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If binary black holes form following the successive core collapses of sufficiently massive binary stars,
precessional dynamics may align their spins, S1 and S2, and the orbital angular momentum L into a plane
in which they jointly precess about the total angular momentum J. These spin orientations are known as
spin-orbit resonances since S1, S2, and L all precess at the same frequency to maintain their planar
configuration. Two families of such spin-orbit resonances exist, differentiated by whether the components
of the two spins in the orbital plane are either aligned or antialigned. The fraction of binary black holes in
each family is determined by the stellar evolution of their progenitors, so if gravitational-wave detectors
could measure this fraction they could provide important insights into astrophysical formation scenarios for
binary black holes. In this paper, we show that even under the conservative assumption that binary black
holes are observed along the direction of J (where precession-induced modulations to the gravitational
waveforms are minimized), the waveforms of many members of each resonant family can be distinguished
from all members of the other family in events with signal-to-noise ratios ρ≃ 10, typical of those expected
for the first detections with Advanced LIGO and Virgo. We hope that our preliminary findings inspire a
greater appreciation of the capability of gravitational-wave detectors to constrain stellar astrophysics and
stimulate further studies of the distinguishability of spin-orbit resonant families in more expanded regions
of binary black-hole parameter space.

DOI: 10.1103/PhysRevD.89.124025 PACS numbers: 04.25.dg, 04.70.Bw, 04.30.-w

I. INTRODUCTION

Gravitational waves (GWs) emitted during the inspiral of
binary black holes (BBHs) are expected to be an important
source [1] for future networks of GW detectors such as
the Advanced Laser Interferometer Gravitational Wave
Observatory (LIGO) and Virgo [2], LIGO-India [3], the
Kamioka Gravitational Wave Detector (KAGRA) [4], and
the Einstein Telescope [5]. These BBHs can form in two
distinct channels: (1) mass segregation can cause isolated
black holes (BHs) to sink to the centers of dense stellar
clusters and dynamically form binaries [6,7], or (2) massive
binary stars can evolve into BBHs if each member of the
binary is sufficiently massive at the time of the core
collapse and binary evolution does not destroy the binary
before both stars have had the chance to collapse into BHs
[8,9]. Once formed, BBHs emit GWs that extract energy
and angular momentum from the orbit, decreasing the

binary separation and increasing the orbital frequency (and
thus the GW frequency). Most binaries are expected to
circularize by the time they enter the sensitivity band of
ground-based detectors [10,11] (see [12] and references
therein for recent work on eccentric binary rates and
detection strategies). Circular BBH inspirals are charac-
terized by eight intrinsic parameters: the masses m1 and m2

of each BH and their spins, S1 and S2. We choose without
loss of generality for the first BH to be more massive than
the second: m1 > m2. The spectrum of emitted GWs
depends on these eight parameters, which can therefore
be measured by GW detectors if the sources are observed
with a sufficient signal-to-noise ratio ρ. The distributions of
these intrinsic parameters depend on how the BBHs form,
allowing GW parameter estimation to constrain not just
individual BBH systems, but their astrophysical formation
channels as well.
Our focus in this paper is on whether BBH spin

orientations can be measured with sufficient accuracy in
ρ≃ 10 sources to constrain the formation of binaries. BBH
spin directions are described by three parameters: the
two angles θi between spins Si and the orbital angular
momentum L and the angle ΔΦ ¼ Φ2 − Φ1 between the
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components of the two spins in the orbital plane (see
Fig. 1). Although the individual angles Φi of each of the
BBH spins are among the eight observable intrinsic
parameters listed above, only their difference ΔΦ provides
constraints on BBH formation in the absence of an addi-
tional intrinsic vector to break the axisymmetry of the
equatorial plane. In the first astrophysical formation chan-
nel described above, the BBHs form independently and
the dynamical formation of the binary should not depend
on the BH spin. We therefore expect both BH spins to have
isotropic orientations, in which case the post-Newtonian
(PN) GW inspiral will preserve the isotropy of the BBH
spins [13]. This is not the case, however, in the second
astrophysical formation channel, where the BBHs inherit
the directions of their spins from their stellar progenitors.
In a previous paper [14], we examined how the spins of

BBHs formed from stellar binaries depend on the evolution
of their stellar progenitors. Throughout this evolution,
the initially more massive star will be designated as the
“primary" and the less massive star will be called the
“secondary.” The binary evolution proceeds in several
stages:

(a) The binary stars initially have spins aligned with their
orbital angular momentumL as tidal alignment occurs
on a much shorter time scale than the main-sequence
lifetimes of the stars [15].

(b) The more massive primary evolves more quickly than
the secondary, filling its Roche lobe and transferring
mass to the secondary.

(c) The core of the primary collapses, forming a BH and
detonating a supernova explosion. This asymmetric
explosion kicks the binary and tilts the orbital plane.
The directions of the stellar spins remain unchanged
and thus become misaligned with the new direction
of L.

(d) Tides align the spin of the secondary with the new
direction of L while leaving the spin of the more
compact BH unchanged.

(e) The core of the secondary collapses into a BH. The
orbital plane is tilted a second time, misaligning the
spin of the secondary with the new direction of L and
on average increasing the misalignment of the spin of
the primary even further.

(f) The BBH spins precess many times before the
frequency of emitted GWs enters the sensitivity band
of ground-based detectors.

Although the PN spin precession in stage (f) above leaves
isotropic spin distributions isotropic as the BBHs inspiral, it
can profoundly affect anisotropic spin distributions result-
ing from stages (a)–(e).
The manner in which spin precession alters the distribu-

tion of BBH spins can best be understood by appreciating
the influence of PN spin-orbit resonances, first identified by
Schnittman [16]. BBHs evolve on three distinct time scales:
(1) the orbital time torb ∼ ðr3=GMÞ1=2, (2) the precession
time tpre ∼ c2r5=2=½ηðGMÞ3=2� ∼ ðtorb=ηÞðr=rgÞ, and (3)
the radiation-reaction time tRR ∼ E=jdEGW=dtj ∼ c5r4=
½ηðGMÞ3� ∼ ðtorb=ηÞðr=rgÞ5=2, where M ¼ m1 þm2 is the
total mass, η ¼ m1m2=M2 is the symmetric mass ratio, and
rg ¼ GM=c2 is the gravitational radius. In the PN regime,
r ≫ rg and these time scales are widely separated:
torb ≪ tpre ≪ tRR. In this limit, we can average the spin-
precession equations [17–19] over an orbit while leaving the
total angular momentum J ¼ Lþ S1 þ S2 fixed. The three
angular momenta L, S1, and S2 will generally span a three-
dimensional space at any given time and precess in a
complicated fashion on the precession time tpre that pre-
serves the magnitude and direction of J. However,
Schnittman discovered special spin configurations in which
L, S1, and S2 would remain in a two-dimensional plane and
jointly precess about J on the precession time tpre [16]. He
called these configurations “spin-orbit resonances” because
L, S1, and S2 all precessed about J at the same frequency.
These spin-orbit resonances are divided into two fam-

ilies: resonances in which the spin components in the
orbital plane are aligned (ΔΦ ¼ 0°) and those in which
these components are antialigned (ΔΦ ¼ �180°). At a

FIG. 1 (color online). Conventions and definitions used in this
paper. Wework in the radiation frame, where the z axis is oriented
along the line of sight n̂. The orbital angular momentum L lies in
the xz-plane at fref and is inclined by an angle ιwith respect to the
line of sight. The directions of the spins S1 (blue) and S2 (red) are
specified using polar angles θi and azimuthal angles Φi ði ¼ 1; 2Þ
which are defined in a frame where the z axis is aligned with the
orbital angular momentum L. As resonant binaries precess, their
orbital angular momentum and spins remain coplanar, implying
that the angle ΔΦ ¼ Φ2 − Φ1 (green) remains fixed at either 0° or
�180°. In later sections of the paper, we will fix ι and Φ1 by
aligning the line of sight with the total angular momentum: cf.
Eqs. (A4) and (A5).
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given binary separation, r [or GW frequency f ¼ π−1

ðGM=r3Þ1=2], each of the two resonant families defines a
different curve in the θ1θ2-plane. As resonant BBHs
inspiral on the longer radiation-reaction time tRR, they
remain in spin-orbit resonances though the values of θi vary
as the relationship between θ1 and θ2 for the spin-orbit
resonances is a function of the separation r.
One might imagine that since the one-parameter spin-

orbit resonances constitute a set of measure zero in the
three-dimensional parameter space (θ1, θ2, ΔΦ) of spin
configurations at any given separation, they are merely a
mathematical curiosity of little relevance to astrophysical
BBHs. However, BBHs near a spin-orbit resonance will be
influenced by its presence, with ΔΦ librating about 0° or
�180° rather than circulating through the full range,
ΔΦ ∈ ½−180°;þ180°�. Furthermore, as the binary separa-
tion decreases, an increasing fraction of BBHs will be
captured into this librating portion of the parameter space.
Which of the two families will be favored by this capture
process, the ΔΦ ¼ 0° resonances or the ΔΦ ¼ �180°
resonances? The answer to this question depends on the
distribution of θi at large separations. BBHs where the spin
of the more massive BH is less misaligned with the orbital
angular momentum than that of the less massive BH
(θ1 < θ2) will be preferentially attracted to the ΔΦ ¼ 0°
family of resonances, while BBHs for which θ1 > θ2 will
be preferentially attracted to the ΔΦ ¼ �180° family [16].
The distribution of θi at large separations is determined

by the astrophysics of BBH formation. If the tidal align-
ment of the secondary’s spin in stage (d) above is efficient,
the primary’s spin will on average be more misaligned with
the orbital angular momentum than the secondary’s at the
start of PN spin precession in stage (f), since its misalign-
ment will have been built up in both supernova recoils in
stages (c) and (e).1 However, the primary star (which is
initially more massive and is thus first to collapse into a
BH) will not always become the more massive BH. If
enough mass is transferred from the primary to the
secondary prior to the first core collapse in stage (b), the
primary will evolve into the less massive BH. We will refer
to this possibility as the reverse-mass-ratio (RMR) scenario
[14]. In this case, the more massive BH (evolved from the
secondary) will have a less misaligned spin (θ1 < θ2), and
the ΔΦ ¼ 0° family of resonances will be preferentially
populated. Conversely, in the standard-mass-ratio (SMR)
scenario where the primary evolves into the more massive
BH, it will have a more misaligned spin (θ1 > θ2) and the
ΔΦ ¼ �180° family of resonances will be favored. In the
“No Tides” scenario where the tidal alignment in stage (d)

is ineffective, neither of the resonant families will be
favored over the other.
Our previous paper [14] showed that for a simplified

but not unreasonable toy model of the BBH formation
described above, a large fraction of BBHs were librating
about the ΔΦ ¼ 0°ð�180°Þ resonances in the RMR (SMR)
scenario by the time the GW frequency f approached the
frequency at which most of the signal-to-noise ratio (SNR)
is accumulated (∼60 Hz). In this paper, we investigate what
SNR ρ is required to distinguish the GWs emitted by BBHs
in the two resonant families. A thorough exploration of the
full intrinsic and extrinsic parameter space that character-
izes BBH waveforms is computationally prohibitive, so we
make several mostly conservative assumptions to restrict
this parameter space. To facilitate comparison with our
previous paper, we fix m1 ¼ 7.5M⊙, m2 ¼ 6M⊙, and
χi ≡ Si=m2

i ¼ 1. These values are close to the expected
peak of the distribution of astrophysical BH binaries
detectable by Advanced LIGO, as predicted by popula-
tion-synthesis codes [8]. They are also consistent with the
strong influence of PN precession, as binaries are most
effectively captured into spin-orbit resonances when the
BBH masses are comparable (q≡m2=m1 ≲ 1) and both
dimensionless spin amplitudes are large (χi ≳ 0.5) [14,20].
All BBHs, therefore, have the same masses and spin
magnitudes, ensuring that the spin directions are solely
responsible for the differences in the waveforms. We also
choose the position n̂ of the BBHs on the sky such that
they are directly overhead of the GW detectors. We align
the direction Ĵ of the total angular momentum with n̂ at a
reference frequency, fref ¼ 60 Hz, a typical frequency at
which most of the SNR is accumulated. This latter choice is
conservative since L̂ precesses about the nearly constant Ĵ
during the inspiral, and thus the precessional modulations to
the waveform due to changes in the angle between L̂ and n̂
are minimized. With these choices, we compare the wave-
forms of each member of the two families of spin-orbit
resonances with those of all of the members of the opposite
family by computing their overlap, O. If this overlap with
all members of the opposite family is sufficiently less than
unity, we can safely claim to have determined to which of the
resonant families the BBH belongs.
The remainder of this paper is organized as follows.

In Sec. II we review the dynamics of resonant BBHs,
introduce a convenient parametrization to identify members
of each resonant family, and show qualitatively why the
two families are dynamically distinguishable. In Sec. III,
we examine the GWs emitted by resonant BBHs, use the
overlap between waveforms from different families to
assess their distinguishability, then investigate how this
distinguishability can be used to differentiate between
astrophysical scenarios of BBH formation. In Sec. IV
we hypothesize that the dynamics and waveforms of
resonant binaries are similar to binaries with a single
effective spin, then use this hypothesis to develop two

1The second kick is more likely to increase the misalignment
between the orbital angular momentum and the spin of the
primary because of the greater amount of phase space at larger
values of θ (the Jacobian determinant sin θ increases with θ)
provided the first tilt is ≲π=2. See [14] for a discussion.
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different predictions for the best matching waveforms in
the different resonant families. Some final remarks are
provided in Sec. V. Some technical details concerning the
numerical evolution of the BBHs and the nature of the
correspondence between matching waveforms in the two
families are given in Appendixes A and B.
Throughout the rest of this paper we use geometrical

units where G ¼ c ¼ 1, and we use hats to identify unit
vectors. For example, the direction of the orbital angular
momentum will be denoted by L̂ ¼ L=jLj.

II. REVIEW OF SPIN-ORBIT RESONANCES

While the dynamics of PN spin-orbit resonances has been
discussed at length elsewhere [14,16,20–22], in this section
we make two new observations about the two resonant
families: (1) they share a common natural parametrization
in terms of their effective spin, but (2) their qualitatively
different orientations lead to observationally distinct degrees
of orbital-plane precession. To substantiate these claims, as
well as to perform all subsequent calculations in this work,
we evolve quasicircular inspiral orbits and generate the
associated PN waveforms using the LALSUITE SpinTaylorT4
code, developed by the LIGO Collaboration [23] and based
on prior work [24,25] on quasicircular spinning BH bina-
ries.2 We specify all binary parameters at a GW frequency,
fref ¼ 60 Hz, near the peak of the squared SNR per unit
frequency for advanced GW detectors; more details on the
specification of binary parameters and our calculation of
waveforms are provided in Appendix A.

A. Parametrizing spin-orbit resonances

As described in the introduction, spin-orbit resonances
are solutions of the PN spin-precession equations [16,17] for
whichL, S1, and S2 remain coplanar throughout the inspiral.
At a given binary separation r (or GW frequency f), there are
two different one-parameter families of spin-orbit resonances,
corresponding to whether the spin components in the orbital
plane are aligned (ΔΦ ¼ 0°) or antialigned (ΔΦ ¼ �180°)
[16,20]. In previous work, spin-orbit resonances were iden-
tified by their values of θ1 and θ2. Although these angles
remain constant on the precession time tpre for resonant
binaries, they evolve on the longer radiation-reaction time
tRR, and are thus less useful for identifying BBHs as they
inspiral to smaller separations. However, if the individual
BBH spins are combined into an “effective” spin3 [29],

S0 ¼ ð1þ qÞS1 þ
�
1þ 1

q

�
S2; ð1Þ

the projection

ξ≡ S0 · L̂
M2

����
f¼fref

¼ χ1 cos θ1 þ qχ2 cos θ2
1þ q

ð2Þ

of this effective spin onto the orbital angular momentum
is approximately conserved by orbital evolution when all
known PN orders are included [20], and is exactly conserved
up to 2PN when 2PN-order radiation-reaction is used [30].
This suggests that ξ can be used to parametrize the members
of each family of spin-orbit resonances throughout their
inspiral.
Figure 2 shows contours of constant ξ (straight dashed

lines in the cos θ1 cos θ2-plane) superimposed on the
colored curves corresponding to the spin-orbit resonances
at different GW frequencies. Note that

ξ ∈
�
−
χ1 þ qχ2
1þ q

;
χ1 þ qχ2
1þ q

�
; ð3Þ

FIG. 2 (color online). One-parameter families of resonant
binaries superimposed on contours of constant ξ ¼
S0 · L̂=M2. Red (top-left) and green (bottom-right) curves show
resonant configurations in the two coplanar families for our
canonical choice of the parameters (q ¼ 0.8, M ¼ 13.5M⊙,
χ1 ¼ χ2 ¼ 1) at three different emitted frequencies: 20 Hz
(dashed), 60 Hz (i.e., fref , solid), and 150 Hz (dotted). The
value of ξ ∈ ½−1; 1� is constant over the sloped dashed lines. Each
of them always crosses the resonant curves exactly once, thus
unambiguously identifying a single binary [i.e., a pair ðθ1; θ2Þ] in
each family.

2Recent publications provide other approximations to two-spin
dynamics, valid for a limited range of spins [26,27]. We inten-
tionally adopt a well-tested approximation valid for generic spins.

3In his study of the overlaps of aligned-spin BBH waveforms,
Ajith considered a slightly different effective spin derived from
the combination of spins appearing in the dominant (spin-orbit)
term of the GW phase and amplitude: cf. Eq. (5.9) of [28]. The
two effective spins agree in the limit of small binary mass ratios.
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which for our choice of maximal spins χi ¼ 1 implies
ξ ∈ ½−1;þ1�. Each line of constant ξ crosses the curve for
each resonant family (i.e., ΔΦ ¼ 0° or �180°) only once at
a given GW frequency, establishing a one-to-one corre-
spondence between ξ and resonant solutions with fixed
ðθ1; θ2Þ of the PN equations. As resonant BBHs inspiral,
they remain resonant and move towards the diagonal
cos θ1 ¼ cos θ2 along lines of constant ξ.
The approximate conservation of the parameter ξ sug-

gests that resonant binaries might dynamically resemble
single-spin binaries. We will return to the similarity
between resonant and single-spin binaries in Sec. IV.

B. Different spin orientations imply different
precessional dynamics

BBH spins are oriented in qualitatively different ways in
the two families of spin-orbit resonances. In the common
plane in which L, S1, and S2 all precess, the two spins are
on the same side of the orbital angular momentum for the
ΔΦ ¼ 0° resonances, and on opposite sides for the ΔΦ ¼
�180° resonances. This implies that for comparable-mass
binaries (q ≲ 1) with similar spin magnitudes (χ1 ≃ χ2), the
component of the total spin S ¼ S1 þ S2 in the orbital
plane will be much larger for the ΔΦ ¼ 0° resonances
(where the individual components in the plane add con-
structively) and smaller for the ΔΦ ¼ 180° resonances
(where they add destructively). Since the total angular
momentum J ¼ Lþ S, J and L will be significantly more

misaligned for the ΔΦ ¼ 0° resonances than for the ΔΦ ¼
�180° resonances. Misalignment between J and L leads to
orbital-plane precession, which leaves an observational
signature in the gravitational waveform, as will be seen
in the next section.
This misalignment is illustrated in Fig. 3, which shows

the inner product of the unit orbital and total angular
momentum vectors L̂ and Ĵ as a function of the effective
projected spin ξ for members of the two resonant families at
the reference frequency fref. For ΔΦ ¼ �180°, L̂ and Ĵ are
almost completely aligned for all values of ξ while BBHs
in the ΔΦ ¼ 0° family show significant misalignment
of L̂ and Ĵ unless ξ is close to �1. Note that ξ ¼ �1
corresponds to the bottom-left and upper-right corners of
the cos θ1 vs cos θ2 plane in Fig. 2, where the two resonant
families meet. Binaries with ξ ¼ �1 have spins totally
aligned or antialigned with L̂, and therefore belong to both
families.

III. COMPUTING AND COMPARING
WAVEFORMS FOR RESONANT BINARIES

Our main goal in this paper is to compare sets of
(simulated) source waveforms hab;0ðtÞ against template
waveforms habðtÞ, where hab is the transverse-traceless
GW strain tensor. We adopt the same signal model used in
[31]. Further details are provided in Appendix A.
The incident strain hab induces a linear response hðtÞ in

the GW detector that is fully characterized by two detector-
response functions, Fþ;×:

hðtÞ ¼ Fþhþðt − x · k̂Þ þ F×h×ðt − x · k̂Þ; ð4Þ

where x is the location of the detector, hþ ¼ habeab;þ=2,
h× ¼ habeab;×=2, and eþ;× are basis tensors for the two-
dimensional space of transverse-traceless tensors propa-
gating in the k̂ direction. We will assume throughout this
paper that the source is directly overhead of a single
detector that is oriented such that Fþ ¼ 1 and F× ¼ 0.4

To quantify the difference between the responses h0ðtÞ and
hðtÞ to the source and template, respectively, we introduce
the noise-weighted inner product [33]

ðh0jhÞ≡ 4Re
Z

∞

0

~h0ðfÞ ~h�ðfÞ
SnðfÞ

df; ð5Þ

where ~hðfÞ and ~h0ðfÞ are the Fourier transforms of hðtÞ
and h0ðtÞ, and SnðfÞ is the noise power spectral density
(PSD) for a given detector/network. The SNR ρ of the
source is given by

FIG. 3. Inner product of unit vectors in the directions of the
orbital angular momentum L and total angular momentum J
for BBHs in spin-orbit resonances at the reference frequency
fref . Solid and dashed curves correspond to the ΔΦ ¼ 0° and
ΔΦ ¼ �180° families, respectively. If the line of sight points
along Ĵ, Ĵ · L̂ ¼ cos ι as given by Eq. (A5).

4Without loss of generality, any observations undertaken by a
single detector can always be rescaled to be directly overhead,
simply by rescaling Fþ;×; see, e.g., Eq. (11) of [32].
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ρ≡ ðh0jh0Þ1=2; ð6Þ
and can be evaluated by integrating the squared SNR per
unit frequency:

dρ2

df
≡ 4

j ~h0ðfÞj2
SnðfÞ

: ð7Þ

The key quantity needed to perform comparisons between
the source and template waveforms is the overlap

Oðh0; hÞ≡max
tc;ϕc

ðh0jhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh0jh0ÞðhjhÞ
p ; ð8Þ

the normalized inner product of the two responses maxi-
mized over the arrival time tc and the phase at coalescence
ϕc. This overlap can be used to make rigorously defined
statistical statements about the difference between two
distinct waveforms and waveform families in the presence
of detector noise [33–35]. In particular, two waveforms can
be distinguished when their difference is sufficiently large
[i.e., ðh − h0; h − h0Þ≳ 1] and hence when their overlap is
sufficiently small; this condition is approximately

Oðh0; hÞ≲ 1 − ρ−2: ð9Þ

A. GW power versus frequency for resonant binaries

BBHs emit GWs anisotropically, and thus the observed
response hðtÞ depends on the direction from which they are

viewed. We illustrate this point in Fig. 4, where we plot the
SNR accumulated per unit frequency as a single pair of
BBHs from each resonant family inspirals from f ¼ 10 to
300 Hz. The top row of panels shows dρ2=df for the
member of the ΔΦ ¼ 0° family for which ξ ¼ −0.5, while
the bottom row shows the same quantity for the member of
the ΔΦ ¼ �180° family with the same value of ξ. Each
column corresponds to a different line of sight, n̂, inclined
with respect to the orbital angular momentumL by an angle,
ι ¼ arccosðL̂ · n̂Þ, at the reference frequency fref. These
plots are normalized assuming a luminosity distance,
D ¼ 1 Mpc, but this normalization cancels out in the overlap
O, as defined in Eq. (8), that is the focus of this paper.
The first thing to note in this figure is that the GW signal

depends strongly on the inclination ι. The large oscillations
in dρ2=df, particularly prominent in the top row for large
inclinations, result from precession of the orbital plane
about the total angular momentum. The separation of the
orbital and precessional time scales (torb ≪ tpre) implies
that the peaks and troughs in dρ2=df correspond to orbital
frequencies where L̂ points closest to and farthest away
from the line of sight (i.e., where jL̂ · n̂j ¼ j cos ιj has local
maxima and minima). The second thing to note in Fig. 4 is
that these precessional oscillations are much more pro-
nounced for BBHs in the ΔΦ ¼ 0° family than those in the
ΔΦ ¼ 180° family. This behavior follows from the fact,
explained in Sec. II B and illustrated in Fig. 3, that the total
spin and hence the orbital angular momentum are more
misaligned with the total angular momentum for BBHs in

FIG. 4 (color online). Expected squared SNR per unit frequency [Eq. (7)] for binaries belonging to the two resonant families.
The sources all have a projected effective spin ξ ¼ −0.5, but they are viewed at different inclinations ι. Waveforms from binaries in the
ΔΦ ¼ 0° resonance (top row) exhibit wider modulations due to greater precession of the orbital plane. On the other hand, in the
ΔΦ ¼ 180° family (bottom row), the components of the two spins in the orbital plane partially cancel each other, reducing the precession
of L. The expected modulation varies with ι and is minimized by the values of ι predicted by Eq. (A5), for which the line of sight n̂ is
parallel to the total angular momentum J (first column, red curves). With our canonical choice of the parameters and ξ ¼ −0.5, the
n̂ ¼ Ĵ case corresponds to ι≃ 27° for ΔΦ ¼ 0°, and ι≃ 5° for ΔΦ ¼ 180°.
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the ΔΦ ¼ 0° family than those in the ΔΦ ¼ 180° family.
The very modest misalignment between L̂ and Ĵ (only ∼5°)
for theΔΦ ¼ 180° BBHs in Fig. 4 implies that there is little
precessional modulation for any inclination, ι.
Computational limitations make an exploration of all

possible viewing angles prohibitive, so we instead choose ι
such that the line of sight n̂ is aligned with the total angular
momentum J. This is a conservative choice, in that L̂ · n̂ ¼
cos ι remains nearly constant throughout the inspiral.
Therefore, the precessional modulations (and thus the
differences between the waveforms of the two resonant
families) are minimized.

B. Comparing binaries from different
resonant families

The different dρ2=df curves shown in the top and
bottom rows in Fig. 4 suggest that the two resonant families
may produce observationally distinguishable GW signals,
even under the conservative assumption that both are
viewed along n̂ ¼ Ĵ. To test this hypothesis quantitatively,
we compare the GWs from each member of one family with
all members of the other, using the overlap defined in
Eq. (8) as a measure of their distinguishability. Our only
parameter along each resonant family is the projected
effective spin ξ, which describes the orientation of both

spins when locked into a coplanar configuration. For
simplicity, in this case study all other binary parameters
(including masses, sky location, and precession phase) are
held fixed.
The largest overlap between a signal and all members

of some model space provides a simple way to estimate
whether that signal with some SNR is compatible with the
model space [34–36]. Roughly speaking, if the largest
value of the overlap O is sufficiently small [Eq. (9)] the
signal can be differentiated from all members of the model
family. For the first few GW detections, we anticipate
ρ≃ 10; larger amplitudes will occur as well, albeit with
low probability [the cumulative distribution Pðρ > ρ0Þ ∝
1=ρ30]. We therefore require O < 0.99 as a criterion to
reliably distinguish the two model families.
Figure 5 shows the behavior of the overlap for five

different sources in each family. Each curve has a unique
maximum; in other words, there is a one-to-one corre-
spondence between each source, ~h0ðfÞ, in one of the
resonant families and the template ~hðfÞ in the other family,
which is its best approximation. The nature of this pairing
relation is explored in Fig. 6. For each value of ξsource from
each resonant family, we maximize the overlap O over
all members of the other family and plot the value ξBMtemplate
for this best matching template. Within our numerical

FIG. 5 (color online). Overlap between resonant binaries. A source in either the ΔΦ ¼ 0° resonance (left) or the ΔΦ ¼ 180° resonance
(right), is compared with members of the other family parametrized by ξtemplate. Each one-parameter family is built varying over the spin
direction through ξ, while all the remaining parameters are fixed. Five different sources are considered, but the same trend holds for
every value of ξsource. Each curve possesses a clear unique maximum, pairing the source binary with a best matching template in the other
family.
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precision, the two curves in Fig. 6 (one for each source
family) are symmetric about the diagonal ξsource ¼ ξBMtemplate,
implying that each member of the pairings between the
resonant families is each other’s best match. As explained
in Appendix B, this symmetry is only approximate, but it
holds throughout our restricted parameter space to better
than a part in 500.
Figure 6 also shows the values of the overlaps for each

pair on a color scale. Overlaps range in value from a
minimum ∼0.93 for binaries with effective spins nearly
perpendicular to the orbital angular momentum (ξ ∼ 0) to a
maximum of unity for fully aligned or antialigned binaries
[ξ ¼ �ðχ1 þ qχ2Þ=ð1þ qÞ ¼ �1 for χ1 ¼ χ2 ¼ 1] belong-
ing to both families (lower left and upper right corners of
Fig. 2). Within the scope of this initial study, where only
one intrinsic parameter (the projected effective spin ξ) is
allowed to vary, our conclusions are optimistic: except for
nearly aligned or antialigned binaries, GWs from the
two resonant families have small enough overlaps that
they can be distinguished from one another at SNRs
ρ≳ 10 (O≲ 0.99).
This conclusion holds despite our conservative

assumption that BBHs are viewed from the least favorable
direction (n̂ ¼ Ĵ), which minimizes the precession-induced
modulations present in both families. To test the robustness
of our conclusions, we performed a similar analysis
considering generic, but fixed, values of ι. As expected,
resulting overlaps decrease quite significantly, with a
minimum at ∼0.9. The range of ξ where O≲ 0.99 moves
from −0.8≲ ξ≲ 0.8 (Fig. 6) to −0.9≲ ξ≲ 0.9.

C. Distinguishing BBH formation scenarios

As summarized in the introduction and discussed at great
length in our previous paper [14], aspects of the astro-
physics of BBH formation can profoundly influence the
fraction of binaries captured into each of the two resonant
families. If these fractions can be measured in a sample of
detected GW sources, we can observationally constrain the
astrophysics of BBH formation. We propose that the family
of a resonant binary detected with SNR ρ can be identified
if the overlap O with its match in the other family is less
than Omax ¼ 1 − ρ−2.
To illustrate how these identified fractions can distin-

guish different BBH formation scenarios, we consider
several of the astrophysical distributions of BBH spin
orientations derived in our previous paper [14]. Figure 7
shows a scatter plot of the projected effective spin ξ vs the
angle ΔΦ between spin components in the orbital plane at
fref ¼ 60 Hz for the RMR, SMR, and “No Tides” scenarios
summarized in the introduction (see also [14]). These three
distributions are readily distinguishable by eye, but the

FIG. 6 (color online). Pairing between binaries in different
resonant families. Each source ξsource is paired with the best
matching template ξBMtemplate from the other resonant family, i.e., the
template that maximizes the overlap O of Eq. (8). Within our
numerical precision, each member of the pair is the other’s best
match; the two curves are symmetric about the diagonal
ξsource ¼ ξBMtemplate. Maximized overlaps (the tips of the peaks
shown in Fig. 5) are shown on the color scale.

FIG. 7 (color online). Distributions of ξ and ΔΦ at fref ¼
60 Hz in the astrophysical models we developed in Ref. [14]. All
scenarios shown here assume isotropic supernova kicks. Binaries
for which tides align the spin of the secondary with the orbital
angular momentum prior to the second supernova are typically
locked into resonances by the end of the inspiral. When mass
transfer prior to the first supernova causes the secondary to form
the more massive BH (“Tides RMR,” green circles), the BBHs
tend to be attracted to the ΔΦ ¼ 0° resonances. If this mass-ratio
reversal does not occur (“Tides SMR,” red triangles), binaries will
instead fall into the ΔΦ ¼ 180° resonances. Without this tidal
alignment (“No Tides”, blue squares), BBHs will show no
preference for either resonant family. BBHs inside the dashed
boxes are within�50° degrees of eitherΔΦ ¼ 0° orΔΦ ¼ 180° at
fref and have maximum overlaps below 0.99 with the other family.
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parameters ξ and ΔΦ may not be measured precisely for
sources with a modest SNR ρ, and we may not be lucky
enough to obtain such large samples. We consider points
shown in Fig. 7 to belong to the ΔΦ ¼ 0° or 180° resonant
families if their value of ΔΦ is within �50° of the value of
the given family.5 For each of these resonant points, we
determine the value of ξ and calculate the overlap O of a
resonant binary with this value of ξ with its match in the
opposite family, as shown in Fig. 6. For a given SNR ρ, we
count the fraction of points for each distribution and each
family with O < Omax ¼ 1 − ρ−2.
The resulting six curves as a function of Omax are shown

in Fig. 8. Unfortunately, many of the resonant binaries have
such large values of ξ that it is difficult to distinguish the
two families (see the upper right corner of Fig. 6). However,

with enough sources one could still hope to distinguish the
three distributions. For example, of 100 binaries detected at
ρ ¼ 10 (Omax ¼ 0.99), ∼20 would be expected to be found
in the ΔΦ ¼ 180° family in the SMR scenario, ∼15 would
be found in theΔΦ ¼ 0° family in the RMR scenario, and a
few would be found in each family in the “No Tides”
scenario. Although much work remains to be done, this
example illustrates the primary result of this paper: the
astrophysics of BBH formation can be constrained by a
realistic number of BBHs detected at a realistic SNR.

IV. THE SINGLE-SPIN APPROXIMATION

We found in Sec. II A that spin-orbit resonances can be
parametrized by a single projected effective spin ξ, then
showed in Sec. III B that there is a one-to-one correspon-
dence between binaries in the two resonant families. This
parametrization and correspondence suggest that binaries
in both families may be well approximated by binaries with
a single (effective) spin. If this approximation is valid, it
may allow us to develop semianalytic expressions for the
binary orbits, accompanying GW signals, and overlaps
Oðho; hÞ which will enable a far more computationally
efficient exploration of the higher-dimensional parameter
space for resonant BBHs.
A good fit between nearly nonprecessing and precessing

binaries occurs when their secular-phase evolution is
similar [32]. Expressions for the secular GW phase of
single-spin binaries have been derived in previous work
(cf. [32] and references therein). Adopting the single-spin
approximation, we seek simple conditions to estimate when
members of different resonant families will produce similar
GW signals.
If the single-spin approximation is too successful, it will

raise a new question: if resonant binaries resemble binaries
with a suitably chosen single effective spin too closely, how
can we tell these two classes of sources apart? This question
will require further investigation before we can claim with
confidence that semianalytic expressions can be used to
distinguish resonant families from each other and from
their single-spin cousins.

A. Orbital and precessional contributions
to the GW phase

The physics of single-spin binaries is summarized in
[32,37]. The orbital angular momentum L precesses about
the total angular momentum J,

dL
dt

¼ ΩLĴ ×L; ð10Þ

with precessional frequency ΩL. We define β to be the
(instantaneous) opening angle of the precession cone,

cos β≡ Ĵ · L̂; ð11Þ

FIG. 8 (color online). Fraction of binaries from the astrophysi-
cal distributions shown in Fig. 7 that can be identified as
belonging to one of the resonant families as a function of their
maximum allowed overlap Omax ¼ 1 − ρ−2 with their match in
the opposite family. As the SNR ρ increases, the range of values
of ξsource with O < Omax increases as seen in Fig. 6. This range
determines the heights of the dashed boxes shown in Fig. 7; as
the areas of these boxes increase so too does the fraction of the
points contained within them. The solid (dashed) curves show
the fraction of binaries contained within the box centered on
ΔΦ ¼ 0°ð180°Þ. The green, red, and blue curves correspond to
the “Tides RMR,” “Tides SMR,” and “No Tides” scenarios,
respectively. We see that virtually all identified binaries belong to
the ΔΦ ¼ 0°ð180°Þ family in the “Tides RMR” (SMR) scenario,
while a comparable fraction of identified binaries belong to each
family in the “No Tides” scenario.

5We fix this threshold by a visual inspection of the typical
amplitude of librations about the resonance at fref .
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and α to be the accumulated precessional phase of L̂
about Ĵ:

αðfÞ − αref ≡
Z

f

fref

ΩLðf0Þ
dt
df0

df0: ð12Þ

Here, αref is a reference value at f ¼ fref , and, in practice,
αðtÞ can be computed from a knowledge of the (time-
dependent) angular momentum of the binary.
Following [32,38], we decompose the GW signal from a

precessing binary using the following expression [Eq. (4)
of [38]]:

hþðtÞ ¼
2Mη

D
v2 Re½zðtÞe2iðϕorb−ζÞ�: ð13Þ

In this expression, ϕorb is the orbital phase and ζ; z are
quantities set by the orientation of L̂ in the radiation frame.
The GW phase of a precessing binary ½2ðϕorb − ζÞ − i ln zÞ�
can be decomposed into three parts. First, the orbital phase
(ϕorb) accumulates monotonically on the orbital time scale.
On the precessional time scale, ζ and ln z combine to
produce both periodic modulations and a secular increase
in the overall phase, in proportion to the number of
precession cycles. Following Brown et al. [32], we estimate
this secular contribution by the factor W such that

�
d
dt

�
−ζ −

i
2
ln z

��
≃Wdα=dt; ð14Þ

where angles denote averaging over several binary orbits.
The quantity W depends on the orientation of the pre-
cession cone of L about J, relative to the line of sight; it
therefore evolves on the radiation-reaction time scale. For
reasons explained above, in this work we focus on binaries
seen directly along their total angular momentum (n̂ ¼ Ĵ).
Therefore, precession-induced modulations can be
expected to be small. We will neglect these modulations,
instead emphasizing the secular phase ϕwave:

ϕwave ≃ 2ðϕorb þWαÞ: ð15Þ

Brown et al. [32] provide an exhaustive discussion of the
function W. Since the misalignment between the line of
sight and the orbital angular momentum is always quite
small (see Fig. 3), the line of sight never crosses the orbital
plane during the inspiral. Whenever this condition holds
(and it does, as we checked numerically by integrating
the PN equations), the quantity W assumes the simple
form [32]

W ¼ signðcos βÞ − cos β: ð16Þ

Both the phase ϕorb and the accumulated precession α are
defined to be zero at the reference frequency: the former by
choosing ϕref ¼ 0, the latter by fixing αref ¼ 0 in Eq. (12).

It follows that ϕwave ¼ 0 at fref . The evolution of ϕwave with
the frequency is computed numerically by integrating
forwards in time for f > ffref, and backwards in time for
f < fref . Figure 9 shows the evolution of the GW phase
ϕwave during the inspiral for two resonant sources. The solid
blue curves show the differenceΔϕwave between the secular
GW phase ϕwave for one source from each family and its
match in the opposite family. The contributions to this
difference from the orbital phase ϕorb and secular preces-
sionWα [the two terms in Eq. (15)] are shown with dashed
red and dot-dashed green curves, respectively. We also
show for comparison the squared SNR per unit frequency
of the source.

B. Two matchmakers for the resonant families

We found in Sec. III B that each resonant binary has a
best fitting companion in the other family. In this section,
we use the single-spin approximation to develop two
different criteria for predicting which pair of resonant
binaries in each family will be each other’s best match.
The accuracy of these predictions will test the validity
of the single-spin approximation and our understanding of
the GW phenomenology that governs high overlaps.

1. Effective number of cycles

Damour et al. [39] define N ðfÞ as the differential
(logarithmic) contribution to the total number of cycles

1

2π

Z
dϕwave ¼

Z
df
f
N ðfÞ; ð17Þ

where ϕwave is the phase defined in Eq. (15) for the single-
spin approximation. The source SNR can be expressed as a
weighted integral over N ðfÞ,

ρ2 ¼
Z

df
f
N ðfÞwðfÞ; ð18Þ

where the weighting wðfÞ is given by

wðfÞ ¼ 2π
dρ2

df

�
dϕwave

df

�
−1

¼ 8π
j ~h0ðfÞj2
SnðfÞ

�
dϕwave

df

�
−1
: ð19Þ

We can use the differential number of cycles N ðfÞ and
weighting wðfÞ to define an effective number of cycles:

Neff ¼
�Z

df
f
N ðfÞwðfÞ

��Z
df
f
wðfÞ

�
−1
: ð20Þ

Inspired by this definition of Neff , our first prediction for
the match to a source in one family with N sðfÞ and
weighting wsðfÞ is the template in the other family with
N tðfÞ that minimizes
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jΔN j ¼
����
Z

df
f
½N sðfÞ −N tðfÞ�wsðfÞ

����
�Z

df
f
wsðfÞ

�
−1
:

ð21Þ
2. Linearized phasing

In the single-spin approximation, the GW signal can
be decomposed into a time-varying amplitude and GW
phase (13). The dephasing Q between a source and
template whose secular GW phase (15) differs by an
amount Δϕwave and whose coalescence phase and arrival
time differ by ϕc and tc is given by

Qðϕc; tcÞ ¼ ReheiðΔϕwave−2πftc−ϕcÞi; ð22Þ

where angle brackets denote the SNR-weighted average

hXi ¼
�Z

df
dρ2

df
X

��Z
df

dρ2

df

�−1
: ð23Þ

If the source and template have the same amplitude [or
equivalently the same squared SNR per unit frequency
dρ2=df (7)], their overlap will be given by

O ¼ maxtc;ϕc
Qðtc;ϕcÞ: ð24Þ

If this overlap is large, as is the case between the best
matching pairs of resonant binaries, we can Taylor expand
the argument of the exponential in Eq. (22) and keep only
the lowest-order real terms:

O≃max
ϕctc

��
1 −

1

2
ðΔϕwave − 2πftc − ϕcÞ2

��
: ð25Þ

This expansion allows us to analytically determine the
values of ϕc and tc that maximize O by setting ∂Q=∂ϕc ¼∂Q=∂tc ¼ 0. Doing so and substituting the resulting values
back into Eq. (25), we find

O≃ 1 −
1

2
ϕ2
rms; ð26Þ

where6

ϕ2
rms ¼ hΔϕwave 2i − hΔϕwavei2

−
ðhfΔϕwavei − hfihΔϕwaveiÞ2

hf2i − hfi2 : ð27Þ

Our second prediction for the template that maximizes
the overlap with a source in the opposite family is therefore
the template that minimizes ϕ2

rms. Figure 10 shows the
difference in the number of effective cycles jΔN j (21) and
the mean-squared dephasing ϕ2

rms (27) as functions of
ξtemplate for ξsource ¼ −0.5 from both families. The tem-
plates that minimize these two quantities are our two
predictions ξPtemplate for the best match ξBMtemplate to ξsource.
Figure 11 shows the errors of these two predictions as a
function of ξsource; we see that jξBMtemplate − ξPtemplatej≲ 0.05

FIG. 9 (color online). Phasing of best matching BH binaries using the single-spin approximation, for a single source in the ΔΦ ¼ 0°
family (left) and in theΔΦ ¼ 180° family (right). We denote byΔX (left axis in each panel) the difference between the quantity X for the
source and for the best matching template, as a function of the GW frequency f. The solid blue line shows the GW phase offset between
the source and the best matching template computed within the single-spin approximation (15). The dashed red and dot-dashed green
lines show the orbital and the precessional contributions, respectively. The dotted black lines show the source squared SNR per unit
frequency assuming a luminosity distance D ¼ 1 Mpc, as reported on the right axis in each panel.

6Note that, in general, hXi2 ≠ hX2i.
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for most of the parameter space, suggesting that the single-
spin approximation may be accurate enough to assess the
distinguishability of the two resonant families.

C. Can double-spin resonances be distinguished
from single-spin binaries?

The success of the single-spin approximation in the
previous two subsections suggests that the dynamics of
resonant binaries and the resulting GW emission do indeed
resemble those of binaries with a single effective spin,
perhaps related to the spin S0 of Eq. (1) introduced to
parametrize the spin-orbit resonances. The orbital angular
momentum L in resonant binaries undergoes simple
precession about J as in Eq. (10) for systems with a single
spin, so it is reasonable to expect that the dynamics and GW
emission might be qualitatively similar. However, large
effective spins can only be realized in comparable-mass
binaries if both BBHs have large spins. This suggests that at
least those resonant binaries with the largest effective spins
should be distinguishable from single-spin systems.
Further study is required to test the validity of this

conjecture. Double-spin systems have (small) differences in
dynamics and radiation content (i.e., higher harmonics
sourced directly by the spin) compared to truly single-spin
binaries. While we anticipate that both features can be used
to distinguish single-spin binaries from those in spin-orbit
resonances, estimation of the threshold at which these two

families can be systematically distinguished is left to
future work.

D. Searches in higher-dimensional parameter space

Our analysis in this paper has been restricted to GWs
emitted by binaries with comparable masses and maximal
spin magnitudes viewed from a single direction (n̂ ¼ Ĵ).
When viewed from this direction, differences in the GW
signal can be traced to differences in the secular GW phase,
a combination of orbital and precession effects. For fixed
masses and spin magnitudes, the two resonant families
have different secular GW phases for all ξ, ensuring that the
two signals can be distinguished.
True parameter estimation requires a larger model

family, including allowing the masses and spin magnitudes
of resonant binaries to vary. We expect the maximum
overlap between a source in one family and templates in the
opposite family to increase in this expanded model space.
If there are enough parameters to produce fully generic
secular-phase evolution, as suggested by [32], the overlap
will approach unity provided the viewing direction remains
restricted to n̂ ¼ Ĵ.
Fortunately, most binaries will not be viewed from this

privileged direction. The GW signal in a generic direction
n̂ ≠ Ĵ includes distinctive modulations that depend on the
rate ΩL [Eq. (10)] at which L precesses about J and the
opening angle β [Eq. (11)] of this precession cone. These

FIG. 10 (color online). Predictions for the best matching binaries using the single-spin approximation. Solid blue lines show the
overlap between a fixed source (withΔΦ ¼ 0° on the left andΔΦ ¼ 180° on the right) and different templates from the other family. The
dashed red curves show the offset jΔN j of the effective number of cycles (21) between the fixed source and each template. The dash-
dotted green curves show the approximate dephasing ϕ2

rms (27); both jΔN j and ϕ2
rms are shown in arbitrary units. Vertical dotted lines

show the best matching template and the predictions for this template using the criteria min jΔN j and minϕ2
rms described in Sec. IV B.

GEROSA et al. PHYSICAL REVIEW D 89, 124025 (2014)

124025-12



quantities depend on the evolution of the BBH spin
directions throughout the inspiral, and, as we have shown
in Sec. II B, two resonant families have qualitatively
distinct dynamics. We speculate the resulting differences
in the precessional modulations of the GW signal will
break the degeneracies that will no doubt exist in higher-
dimensional model spaces.

V. DISCUSSION

BBH formation remains shrouded in mystery. Such
systems are predicted to be very rare; none have been
observed to date, which is not surprising, given their
minimal electromagnetic signature. BBH mergers are
copious sources of GWs, however, so they should be a
prominent signal for GW detectors, in contrast to electro-
magnetic telescopes. GW detectors can, in principle,
measure all of the intrinsic parameters associated with a
binary if that binary is detected with a sufficient SNR ρ.
Our previous paper [14] established a surprisingly tight
connection between BBH spin orientations and BBH
formation: binaries with an efficient tidal alignment that
undergo a mass-ratio reversal will preferentially be found
in the ΔΦ ¼ 0° family of resonances, those that fail to
undergo such a reversal will preferentially be found in the
ΔΦ ¼ �180° family of resonances, and those without an
efficient tidal alignment are equally likely to be found in
either resonant family. A measurement of the fraction of
BBHs in each resonant family could therefore be used to
distinguish between different astrophysical scenarios of

BBH formation. This paper is the first attempt to assess the
feasibility of such a proposed measurement.
The qualitatively distinct spin orientations in the two

families lead to quantitative differences in the amount
of orbital-plane precession. The greater misalignment
between the orbital angular momentum L and the total
angular momentum J in theΔΦ ¼ 0° family implies greater
precessional modulation of the resulting waveforms, even
under the conservative assumption that binaries are viewed
from a direction n̂ ¼ Ĵ where precessional modulation is
minimized. Precession-induced differences between the
waveforms generated by binaries in the two resonant
families lead to a maximum overlap OmaxðξsourceÞ < 1
between a source with projected effective spin ξsource in
one family and the best matching template ξBMtemplate from the
other family. The slow variation of OmaxðξsourceÞ implies
that this matching is symmetric to better than a part in 103:
the binary from the first family with ξsource is also very
nearly the template that provides the best match when the
binary from the second family with ξBMtemplate is serving as the
source. The resonant family of a binary with ξsource can be
identified when OmaxðξsourceÞ < 1 − ρ−2; this condition
holds for much of our one-parameter space ξsource ∈
½−1;þ1� for ρ≳ 10, a typical SNR expected for the
first GW detections.7

Different astrophysical BBH formation scenarios can be
distinguished if they predict that measurably different
fractions of binaries reside in the portions of parameter
space that can be identified by the criterion above as
belonging to each of the resonant families. This is indeed
the case for the three scenarios described in our
previous paper [14]; if 100 binaries are detected with
ρ≳ 10, ∼15 should be found in the ΔΦ ¼ 0° family in the
reverse-mass-ratio scenario, ∼20 should be found in the
ΔΦ ¼ �180° family in the standard-mass-ratio scenario,
and ∼5 should be found in each family if the tidal
alignment is inefficient. These three scenarios and the
resulting distributions of BBH spin orientations were
constructed long before we calculated our first overlap,
and thus are in no way optimized to maximize the number
of binaries in the identifiable portion of parameter space.
Finally, except for contrived scenarios, BBHs should be
detected frequently [1,8], with a rate of events at SNR > ρ
roughly proportional to ≃Oð1–1000Þ yr−1ð10=ρÞ3 at the
design sensitivity. Extrapolating from our results, only for
pessimistic scenarios do we expect to have too few and too
faint events to distinguish between the RMR and SMR
scenarios.

FIG. 11 (color online). Performance of the two predictors,
min jΔN j and minϕ2

rms. For various sources in both families, we
show the difference between the highest-overlap template ξBMtemplate
and the predicted value ξPtemplate.

7After our study was completed, the authors became aware of a
work by Vitale et al. [40] that performs detailed parameter
estimation on selected generic double-spin binaries. Unfortu-
nately, these authors did not select resonant configurations for
their detailed investigation (even if their injected configurations
are coplanar at f ¼ 100 Hz).
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Our claim that GW detectors can be used to constrain
BBH formation scenarios must remain provisional until
more realistic higher-dimensional model parameter spaces
are considered.8 Our demonstration that the single-spin
approximation describes resonant binaries with reasonable
accuracy may facilitate such a higher-dimensional analysis,
but this remains a subject for future work. Our current study
offers the tantalizing promise that Advanced LIGO/Virgo
may not only discover GWs and test general relativity in the
strong-field regime, but also may revolutionize our under-
standing of astrophysical BBH formation.
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APPENDIX A: IMPLEMENTATION OF BINARY
EVOLUTION AND GW EMISSION

We evolve quasicircular inspiral orbits and generate
the associated PN GW inspiral signal using the
LALSUITE SpinTaylorT4 code, developed by the LIGO
Collaboration [23] based on prior work [24,25]. We adopt
precisely the same signal model used in [31]. The orbital-
phase and frequency evolution include nonspinning cor-
rections to 3.5PN order, spin terms to 2.5PN order, and
precession to 2PN order. The outgoing radiation includes
harmonics up to 1.5PN order. Memory terms are omitted.
Pairs of GW signals are compared using the zero-detuned
high-power noise curve SnðfÞ foreseen for Advanced
LIGO [2,43,44], with a lower cutoff at fmin ¼ 10 Hz.
FFTs are computed with a default sampling rate:
ΔT ¼ 1=4096 s.
Quasicircular spinning BBHs and their associated GW

emission are described by two sets of parameters. Intrinsic
parameters depend on the physical properties of the
source, while extrinsic parameters depend on the location

and orientation of the GW detector. Each of these
parameters must be specified at some point during the
evolution of the binary, i.e. at some reference GW
frequency fref. As already pointed out in [31,35], wave-
forms that have similar phasing at frequencies where the
detector is most sensitive will appear much more similar
to each other than waveforms whose phase is matched
outside the region of peak sensitivity. We therefore specify
all binary parameters (and, in particular, the spin orienta-
tion; see Sec. II A) at fref ¼ 60 Hz, which is near the peak
of the squared SNR per unit frequency dρ2=df for most
of our sources.
Intrinsic parameters include the component masses m1

and m2 and quantities derived from them such as the total
mass M ¼ m1 þm2, the mass ratio q ¼ m2=m1 ≤ 1, the
symmetric mass ratio η ¼ m1m2=M2 ¼ q=ð1þ qÞ2, and
the chirp mass M ¼ η3=5M. The BH spins S1 and S2 are
also intrinsic parameters, with magnitudes given by the
usual dimensionless spins χi ¼ Si=m2

i with 0 ≤ χi ≤ 1 and
orientations described below.
Extrinsic parameters include two angles to define the

source position in the detector’s sky and another two
angles to specify the orientation of the angular momen-
tum L. In the radiation frame (i.e. relative to the emission
direction n̂), these two angles are the inclination cos ι ¼
L̂ · n̂ and a polarization angle ψ describing the direction
of L̂ in the plane of the sky (i.e. perpendicular to n̂). The
luminosity distance d between the binary and the
observer is also an extrinsic parameter, but it only sets
the overall normalization of the SNR ρ and thus cancels
in calculations of the normalized overlapO in Eq. (8). An
orbital phase ϕref at fref ¼ 60 Hz is also required to
generate waveforms, but it similarly cancels in calcula-
tions of the overlap that are maximized over the orbital
phase.9

When specifying initial conditions at fref ¼ 60 Hz,
we work in the radiation frame where the line of sight n̂
lies along the z axis and the orbital angular momentum
L lies in the xz-plane. Our geometry is summarized
in Fig. 1.
By construction, the angular momentum orientation is

fully defined by the angle ι:

L ¼ ηM2

ðπfMÞ1=3 ½sin ιex þ cos ιez�: ðA1Þ

The spin directions Ŝi in this frame are each described by
two angles, (θi;Φi), where θi ¼ arccosðŜi · L̂Þ, and Φi is
defined to be the angle between the projections of Ŝi and ex
on the orbital plane:

8A recent paper [41] has some overlap with our own and
also argues that the two gravitational-wave signals can be
distinguished.

9The orbital phase can be specified at any point. Though the
coalescence phase appears in our definition of the overlap,
maximization over the coalescence phase implies maximization
over ϕref.
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Si ¼ m2
i χi½ðcos ι sin θi cosΦi þ sin ι cos θiÞex

þ ðsin θi sinΦiÞey
þðcos ι cos θi − sin ι sin θi cosΦiÞez�: ðA2Þ

Coplanar configurations correspond to

ΔΦ≡ Φ2 − Φ1 ¼ 0°;�180°: ðA3Þ

The vectors L, Ŝ1, Ŝ2 evolve during the inspiral; binaries
are identified by the values of these parameters at the
reference frequency fref ¼ 60 Hz. We fix the detector
orientation by setting ψ ¼ 0, so that the projection of L̂
in the plane of the sky at fref ¼ 60 Hz is parallel to the
detector’s “x” arm.
To isolate the differences in the waveforms from the two

families of resonant binaries, we fix all the binary param-
eters but the relative spin directions. As stated in the main
text, we focus on BBHs with M ¼ 13.5M⊙, q ¼ 0.8 and
maximal spins (χ1 ¼ χ2 ¼ 1). Furthermore, we fix the line
of sight to be along the total angular momentum, i.e. n̂ ¼ Ĵ
at fref . This choice was made for two reasons. The first is
that it allows us to separate resonant effects from purely
geometrical effects due to the direction of observation. The
second (and perhaps most important in the present context)
is that this particular configuration minimizes precessional
effects that distinguish the two resonant families, and,
therefore, from a GW data analysis point of view, it yields
conservative predictions on the resolvability of resonant
binaries. For coplanar configurations (sinΔΦ ¼ 0), the
choice n̂ ¼ Ĵ corresponds to

cosΦ1 ¼ −sgnðjS1j sin θ1 þ jS2j sin θ2 cosΔΦÞ; ðA4Þ

cos ι ¼ jLj þ jS1j cos θ1 þ jS2j cos θ2
jJj : ðA5Þ

This choice leaves only θ1, θ2, and ΔΦ as freely specifiable
parameters.

APPENDIX B: APPROXIMATE SYMMETRY
OF MAXIMIZED OVERLAPS

Let us consider two different one-parameter families of
waveforms I1 and I2, where the waveforms ~h1ðf; x1Þ and
~h2ðf; x2Þ belonging to these two families are parametrized
by x1 and x2, respectively. In the main body of this paper,
the two families I1 and I2 are the waveforms generated
by binaries in spin-orbit resonances with ΔΦ ¼ 0° and
ΔΦ ¼ �180°. Both families are parametrized by the
projected effective spin ξ [Eq. (2)]. The overlap

Oðx1; x2Þ≡O½ ~h1ðf; x1Þ; ~h2ðf; x2Þ� ðB1Þ

defined by Eq. (8) induces two different mappings
F∶ I1 → I2 and G∶ I2 → I1 between these families.
Fðx1Þ is the member of I2 with the highest overlap with
x1, and, conversely, Gðx2Þ is the member of I1 with the
highest overlap with x2. The two mappings F and G for the
resonant families are shown by the two curves in Fig. 6;
both mappings are one-to-one and monotonically increas-
ing, and Omaxðx1Þ≡O½x1; Fðx1Þ� is a slowly varying
function of x1. In this Appendix, we argue that mappings
satisfying these mild conditions are an approximate period-
2 symmetry (F≃ G−1).
SinceOðx1; x2Þ is slowly varying, we can Taylor expand

about the point [x0; F0 ≡ Fðx0Þ] to find

Oðx1; x2Þ≃Oðx0; F0Þ þ
∂O
∂x1 ðx1 − x0Þ þ

1

2

∂2O
∂x21 ðx1 − x0Þ2

þ ∂2O
∂x1∂x2 ðx1 − x0Þðx2 − F0Þ

þ 1

2

∂2O
∂x22 ðx2 − F0Þ2 þ � � � ; ðB2Þ

where all derivatives are evaluated at the point [x0; F0], and
the ellipsis represents higher-order terms. There is no linear
term proportional to ðx2 − F0Þ in this expansion, because
the mapping F is defined to maximize the overlap as a
function of x2 (∂O=∂x2 ¼ 0). We now wish to find
G0 ≡GðF0Þ, the best match in I1 for F0 ∈ I2. This point
[G0; F0] is found by setting ∂O=∂x1 ¼ 0. Differentiating
the above Taylor expansion of the overlap, we find

∂O
∂x1

����
½G0;F0�

≃ ∂O
∂x1 þ

∂2O
∂x21 ðG0 − x0Þ þ � � � ¼ 0: ðB3Þ

However,

dOmax

dx1
¼ ∂O

∂x1 þ
∂O
∂x2

dF
dx1

¼ ∂O
∂x1 ðB4Þ

since F was constructed such that ∂O=∂x2 ¼ 0 at [x0; F0].
Solving (B3) for G0 and substituting (B4), we find

G0≃x0−
∂O
∂x1

�∂2O
∂x21

�−1
¼ x0−

dOmax

dx1

�∂2O
∂x21

�−1
: ðB5Þ

The color scale in Fig. 6 indicates that jdOmax=dξ1j≲ 0.06,
while the second derivatives at the maxima in Figs. 5
and 10 suggest j∂2O=∂ξ21j≳ 30. Then Eq. (B5) implies
jξ −G½FðξÞ�j≲ 2 × 10−3, which is below our numerical
accuracy. We therefore conclude that the mappings F andG
are indeed inverses of each other at our current level of
approximation.
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