R Sþ

S Ωz
dS

jdS=dtj for S∶ Sþ → S−
ð30Þ

where the two cases refer to the first and the second
half of the precession cycle, and

αðL; J; ξÞ ¼ 2

Z
Sþ

S−

Ωz
dS

jdS=dtj ð31Þ

is the total change in the azimuthal angle ΦL over a full
precession cycle. Solutions ΦLðtÞ are shown in the
bottom panel of Fig. 6. The angle ΦL mainly exhibits a
linear drift due to the leading-PN-order term in
Eqs. (25a)–(25b). Spin-spin couplings are of higher
PN order and cause small wiggles on top of this linear
drift. Binaries in spin-orbit resonances (ξmin and ξmax)
precess at a constant rate Ωz with all three vectors L,
S1, and S2 jointly precessing about J. Just as ΔΦ is ill
defined if either of the Si is aligned with L
(cos θi ¼ �1), ΦL and thus α is ill defined if L is
aligned with J (cos θL ¼ �1). This occurs for values of
J and ξ for which S− ¼ Smin ¼ jJ − Lj or Sþ ¼ Smax ¼
J þ L, corresponding to some of the transitions between
the different classes of the evolution of φ0 (dashed lines
in Fig. 2).

We stress here that the time-dependent expressions
reported in this section are only valid on times
t ∼ τ ≪ tRR, i.e. when the precessional dynamics approx-
imately decouples from the inspiral. This approximation
breaks down at small separations, where the difference
between the three timescales is smaller (cf. Sec. III C).

III. PRECESSION-AVERAGED EVOLUTION
ON THE INSPIRAL TIMESCALE

The previous section focused on spin dynamics on
the precessional timescale. We now consider how spin
precession evolves as BBHs inspiral due to radiation
reaction. Our main tool is a precession-averaged equation
to model the binary inspiral (derived in Sec. III A below)
that will allow us to overcome numerical limitations of
our previous analyses [35,36,38,40,41] and evolve BBHs
inwards from arbitrarily large separations (Sec. III B). This
improved computational scheme relying on our new multi-
scale analysis allows us to more efficiently “transfer” BBHs
from the large separations where they form astrophysically
down to the small separations relevant for GW detection.
In Sec. III C we compare the results of our precession-
averaged evolution against the standard integration of the
merely orbit-averaged spin-precession equations.

A. Averaging the average

In the usual PN formulation (see e.g. Ref. [17]), the
timescale hierarchy torb ≪ tpre ≪ tRR is exploited to aver-
age the evolution equations for L, S1, and S2 over the
orbital period T. We already saw above how this orbit
averaging can be used to increase the computational
efficiency with which spin precession can be calculated
[Eqs. (25a)–(25b) can be integrated with time steps torb ≪
Δt ≪ tpre much longer than the orbital timescale].
Radiation reaction can be similarly orbit averaged:

�
dLRR

dt

	
orb

¼ 1

T

Z
2π

0

dLRR

dt
dψ

dψ=dt
; ð32Þ

where dLRR=dt is the instantaneous change in the orbital
angular momentum due to GW radiation reaction and ψ is
the true anomaly parametrizing the orbital motion. The flux
dLRR=dt depends implicitly on both ψ and the angular
momenta L, S1, and S2; the former dependence can be
averaged over since we have analytic solutions to the orbital
motion as function of ψ , while the angular momenta may
be held fixed, since they barely evolve over an orbital
period. Spin precession may be calculated on the radiation-
reaction timescale by numerically integrating the coupled
system of ordinary differential equations (ODEs) given by
Eqs. (25a)–(25b) and (32) with the time step Δt given
above.
We derived analytic solutions to the orbit-averaged spin-

precession equations (25a)–(25b) in Sec. II that depend on
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the magnitudes L and J that evolve on the radiation-
reaction timescale tRR. In a similar spirit to the orbit
averaging discussed above, we can use these solutions
to precession average the evolution equations for L and J.
We define the precession average of some scalar quantity X
to be

hXipre ≡ 2

τ

Z
Sþ

S−

hXiorb
dS

jdS=dtj ð33Þ

where dS=dt is given as a function of S in Eq. (26). We
can hold L, J, and ξ fixed on the right-hand side of this
equation because they barely evolve during a precession
cycle, much as we held the vectorial angular momenta fixed
in the orbit averaging since they evolve on the longer
timescale tpre ≫ torb.
Since ξ is conserved by radiation reaction at 2.5PN order

[56,57], we need only find precession-averaged evolution
equations for L and J to evolve our spin-precession
solutions on the radiation-reaction timescale tRR. Since
L2 ¼ L ·L, dL=dt ¼ L̂ · dLRR=dt and the precession-
averaged evolution of L is given by

�
dL
dt

	
pre

¼ 2

τ

Z
Sþ

S−

L̂ ·

�
dLRR

dt

	
orb

dS
jdS=dtj : ð34Þ

We similarly have dJ=dt ¼ Ĵ · dJRR=dt, but since J ¼
Lþ S1 þ S2 and GW emission does not directly affect
the individual spins (dSi;RR=dt ¼ 0), dJRR=dt ¼ dLRR=dt
and we have

�
dJ
dt

	
pre

¼ 2

τ

Z
Sþ

S−

Ĵ ·

�
dLRR

dt

	
orb

dS
jdS=dtj : ð35Þ

The orbit-averaged angular momentum flux hdLRR=dtiorb
up to 1PN is given by [17]

�
dLRR

dt

	
orb

¼−
32

5

ηL
M

�
M
r

�
4

×

��
1−

2423þ588η

336

M
r

�
L̂þO

�
M
r

�
3=2

�
:

ð36Þ

Note that this expression is parallel to L̂ and independent
of S. Substituting this result into Eq. (35) yields

�
dJ
dt

	
pre

¼ 2

τ

Z
Sþ

S−

L̂ ·

�
dLRR

dt

	
orb

cos θL
dS

jdS=dtj ; ð37Þ

where we used Eq. (4), and cos θL is given in Eq. (6) as a
function of S. Finally, Eqs. (34) and (37) together lead to

�
dJ
dL

	
pre

¼ 1

2LJ
ðJ2 þ L2 − hS2ipreÞ; ð38Þ

which reduces the computation of BBH spin precession on
the radiation-reaction timescale to solving a single ODE
[28]! Equation (38) is independent of the details of spin
precession (which are encoded in hS2ipre) and is also
independent of the PN expansion for hdLRR=dtiorb pro-
vided this is parallel to L̂ and independent of S. As shown
in Eq. (36), both of these conditions are satisfied at the 1PN
level but break down at higher PN order. We address the
range of validity of our approach in Sec. III C, where we
also perform extensive comparisons with full integrations
of the conventional orbit-averaged equations.
Examples of solutions to Eq. (38) are shown in Fig. 7,

where J is evolved from r ¼ 109M to r ¼ 10M. Solutions
JðrÞ are bounded at all separations by the spin-orbit
resonances ξmin and ξmax which extremize the magnitude
J for each fixed ξ (cf. Sec. II C and Fig. 5). We perform
ODE integrations using the LSODA algorithm [62] as
wrapped by the PYTHON module SCIPY [63]; integrations
of Eq. (38) are numerically feasible for arbitrary values of
q < 1, χ1 ≤ 1, χ2 ≤ 1, and arbitrarily large initial
separation.
Our solutions to the spin-precession equations also

depend on the direction Ĵ, since this defines the z axis
in the orthonormal frame of Fig. 1. The precession-
averaged evolution of this direction is

�
dĴ
dt

	
pre

¼ 1

J

��
dLRR

dt

	
orb

−
dJ
dt

Ĵ

	
pre

ð39Þ

which is proportional to the precession average of the total
angular momentum radiated perpendicular to Ĵ. Although
the vector given by the right-hand side of Eq. (39) will
generally not vanish over a single precession cycle, if the
angle α given by Eq. (31) above is not an integer multiple of
2π this vector will precess about Ĵ in an inertial frame. This
implies that Ĵ will precess in a narrow cone in an inertial
frame on the radiation-reaction timescale remaining
approximately constant [16,64]. As shown for some of
the binaries of Fig. 7, the condition α ¼ 2πn for integer n is
indeed satisfied in generic inspirals at meaningful separa-
tions. Preliminary results indicate that interesting spin
dynamics arises at these newly identified resonances
[51]. In this paper, we restrict our attention to the relative
orientations of the three angular momenta as specified by
the three angles in Eqs. (20a)–(20c).

B. The large-separation limit

We can gain additional physical insight by examining
Eq. (38) in the large-separation limit L=M2 → ∞. Let us
define
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κ≡ J2 − L2

2L
; ð40Þ

such that Eq. (38) becomes

dκ
dL

¼ −
hS2ipre
2L2

: ð41Þ

The right-hand side vanishes at large separations where
S ≪ L, implying that

κ∞ ≡ lim
r=M→∞

κ ð42Þ

is constant. This implies that κ provides a more convenient
label for precessing BBHs at large separations because
it asymptotes to a constant while J diverges. At large
separations J evolves as

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lð2κ þ LÞ

p ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lð2κ∞ þ LÞ

p
; ð43Þ

as illustrated in the inset of Fig. 7. From Eq. (40) and
J ¼ Lþ S one also obtains

κ∞ ¼ lim
r=M→∞

S · L̂ ð44Þ

implying that κ asymptotes to the projection of the total
spin onto the orbital angular momentum. The constant κ∞
can be calculated for a binary at finite separation by
integrating dκ=dL all the way to r=M → ∞. This integra-
tion can be performed by defining u ¼ 1=2L such that
dκ=du ¼ hS2ipre can be integrated over a compact domain.
The two constants κ∞ and ξ are linear combinations of

the asymptotic values of the inner products Ŝi · L̂ defined
in Eqs. (20a)–(20d) in the large-separation limit. The
constancy of these inner products at large separations is
also apparent from Eqs. (25a)–(25b), where the Si will
precess about L when spin-orbit coupling dominates over
spin-spin coupling. From Eqs. (12) and (44) one finds

cos θ1∞ ≡ lim
r=M→∞

Ŝ1 · L̂ ¼ −M2ξþ κ∞ð1þ q−1Þ
S1ðq−1 − qÞ ; ð45aÞ

cos θ2∞ ≡ lim
r=M→∞

Ŝ2 · L̂ ¼ M2ξ − κ∞ð1þ qÞ
S2ðq−1 − qÞ : ð45bÞ

The terms in Eqs. (20a)–(20d) proportional to S2 become
increasingly significant at smaller separations and induce
oscillations in θi on the precession timescale, while the
breakdown of the asymptotic approximation to JðLÞ given
in Eq. (43) causes J (and hence θi) to deviate on the
radiation-reaction timescale for BBHs with different values
of ξ, as seen in Fig. 7. The constraints jcos θ1∞j ≤ 1 and
jcos θ2∞j ≤ 1 define the physically allowed values of ξ
and κ∞. These parameters, or equivalently θ1∞ and θ2∞,
can be used to identify an entire BBH inspiral (as far as the
relative orientation of the angular momenta is concerned)
without reference to a particular separation or frequency, as
typically done in GW applications [23–25,41,65,66].

C. Efficient binary transfer

Our new precession-averaged equation for dJ=dL
[Eq. (38)] can be used to efficiently “transfer” BBHs from
the large separations at which they form astrophysically to
the smaller separations at which the GWs they emit become
detectable. This equation can be integrated with a time step
tpre ≪ Δt0 ≪ tRR much longer than the time step torb ≪
Δt ≪ tpre on which merely orbit-averaged equations must
be integrated. This greater efficiency comes at the cost of no
longer being able to keep track of the precessional phase,
in much the same way that orbit-averaged equations do
not explicitly evolve the orbital phase. This is not a major
problem for population-synthesis studies however, because

FIG. 7 (color online). Evolution of the total angular momentum
magnitude J during the inspiral. Three binary configurations are
considered here: ξ ¼ −0.5 (orange), 0 (purple) and 0.5 (green) for
q ¼ 0.4, χ1 ¼ 0.9, χ2 ¼ 0.8. Equation (38) is solved for several
different initial conditions (solid lines, sequential colors) as the
separation r and the angular momentum L ¼ ηðrM3Þ1=2 decrease.
Solutions are bounded at all separations by the spin-orbit
resonances (dotted lines) which extremize the allowed value of
J for fixed ξ. Two of the binaries pictured here cross one of the
resonant conditions α ¼ 2πn (empty circles) where changes in
the direction Ĵ are expected. The inset shows the same evolutions
for a wider separation range.
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evolution over a timescale Δt0 will randomize the preces-
sional phase, as described below. If one needs to track
the precessional phase below a certain separation (such as
that corresponding to the lowest detectable GW frequen-
cies) one can randomly initialize the phase at this separation
and then employ orbit-averaged equations. The following
procedure explicitly outlines how to evolve the spin
orientations of a population of BBHs from large to small
separations.
(1) Given a sample of BBHs specified by values of q,

χ1 and χ2, choose a distribution piðθ1; θ2;ΔΦÞ for
the angles that describes the spin orientations at
an initial separation ri. This initial distribution is
determined by the interactions between BHs and
their astrophysical environment that lead to binary
formation (cf. Refs. [40,67–69] on stellar-mass BHs
and Refs. [70–74] on supermassive BBHs).

(2) Rewrite this initial distribution as a distribution
piðJ; ξÞ using the relations

S ¼ ½S21 þ S22 þ 2S1S2ðsin θ1 sin θ2 cosΔΦ
þ cos θ1 cos θ2Þ�1=2; ð46aÞ

J ¼ ½L2 þ S2 þ 2LðS1 cos θ1 þ S2 cos θ2Þ�1=2;
ð46bÞ

ξ ¼ qS1 cos θ1 þ S2 cos θ2
ηM2ð1þ qÞ : ð46cÞ

(3) Evolve each member of the distribution piðJ; ξÞ to
a smaller separation rf using Eq. (38) for dJ=dL
(ξ remains constant). This yields a final distribution
pfðJ; ξÞ.

(4) For each member of the distribution pfðJ; ξÞ, create
a distribution of values of S in the range S−ðJ; ξÞ ≤
S ≤ SþðJ; ξÞ weighted by ðdS=dtÞ−1 given by
Eq. (26). BBHs spend less time at values of S where
the “velocity” dS=dt is large. This yields a distri-
bution pfðS; J; ξÞ.

(5) Convert pfðS; J; ξÞ into a distribution of final angles
pfðθ1; θ2;ΔΦÞ using Eqs. (20a)–(20d) and a ran-
domly chosen sign for ΔΦ.

Examples of this binary transfer are given in Fig. 8 for three
different initial spin distributions.
(1) Isotropic sample (top panels): Both spin vectors are

isotropically distributed (flat uncorrelated distribu-
tions in cos θ1, cos θ2 and ΔΦ).

(2) One aligned BH (middle panels): One BH spin
(either the spin of the primary or the spin of the
secondary) is aligned within 10° of the orbital
angular momentum, while the other spin angle θi
has a flat distribution in [0°, 180°]; ΔΦ is also flat
in ½−180°; 180°�.

(3) Gaussian spikes (bottom panels): θ1 and θ2 have
Gaussian distributions peaked at 45° and 135° with
deviations of 10°; ΔΦ is kept flat in ½−180°; 180°�.

We evolve these distributions from ri ¼ 1000M to rf ¼
10M and show marginalized distributions of the three
angles θ1, θ2, and ΔΦ at several intermediate separations.
An animated version of this figure can be found online [55].
The isotropic sample remains isotropic, as found previously
using the orbit-averaged equations [73]. A greater fraction
of the BBHs in the distribution with one aligned BH
undergo a phase transition from a circulating to a librating
morphology, as described in Sec. IV below and also found
in previous studies with the orbit-averaged equations [40].
If the angles θi initially have Gaussian distributions, these
Gaussians will spread out as the inspiral proceeds.
We use the BBH inspirals from ri¼1000M to rf ¼ 10M

shown in Fig. 8 to compare the efficiency of our new
precession-averaged approach to the integration of the
standard—i.e., orbit-averaged—PN equations. In the stan-
dard approach, one must numerically integrate ten coupled
ODEs specifying the directions of the three angular
momenta and the magnitude of the orbital velocity; we
use the PN equations quoted by Refs. [35,36]. We imple-
ment the same 2PN spin-precession equations2 given by
Eqs. (25a)–(25b) but include radiation reaction up to
3.5PN order, as in Eq. (2.6) of Ref. [36]. Integrations
are performed using the same algorithm specified above
[62,63]. The agreement between the two approaches is seen
to be excellent up to r ∼ 50M, and minor discrepancies
emerge at smaller separations.
Two approximations made in the precession-averaged

approach may explain these discrepancies. While ξ is held
constant throughout the inspiral in the precession-averaged
approach (consistent with 2.5PN radiation reaction), con-
servation of ξ is not enforced in the orbit-averaged
approach, which employs 3.5PN radiation reaction. The
largest deviations Δξ in the latter approach are of the order
10−10; ξ is effectively constant in the PN regime (r≳ 10M).
Numerical-relativity simulations may be used to test con-
servation of ξ at smaller separations. We have verified that
additional PN corrections in Eq. (36), implemented in our
orbit-average code up to 3.5PN, introduce very mild
corrections to the evolution of J: the largest variations
observed in our evolutions are of order ΔJ ∼ 10−2.
The second and less reliable approximation involves

the timescale hierarchy itself. The precession time
tpre ∼ ðr=MÞ5=2 and radiation-reaction time tRR ∼ ðr=MÞ4
become more comparable at lower separations, reducing
the effectiveness of our quasiadiabatic approach. The
precession-averaging procedure defined in Eq. (33)
assumes that quantities like L and J varying on tRR remain

2Higher-order PN corrections to the spin-precession equations
have been computed in Refs. [75–77]; their implementation is left
to future work.
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FIG. 8 (color online). Precession-averaged BBH inspirals as described in Sec. III C (purple/darker) compared to numerical integration
of the orbit-averaged PN equations [35,36] (orange/lighter). Marginalized distributions of the spin angles θ1, θ2, and jΔΦj (rows) are
shown at several separations along the inspirals [columns: ri ¼ 1000M, 500M; 100M; 50M, and 10M]. The three initial spin
distributions are isotropic (top panels), one aligned BH (middle panels), and Gaussian spikes (bottom panels) as described in Sec. III C.
The two approaches are in good agreement except for minor deviations in the distribution of ΔΦ at r ∼ 10M. We take q ¼ 0.7, χ1 ¼ 0.8
and χ2 ¼ 0.4 for all BBHs. An animated version of this figure is available online [55].
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constant over a full precession cycle τ, but this assumption
will break down as the timescale hierarchy becomes
invalid.
Figure 8 shows that differences between the two

approaches are most pronounced in prðΔΦÞ. This variable
is the most sensitive to the precessional dynamics; pre-
dictions for the angles θ1 and θ2 remain reasonably accurate
even at r ∼ 10M. The differences seem to average out for
wider distributions (top panels) but become more evident
for more compact initial distributions (bottom panels).
Averaging over the precessional dynamics prevents us
from tracking the precession phase, implying that the
two approaches will make different predictions for quan-
tities (like S and ΔΦ) varying on the precession timescale
when the initial separation is sufficiently small that memory
of the initial phases has not been fully forgotten.
Predictions of physical quantities varying on the radia-
tion-reaction timescale (like J and the precession morphol-
ogy) will remain robust down to small separations, as
explored in Secs. IV B and IV C below.
We compare the computational efficiency of the pre-

cession- and orbit-averaged approaches in Fig. 9. Isotropic
samples of 100 BBHs are transferred from large initial
separations ri to a final separation rf ¼ 10M. The CPU
time required by the two approaches scales differently with
the initial separation. The orbit-averaged (OA) equations
must be integrated with a time step shorter than the
precession time, implying that the total number of time
steps scales as

NOA ∝
Z

ri

rf

dr
_rGWtpre

∼ r3=2i ; ð47Þ

where _rGW ∝ r−3 as given by the quadrupole formula
[18,19]. The ratio tRR=tpre ∝ r3=2 increases dramatically
at large separations leading to a corresponding increase in
the computational cost. In the precession-averaged (PA)
approach, the integration of dJ=dL in Eq. (38) only
requires time steps proportional to L, hence

NPA ∝
Z

Li

Lf

dL
L

∼ logðLiÞ ∝ logðriÞ: ð48Þ

The precession-averaged approach is very efficient at large
separations because the solutions to Eq. (38) become very
smooth in this limit as seen from Eq. (43) and Fig. 7.
Precession-averaged inspirals may even be computed from
infinite separations through a change of variables to
u≡ ð2LÞ−1. The integrator spends most of the computa-
tional time at small separations, where spin effects—
notably the numerical evaluation of S�—need to be tracked
with high accuracy to avoid violations of the constraints
(3a)–(3c). As shown in Fig. 9, these expected scalings are
well reproduced by both of our codes.

In addition to the time needed to integrate Eq. (38),
the precession-averaged approach must generate a final
distribution for S (step 4 above), implying that the
computational cost does not go to zero as ri → rf.
While this step makes the calculation of a single BBH
inspiral nondeterministic and more expensive, precession
averaging effectively reduces the dimensionality of the
BBH population during the inspiral. If the n members of
this final distribution for S are regarded as distinct binaries,
the total number of integrations required to produce a
fixed number of BBHs at rf is reduced by a factor of n in
the precession-averaged approach compared to the orbit-
averaged approach.

IV. MORPHOLOGICAL PHASE TRANSITIONS

As BBHs inspiral on the radiation-reaction timescale,
they can transition between the spin-precession morphol-
ogies described in Sec. II C. BBH spins predominantly
circulate at large separations but increasingly transition into
one of the two librating morphologies as spin-spin coupling
becomes important (Sec. IVA). The probability of encoun-
tering one of these morphological phase transitions during
the inspiral depends on the asymmetry between the masses

FIG. 9 (color online). CPU time needed to evolve BBHs from
an initial separation ri to a final separation rf ¼ 10M using our
new precession-averaged approach (purple circles) and the
standard orbit-averaged approach (orange triangles). Each CPU
time is averaged over N ¼ 100 executions with isotropic initial
spin orientation (flat distributions in cos θ1, cos θ2 and ΔΦ).
Dashed lines show the expected scalings: t ∝ r3=2i for the orbit-
averaged approach and t ∝ log ri for our new precession-
averaged approach. These computations have been performed
on a single core of a 2013 Intel i5-3470 3.20 GHz CPU.
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and the spin magnitudes of the two BBHs (Sec. IV B).
Asymmetric binaries are more likely to circulate, while
BBHs with comparable mass and spin ratios populate the
librating morphologies. BBH spin morphologies at finite
separations can be determined from their asymptotic spin
orientations cos θi∞ (or equivalently ξ and κ∞) as discussed
in Sec. IV C.

A. Phenomenology of phase transitions

As extensively discussed in Sec. II C, BBH spin pre-
cession can be unambiguously classified into one of three
morphologies depending on the values of q, χ1, χ2, ξ, r (or
L), and J. While the first four of these parameters remain
constant throughout the inspiral, r and J evolve on the
radiation-reaction timescale according to Eq. (38). Binaries
may therefore change their precessional morphology while
evolving towards merger. The boundaries between different
morphologies (cf. Sec. II C) are set by the (anti)alignment
condition sin θi ¼ 0; the binary morphology changes
whenever radiation reaction brings J and L to values that
satisfy this condition [which can only occur on the
effective-potential loop ξ�ðSÞ, as seen in Fig. 4].
Figure 10 shows two examples of these phase transitions.
At the radii rtr where phase transitions occur, ΔΦ changes
discontinuously either at S− (left panel) or Sþ (right panel),
causing the solutions ΔΦðSÞ of Eqs. (20a)–(20d) to
transition between the qualitatively different shapes seen
in the bottom panel of Fig. 3. The BBHs in the left (right)
panel evolve from the circulating morphology to the
morphology in which ΔΦ oscillates about 0 (π).
A more complete phenomenology of phase transitions is

illustrated in Fig. 11. The evolution of cos θ1 and cos θ2
along the inspiral is shown for a variety of initial conditions

cos θi∞. At each separation r, the angles θi vary on the
precession time within a finite range specified by the
conditions ξ ¼ ξ�ðSÞ (cf. Fig. 3). These envelopes vary
on the radiation-reaction time as J evolves according to
Eq. (38); their width shrinks to a zero as r=M → ∞
according to Eqs. (45a)–(45b), and tends to thicken at
smaller separations because of the increasing importance of
terms proportional to S2 in Eqs. (20a)–(20d). Horizontal
bars above each panel track the binary morphologies,
which we label as C, L0, and Lπ for circulation, libration
about ΔΦ ¼ 0, and libration about ΔΦ ¼ π. These mor-
phologies change whenever one of the allowed ranges
reach the boundaries cos θi ¼ �1.
All binaries circulate at large separation because the

angles cos θ1 and cos θ2 are approximately constant
(Sec. III B) and ΔΦ from Eq. (20c) is monotonic in S,
thus satisfying Eq. (21b). Some binaries (leftmost panels of
Fig. 11) remain in the circulating morphology until the PN
approximation breaks down (r ¼ 10M). Other binaries
undergo a single transition into a librating phase (middle
columns of Fig. 11);ΔΦwill oscillate about 0 (π) following
this transition if the alignment condition sin θi ¼ 0 is
satisfied at S− (Sþ). Since cos θ1 (cos θ2) decreases
(increases) monotonically with S [cf. Eqs. (20a)–(20d)],
the above conditions can be summarized as

cos θ1 ¼ 1 or cos θ2 ¼ −1∶ C → L0; ð49aÞ

cos θ1 ¼ −1 or cos θ2 ¼ 1∶ C → Lπ: ð49bÞ

These phase transitions were seen in previous (orbit-
averaged) simulations [37] and referred to as spin locking,
because the BBH spins locked into libration about the

FIG. 10 (color online). Precessional solutions ΔΦðSÞ of Eqs. (20a)–(20d) as J and L evolve during inspirals according to Eq. (38).
These solutions are colored according to the separation r=M as shown in the color bar on the right (orange/lighter for large separations
and black/darker for small separations). Binaries in the left (right) panel transition from the circulating morphology to the morphology in
which ΔΦ librates about 0 (π) at the transition radius rtr ≃ 152M (18.9M); separations bracketing the transition radius are marked with
dashed lines. Parameters are set to the values indicated in the legends. An animated version of this figure is available online [55].
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FIG. 11 (color online). Evolution of the spin morphology and the allowed ranges of the spin angles θi over a precession cycle as
functions of the binary separation r. Each panel shows the range of cos θ1 (purple/darker) and cos θ2 (orange/lighter) for different initial
conditions cos θi∞. The current morphology is tracked by the horizontal bar above each panel. Morphologies are indicated as C (green)
for circulating, L0 (blue) for ΔΦ librating about 0, and Lπ (red) for ΔΦ librating about π. The morphology changes whenever
cos θi ¼ �1 (vertical dashed lines). BBHs in the leftmost column do not undergo any transitions in the PN regime; one transition into a
librating morphology occurs for BBHs in the center columns; two transitions (circulating to librating, librating to circulating) occur for
BBHs in the rightmost column. The mass ratio and spin magnitudes are q ¼ 0.95, χ1 ¼ 0.5, and χ2 ¼ 1 in all panels.
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spin-orbit resonances at ξmin and ξmax. As the librating
binaries continue to inspiral, some may transition back
into the circulating phase, as pictured in the rightmost
column of Fig. 11. The conditions for this second transition
are

cos θ1 ¼ −1 or cos θ2 ¼ 1∶ L0 → C; ð50aÞ

cos θ1 ¼ 1 or cos θ2 ¼ −1∶ Lπ → C: ð50bÞ

As discussed further in Sec. IV B below, this second
phase transition occurs in the PN regime (r≳ 10M) only
in some corners of the parameter space (q≲ 1 and
χ1 ≠ χ2). We have not found any additional transitions
in the PN regime, but multiple transitions may occur at
the smaller separations accessible to numerical-relativity
simulations.

B. Dependence on mass and spin asymmetry

The asymmetry in the masses mi and spin magnitudes χi
determines which of the eight scenarios depicted in Fig. 11
a binary will experience during its inspiral. The alignment
conditions sin θ1 ¼ 0 and sin θ2 ¼ 0 tend to be satisfied at
similar values of ξ for symmetric binaries (q → 1 and
χ1 ≃ χ2), shrinking the circulating (green) region in the left
panel of Fig. 4 and enhancing the fraction of librating
binaries.
This point is illustrated in Fig. 12 below, which shows

the fraction of isotropic binaries in each of the three
morphologies as functions of the binary separation. Each
panel is computed by averaging over a sample of binaries
isotropically distributed at large separations (flat distribu-
tions in cos θ1∞ and cos θ2∞); all binaries in each sample
share the same mass ratio and spin magnitudes. As the
separation decreases, binaries transition from the circulat-
ing to librating morphologies. The fraction of binaries
experiencing these transitions strongly depends on the mass
ratio q. If the mass ratio is low (q ≲ 0.6), most binaries
remain circulating down to very small separations r ∼ 10M.
Comparable-mass binaries (q≳ 0.6) are more likely to
undergo a phase transition in the PN regime. The typical
transition radius rtr at which these phase transitions occur
is also very sensitive to the mass ratio [36,37]; transitions
occur in the very late inspiral for low mass ratios while rtr
can be as large as 105M for q≃ 0.99. Very long evolutions
are needed to capture all of the morphological transitions
for nearly equal-mass binaries; such long inspirals are
prohibitively expensive in the standard orbit-averaged
approach (as seen in Fig. 9) but can easily be calculated
within our new precession-averaged formalism.
A more extensive exploration of how BBH spin

morphology depends on the binary parameters is shown
in Fig. 13 and Table I. Isotropic distributions at r=M ¼ ∞
are evolved down to r ¼ 10M, where their morphologies

are determined; as shown in the upper panel of Fig. 8,
these initially isotropic distributions remain isotropic at
smaller separations. The fraction of binaries in each
morphology at r ¼ 10M is shown as functions of q for
a grid of values of the spin magnitudes χ1 and χ2. As was
already seen in Fig. 12, the likelihood of phase transitions
depends on the mass ratio q; more librating binaries
are found for comparable-mass BBHs at any fixed
separation.
Spin magnitudes also affect the fraction of BBHs in each

morphology. As one moves along the diagonal of Fig. 13
in the direction of increasing χ1 ¼ χ2, a slightly higher
fraction of binaries are found in librating morphologies
because of increased spin-spin coupling [37]. The corner of
the parameter space characterized by mass symmetry and
spin asymmetry (q → 1 and χ1 ≠ χ2) presents a peculiar
phenomenology, as seen in the right panels of Fig. 12,
where the fraction of binaries in each morphology
approaches constant values for r≲ 1000M. This behavior
can be explained by recognizing that in this region of
parameter space binaries may undergo two morphological
transitions in the PN regime, as seen in the rightmost panels
of Fig. 11. The number of binaries experiencing their first
phase transition from circulation to libration is nearly
canceled by the number of binaries undergoing a second
phase transition back to the circulating morphology, lead-
ing to almost constant fractions of binaries in each
morphology. This effect also accounts for the kinks in
the morphology fractions at q≃ 0.9 in the off-diagonal
(χ1 ≠ χ2) panels of Fig. 13.

C. Predicting spin morphology at small separations

We described in great detail in Sec. II C how to
determine the BBH spin morphology from the binary
parameters at a given separation, but astrophysical BBHs
are often formed at much larger separations than where we
are interested in observing them. Although BBHs can be
efficiently evolved to smaller separations using the pre-
cession-averaged approach described in Sec. III C, we can
in fact predict the spin morphology at a final separation rf
based solely upon the asymptotic values of θ1∞ and θ2∞ [or
equivalently ξ and κ∞ according to Eqs. (45a)–(45b)]
without the need to integrate dJ=dL down to rf. This
can be achieved by recognizing that the curves in the
cos θ1∞ − cos θ2∞ plane separating the final morphologies
at rf correspond to BBHs experiencing phase transitions at
rf, i.e. binaries for which cos θiðrfÞ ¼ �1. These binaries
constitute the four borders of the cos θ1 − cos θ2 plane at
rf; using our expression for dJ=dL in Eq. (38) to integrate
BBHs along these borders out to r=M → ∞, we obtain four
curves in the cos θ1∞ − cos θ2∞ plane, as seen in Fig. 14.
These curves define regions I and II in the cos θ1∞ −
cos θ2∞ plane with the following boundaries:
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FIG. 12 (color online). The fraction f of isotropic binaries in each of the three precessional morphologies as functions of the binary
separation. Each panel refers to different values of q, χ1 and χ2 as indicated in the legends. The fraction of binaries in which ΔΦ
circulates (green, middle region of each panel), oscillates about 0 (blue, bottom region of each panel), or oscillates about π (red, top
region of each panel) is shown as the binary orbit shrinks, with dashed lines separating the different morphologies. The fraction of
binaries in librating morphologies generally grows during the inspiral; this growth is stronger as q → 1 but may stall for nearly equal
masses and χ1 ≠ χ2, as seen in panels in the right column.
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FIG. 13 (color online). The fraction f of isotropic BBHs for which ΔΦ circulates (green, middle region), oscillates about 0 (blue,
bottom region), or oscillates about π (red, top region) at a binary separation r ¼ 10M as functions of the mass ratio q. Dashed lines
separate the different morphologies. Each panel corresponds to a different value of χ1 (columns) and χ2 (rows). The fraction of BBHs in
librating morphologies increases as the mass asymmetry decreases (q → 1). For nearly equal masses (q≳ 0.9), asymmetry in the spin
magnitudes increases the fraction of binaries in the circulating morphology as can be seen by comparing panels on and off of the
diagonal. Some data used in this plot are listed in Table I. The website [55] contains an animated version of this figure, where the panels
are shown at decreasing binary separations.
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I: cos θ1∞ ¼ þ1; cos θ2∞ ¼ −1;

cos θ1ðrfÞ ¼ þ1; cos θ2ðrfÞ ¼ −1;

II: cos θ1∞ ¼ −1; cos θ2∞ ¼ þ1;

cos θ1ðrfÞ ¼ −1; cos θ2ðrfÞ ¼ þ1:

The final morphology at rf for each point in the
cos θ1∞ − cos θ2∞ plane is determined by whether or not
that point is contained in the two regions:
(i) Outside both region I and region II: ΔΦ circulates

(no phase transitions, plain green in Fig. 14).
(ii) Inside region I but not region II: ΔΦ oscillates about

0 (one phase transition, blue in Fig. 14).

(iii) Inside region II but not region I: ΔΦ oscillates about
π (one phase transition, red in Fig. 14).

(iv) Inside both region I and region II:ΔΦ circulates (two
phase transitions, hatched green in Fig. 14).

These conditions on the final morphology are consistent
with the criteria for phase transitions given in Eqs. (49a)–
(49b) and (50a)–(50b). Once the boundaries of regions I
and II have been established we can determine the final
morphology of any BBH from its initial conditions at
astrophysically large separations without further need to
integrate dJ=dL down to rf. A binary with spin orienta-

tions lying in the green, red or blue region of Fig. 14 at large

TABLE I. Fractions of isotropic BBHs in each of the three precessional morphologies (L0: ΔΦ oscillates about 0, C: ΔΦ circulates,
Lπ: ΔΦ oscillates about π) at r ¼ 10M as shown in Fig. 13. For a grid of values in χ1 (columns), χ2 (rows) and, q (first column in each
mini-table), we report the fraction of binaries in each morphology. The sum of the three fractions may differ from unity because of
rounding errors.

χ1 ¼ 0.2 χ1 ¼ 0.4 χ1 ¼ 0.6 χ1 ¼ 0.8 χ1 ¼ 1

χ 2
¼

0
.2

q L0 C Lπ q L0 C Lπ q L0 C Lπ q L0 C Lπ q L0 C Lπ
0.05 0.00 1.00 0.00 0.05 0.00 0.99 0.00 0.05 0.01 0.98 0.01 0.05 0.01 0.98 0.01 0.05 0.02 0.96 0.01
0.2 0.00 1.00 0.00 0.2 0.01 0.99 0.00 0.2 0.01 0.98 0.01 0.2 0.02 0.97 0.01 0.2 0.02 0.95 0.02
0.4 0.00 1.00 0.00 0.4 0.01 0.98 0.01 0.4 0.01 0.97 0.02 0.4 0.04 0.93 0.04 0.4 0.06 0.90 0.04
0.6 0.01 0.99 0.00 0.6 0.02 0.97 0.01 0.6 0.06 0.91 0.03 0.6 0.08 0.86 0.06 0.6 0.12 0.77 0.10
0.8 0.06 0.93 0.01 0.8 0.14 0.81 0.05 0.8 0.20 0.69 0.11 0.8 0.28 0.54 0.18 0.8 0.27 0.55 0.18
0.95 0.35 0.53 0.12 0.95 0.41 0.40 0.19 0.95 0.38 0.44 0.18 0.95 0.35 0.46 0.19 0.95 0.32 0.48 0.21

χ 2
¼

0
.4

q L0 C Lπ q L0 C Lπ q L0 C Lπ q L0 C Lπ q L0 C Lπ
0.05 0.00 1.00 0.00 0.05 0.00 0.99 0.00 0.05 0.01 0.98 0.01 0.05 0.01 0.97 0.01 0.05 0.01 0.98 0.01
0.2 0.00 1.00 0.00 0.2 0.00 0.99 0.00 0.2 0.01 0.98 0.01 0.2 0.03 0.96 0.01 0.2 0.03 0.95 0.02
0.4 0.00 0.99 0.00 0.4 0.01 0.99 0.00 0.4 0.01 0.97 0.01 0.4 0.03 0.94 0.03 0.4 0.06 0.91 0.03
0.6 0.01 0.99 0.00 0.6 0.04 0.95 0.01 0.6 0.07 0.90 0.03 0.6 0.13 0.82 0.05 0.6 0.17 0.75 0.08
0.8 0.11 0.86 0.03 0.8 0.20 0.76 0.04 0.8 0.25 0.67 0.08 0.8 0.31 0.57 0.13 0.8 0.38 0.46 0.16
0.95 0.43 0.36 0.21 0.95 0.51 0.32 0.17 0.95 0.49 0.31 0.20 0.95 0.41 0.41 0.17 0.95 0.37 0.43 0.20

χ 2
¼

0
.6

q L0 C Lπ q L0 C Lπ q L0 C Lπ q L0 C Lπ q L0 C Lπ
0.05 0.00 1.00 0.00 0.05 0.00 0.99 0.00 0.05 0.01 0.99 0.00 0.05 0.02 0.97 0.02 0.05 0.01 0.97 0.01
0.2 0.00 1.00 0.00 0.2 0.01 0.99 0.01 0.2 0.01 0.98 0.01 0.2 0.01 0.97 0.01 0.2 0.04 0.93 0.03
0.4 0.00 0.99 0.00 0.4 0.02 0.97 0.01 0.4 0.03 0.95 0.02 0.4 0.06 0.92 0.02 0.4 0.09 0.87 0.04
0.6 0.04 0.95 0.02 0.6 0.06 0.92 0.02 0.6 0.11 0.86 0.03 0.6 0.12 0.84 0.04 0.6 0.18 0.75 0.07
0.8 0.17 0.76 0.06 0.8 0.26 0.70 0.04 0.8 0.29 0.64 0.07 0.8 0.33 0.56 0.10 0.8 0.37 0.49 0.14
0.95 0.39 0.43 0.19 0.95 0.54 0.28 0.18 0.95 0.55 0.23 0.22 0.95 0.50 0.28 0.22 0.95 0.47 0.36 0.17

χ 2
¼

0
.8

q L0 C Lπ q L0 C Lπ q L0 C Lπ q L0 C Lπ q L0 C Lπ
0.05 0.00 1.00 0.00 0.05 0.00 0.99 0.00 0.05 0.00 0.99 0.01 0.05 0.01 0.98 0.01 0.05 0.02 0.96 0.02
0.2 0.00 1.00 0.00 0.2 0.01 0.99 0.00 0.2 0.01 0.98 0.01 0.2 0.02 0.96 0.01 0.2 0.03 0.94 0.03
0.4 0.01 0.98 0.01 0.4 0.02 0.97 0.01 0.4 0.04 0.95 0.02 0.4 0.05 0.93 0.02 0.4 0.10 0.87 0.04
0.6 0.04 0.94 0.02 0.6 0.08 0.89 0.02 0.6 0.10 0.87 0.03 0.6 0.18 0.78 0.04 0.6 0.21 0.73 0.06
0.8 0.23 0.68 0.10 0.8 0.29 0.63 0.08 0.8 0.34 0.61 0.06 0.8 0.38 0.52 0.10 0.8 0.38 0.49 0.13
0.95 0.34 0.47 0.19 0.95 0.44 0.37 0.19 0.95 0.57 0.21 0.22 0.95 0.59 0.18 0.23 0.95 0.54 0.22 0.24

χ 2
¼

1

q L0 C Lπ q L0 C Lπ q L0 C Lπ q L0 C Lπ q L0 C Lπ
0.05 0.00 1.00 0.00 0.05 0.00 1.00 0.00 0.05 0.01 0.99 0.00 0.05 0.01 0.98 0.01 0.05 0.02 0.95 0.02
0.2 0.00 1.00 0.00 0.2 0.01 0.99 0.01 0.2 0.01 0.98 0.01 0.2 0.02 0.97 0.01 0.2 0.04 0.95 0.01
0.4 0.01 0.98 0.01 0.4 0.03 0.96 0.01 0.4 0.05 0.94 0.01 0.4 0.06 0.92 0.02 0.4 0.08 0.88 0.04
0.6 0.07 0.90 0.03 0.6 0.10 0.87 0.03 0.6 0.15 0.81 0.03 0.6 0.18 0.77 0.04 0.6 0.21 0.72 0.07
0.8 0.29 0.55 0.16 0.8 0.32 0.58 0.10 0.8 0.36 0.54 0.10 0.8 0.41 0.49 0.09 0.8 0.42 0.46 0.12
0.95 0.34 0.48 0.17 0.95 0.42 0.40 0.17 0.95 0.46 0.32 0.22 0.95 0.58 0.17 0.25 0.95 0.59 0.16 0.24
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separations will be found with ΔΦ circulating, oscillating
about 0 or oscillating about π at the end of the inspiral.
Measuring BBH spin morphology directly offers several

advantages over explicitly measuring the spin angles θ1, θ2
andΔΦ. Spin morphology encodes information about BBH
spin precession but is more robust than the spin angles in
that it only varies on the radiation-reaction time (being a
function of L, J, and ξ). Measurement of only the two
angles θ1 and θ2 at small separations constrains neither the
morphology at small separations nor the initial conditions
at large separations, as can be seen from the scatter points in
Fig. 14, which show an isotropic sample of binaries at rf.
Points corresponding to the circulating and both librating
morphologies lie right on top of each other in this plot,
evidence of both the importance of the third angle ΔΦ

and the large oscillations in θi at small separations seen in
Fig. 11. By contrast, spin morphology is a direct memory of
a BBH’s initial position in the cos θ1∞ − cos θ2∞ plane, as
seen in Fig. 14. Astrophysical scenarios of BBH formation
can favor some regions in this plane over others [40],
implying that GW observations of spin morphology can
constrain BBH formation [41].

V. DISCUSSION

BBHs evolve on three distinct timescales: the orbital
time torb, the precession time tpre, and the radiation-reaction
time tRR. In the PN regime (r ≫ rg), these timescales
obey a strict hierarchy: torb ≪ tpre ≪ tRR. All of the
parameters needed to describe BBHs evolve on a distinct

FIG. 14 (color online). Spin morphologies at rf ¼ 10M as functions of the asymptotic values of the spin angles θi∞. The mass ratio q
and spin magnitudes χi for each panel are indicated in the legends. Evolving BBHs along the four lines cos θi ¼ �1 at rf out to
r=M → ∞ using our new precession-averaged approach yields the dashed curves separating the different final morphologies: ΔΦ
oscillates about 0 (blue), oscillates about π (red), circulates without ever having experienced a phase transition (plain green), or circulates
after having experienced a phase transition to libration and then a second phase transition back to circulation (hatched green). The
morphology within each region defined by the dashed boundaries is determined by which of the conditions cos θi ¼ �1 these
boundaries satisfy, as described in Sec. IV C. The points show the locations of binaries in the cos θ1 − cos θ2 plane at rf and are colored
by their morphology at that separation [ΔΦ oscillates about 0 (blue circles), oscillates about π (green squares), or circulates (red
triangles)]. Because morphology depends on ΔΦ in addition to θ1 and θ2 at finite separation, the projection onto the cos θ1 − cos θ2
plane can lead points of different morphologies to occur at the same positions, particularly for comparable-mass binaries q≃ 1 where
the θi’s oscillate with greater amplitude. The website [55] contains an animated version of this figure in which rf evolves.
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timescale: the vectorial binary separation r on torb, the
angular-momentum directions L̂ and Ŝi on tpre, and the
orbital-angular-momentum magnitude L and total angular
momentum J on tRR. The mass ratio q and spin magnitudes
Si remain constant throughout the inspiral. Expanding on
our previous paper [28], we exploit this timescale hierarchy
and conservation of the projected effective spin ξ [56,57]
throughout the inspiral to solve the orbit-averaged
2PN equations of BBH spin precession given by
Eqs. (25a)–(25b). The solutions given by Eqs. (20a)–(20d)
for the three angles θ1, θ2, and ΔΦ that specify the relative
orientations of L, S1, and S2 are remarkably simple and are
given parametrically in terms of a single variable, the total-
spin magnitude S, that evolves on tpre.
These solutions fully determine how the relative ori-

entations of the three angular momenta evolve over a
precession cycle as S oscillates back and forth between
extrema S�. We find that spin precession can be classified
into three distinct morphologies depending on whether ΔΦ
oscillates about 0, oscillates about π, or circulates through
the full range ½−π;þπ� over a precession cycle. For BBHs
with a given mass ratio q and spin magnitudes Si, the
precessional morphology at a binary separation r is
determined by J and ξ, implying that the morphology only
evolves on the radiation-reaction time tRR. Spin-orbit
coupling dominates over the higher-PN-order spin-spin
coupling at large separations implying that all BBHs
formed at such large separations begin in the circulating
morphology. Since ξ is constant to high accuracy through-
out the inspiral, evolving our solutions (20a)–(20d) and
their associated morphology to smaller separations (lower
values of L) only requires an expression for dJ=dL due to
radiation reaction. All previous studies of radiation reaction
have relied on orbit-averaged expressions for dLRR=dt that
must be integrated numerically with time steps Δt≲ tpre.
Our new solutions (20a)–(20d) allow us to precession
average these expressions to derive Eq. (38) for dJ=dL that
can be integrated with a time step tpre ≪ Δt0 ≲ tRR. The
computational cost of calculating inspirals from an initial
separation ri in our new precession-averaged approach
scales as log ri, leading to vast savings over the traditionally
orbit-averaged approach (which scales as r3=2i ) for the large
initial separations relevant to astrophysical BBH formation.
Using our new expression for dJ=dL, we can evolve our

initially circulating BBHs to smaller separations, where
they may experience a phase transition to one of the two
librating morphologies. Some of these librating BBHs may
subsequently undergo a second phase transition back to
circulation before reaching a binary separation r ¼ 10M
below which the PN approximation itself begins to break

down. Our precession-averaged calculation of the inspiral
agrees well with the orbit-averaged approach down to
nearly this separation where small discrepancies appear
because of dynamically generated inhomogeneity in the
precessional phase as the timescale hierarchy fails. Unlike
the angles θ1, θ2 and ΔΦ, that vary rapidly on the
precession time at small separations, the precession mor-
phology at small separations is directly determined by the
asymptotic values θi∞ of these angles at large separations,
providing a memory of BBH formation potentially acces-
sible to GW detectors.
Although this work focuses on BBH spin precession, our

analysis also facilitates the calculation and interpretation of
GW signals. Fast templates suitable for GW detection and
parameter estimation are being developed using our new
precessional solutions and precession-averaged equation
for radiation reaction [78]. The insights underpinning our
approach (most notably the use of a hierarchical coordinate
system that better respects the separation of timescales
intrinsic in the binary dynamics) are also helping us to
assess whether the precessional morphology of BBHs
in spin-orbit resonances can be reliably identified in the
context of full GW parameter estimation [79]. Preliminary
results indicate that BBH spin orientations can be signifi-
cantly constrained at realistic signal-to-noise ratios, sug-
gesting that observations of BBH spin precession as
described in this work may soon provide a new window
into the astrophysical origins of BBHs and general rela-
tivity itself.
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