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Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have
been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that
such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that
these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital
angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations
are unstable to precession to large misalignment when the binary separation r is between the values
rud� ¼ ð ffiffiffiffiffi

χ1
p � ffiffiffiffiffiffiffi

qχ2
p Þ4ð1 − qÞ−2M, whereM is the total mass, q≡m2=m1 is the mass ratio, and χ1 (χ2) is

the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin
magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin
and nature of the instability using recently developed analytical techniques to characterize fully generic
spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large
binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave
and electromagnetic signatures of stellar-mass and supermassive binary black holes.

DOI: 10.1103/PhysRevLett.115.141102 PACS numbers: 04.25.dg, 04.70.Bw, 04.30.-w

Introduction.—Black holes (BHs) have been observed
in two distinct regimes: stellar-mass BHs (5M⊙ ≲m≲
100M⊙) accrete from companions in x-ray binaries [1–3],
while supermassive BHs shine as quasars or active galactic
nuclei (AGN) [4,5]. Both types of BHs naturally occur in
binaries: the massive stellar progenitors of stellar-mass BHs
are typically formed in binaries, while supermassive BHs
form binaries following the mergers of their host galaxies
[6]. Gravitational radiation circularizes the orbits of these
binaries [7] and causes them to inspiral and eventually
merge, making them promising sources of gravitational
waves (GWs) for current and future GW detectors [8–15].
The spins of these binary BHs need not be aligned with
their orbital angular momentum: stellar-mass BHs may
recoil during asymmetric collapses tilting their spins with
respect to the orbital plane [16–18], while the initial orbital
plane of supermassive BH binaries reflects that of their host
galaxies and is thus independent of their spin. Gravitational
effects alone will not align the BH spins with the orbital
angular momentum [19,20], but astrophysical mechanisms
exist that drive the BH spins towards alignment in both
regimes. The first BH to collapse in stellar-mass BH
binaries may accrete in a disk from its as yet uncollapsed
companion, while both members of a supermassive BH

binary may accrete from a common circumbinary disk.
Warps in these accretion disks can align the BH spins with
the orbital angular momentum [21–23], but if the initial
misalignment between the BH spin and accretion disk is
greater than 90°, the BH may instead be driven into
antialignment [24].
Misaligned spins cause the orbital angular momentum to

precess [25–27], modulating the emitted GWs [28]. Spin
misalignment is both a blessing and a curse for GW data
analysis: it increases the parameter space of templates
needed to detect GWs via matched filtering but also breaks
degeneracies between estimated parameters in detected
events [29]. Misaligned spins at merger can generate
large gravitational recoils [30–32], ejecting supermassive
BHs from their host galaxies. Spin precession may also be
responsible for the observed X-shaped morphology of
AGN radio lobes [33,34]. Given the importance of spin
misalignment, it is worth investigating the robustness of
aligned spin configurations. In the general case that the
BHs have unequal masses, there are four distinct (anti-)
aligned configurations, which we refer to as up-up,
up-down, down-up, and down-down. The direction before
(after) the hyphen describes the more (less) massive BH
and up (down) implies (anti-)alignment of the spin with the
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orbital angular momentum. By symmetry, all four con-
figurations are equilibrium solutions to the orbit-averaged
spin-precession equations [27], but are these solutions
stable? To answer this question, we investigate how the
configurations respond to perturbations of the spin direc-
tions using our recently developed approach for studying
generically precessing systems [35,36]. As we will dem-
onstrate below, the up-down configuration is unstable
for certain choices of binary parameters, with significant
consequences for GW data analysis and astrophysics.
Generic spin precession.—Here we briefly summarize

the approach to spin precession described in detail in
Refs. [35,36] using units where G ¼ c ¼ 1. Binary BHs
with total massM ¼ m1 þm2, mass ratio q ¼ m2=m1 ≤ 1,
symmetric mass ratio η ¼ q=ð1þ qÞ2, and spins
Si ¼ χim2

i Ŝi evolve on three distinct time scales: the
orbital time torb ¼ ðr3=MÞ1=2 on which their separation r
changes direction, the precession time tpre ¼ ðtorb=ηÞðr=MÞ
on which the spins and orbital angular momentum L
change direction, and the radiation-reaction time
tRR ¼ ðtorb=ηÞðr=MÞ5=2 on which the magnitudes r and
L decrease due to GW emission. The relative orientations
of the spins are often specified by the two angles
cos θi ¼ Ŝi · L̂ and the angle ΔΦ between the projections
of the two spins onto the orbital plane, all of which vary on
tpre. The spin orientations can equivalently be specified by
the magnitudes of the total spin S ¼ S1 þ S2, the total
angular momentum J ¼ Lþ S, and the projected effective
spin [37,38] ξ≡M−2½ð1þ qÞS1 þ ð1þ q−1ÞS2� · L̂. This
specification has the advantage that only S evolves on tpre,
while J evolves on tRR and ξ is conserved throughout the
post-Newtonian (PN) stage of the inspiral (r≳ 10M) by
orbit-averaged 2PN spin precession and 2.5PN radiation
reaction [39]. On the precession time, the spin magnitude S
simply oscillates back and forth between the two roots
S� of the equation ξ ¼ ξ�ðSÞ, where

ξ�ðSÞ¼fðJ2−L2−S2Þ½S2ð1þqÞ2−ðS21−S22Þð1−q2Þ�
�ð1−q2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½J2−ðL−SÞ2�½ðLþSÞ2−J2�

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½S2−ðS1−S2Þ2�½ðS1þS2Þ2−S2�

q
g=ð4qM2S2LÞ;

ð1Þ

are the effective potentials for BH spin precession. Note
that S is the only quantity on the right-hand side of Eq. (1)
changing on tpre; in the absence of radiation reaction, the
spins return to their initial relative orientation after a time
τðL; J; ξÞ during whichL, S1, and S2 precess about J by an
angle αðL; J; ξÞ. The two potentials ξ�ðSÞ form a closed
loop in the Sξ plane, implying that the two roots S�
coincide at the extrema ξmin;maxðL; JÞ of the loop. At these
extrema, also known as spin-orbit resonances [19], S does

not oscillate and L, S1, and S2 all remain coplanar on the
precession time.
Stability of aligned configurations.—We begin with

the up-up and down-down configurations, for which
J ¼ jL� ðS1 þ S2Þj, respectively. According to Eq. (1),
the effective-potential loop reduces to a single point in
this limit which is necessarily an extremum: S cannot
oscillate consistent with conservation of J and ξ. Now
consider the down-up (up-down) configurations for which
J ¼ jL − S1 þ S2j (J ¼ jLþ S1 − S2j). The effective-
potential loop ξ�ðSÞ encloses a nonzero area for these
values of J, implying that oscillations in S are possible,
except at the extrema ξmin;max. Since the spins are anti-
aligned with each other in both configurations, S is
minimized at Smin ¼ jS1 − S2j and both configurations
sit on the leftmost point of the loop, where ξþðSÞ and
ξ−ðSÞ coincide. Whether this point is also an extremum
ξmin;max depends on the slopes of these two functions at that
point. Both slopes are always negative for the down-up
configuration, implying that it is a maximum ξmax and thus
a spin-orbit resonance like the up-up and down-down
configurations. At large binary separations r, the slopes
of ξ�ðSÞ are both positive for the up-down configuration,
making it a minimum ξmin. However, below rudþ given by

rud� ¼ ð ffiffiffiffiffi
χ1

p � ffiffiffiffiffiffiffi
qχ2

p Þ4
ð1 − qÞ2 M; ð2Þ

the slope of ξ−ðSÞ becomes negative and up-down is no
longer an extremum of the effective-potential loop, as seen
in Fig. 1. At separations below rud−, the slope of ξþðSÞ also
becomes negative and up-down is again an extremum,
this time a maximum ξmax. Misaligned BHs with the same
values of J and ξ as the up-down configuration but
S > Smin exist in the intermediate range rud− < r < rudþ,
as shown by the dashed red line. These misaligned BHs
have an infinite precessional period τ: they exponentially
approach the up-down configuration on the precession time
tpre but never reach it.
The evolving relationship between the up-down con-

figuration and the spin-orbit resonances parameterized
by the angles θi is seen in Fig. 2. The solid curves
show the ΔΦ ¼ 0 resonances [ξminðJÞ] for separations
10M ≤ r ≤ 3000M, while the dashed curves show the
ΔΦ ¼ π resonances [ξmaxðJÞ]. The up-down configuration
is located in the bottom right corner of this figure. For
r > rudþ, the up-down configuration lies on the solid
curves and belongs to the ΔΦ ¼ 0 family, but for smaller
separations these curves detach from the bottom right
corner, and thus up-down is no longer a minimum of
ξ�ðSÞ. The dashed curves indicating the ΔΦ ¼ π family
migrate to the right with decreasing separation and reach
the bottom right corner, making the up-down configuration
a maximum of ξ�ðSÞ, for r < rud−. The up-up and down-
down configurations (top right and bottom left corners)
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belong to both resonant families, reflecting the degeneracy
of the effective-potential loop as a single point that is both
minimum and maximum. The down-up configuration (top
left) always belongs to the ΔΦ ¼ π family and is thus a
maximum ξmax.
The stability of a system is determined by its response to

perturbations, in this case to the spin angles (δθ1; δθ2; δΔΦ)
or equivalently to the angular momenta (δS; δJ; δξ). After
such a perturbation, configurations that are extrema of
ξ�ðSÞ (all aligned configurations except up-down for
rud− < r < rudþ) will undergo oscillations in S (and thus
the three spin angles) that are linear in the perturbation
amplitude, and have a period τ that is independent of this
amplitude. This is a stable response equivalent to that of a
simple harmonic oscillator. The response of the up-down
configuration for rud− < r < rudþ is very different, as seen
in the middle panels of Fig. 1: S oscillates between the
turning points S� independent of the perturbation ampli-
tude, but the period τ of these oscillations—as predicted
by Eq. (27) of Ref. [36]—diverges logarithmically as this
amplitude approaches zero. This is an unstable response:
the time it takes for a zero-energy particle with dx=dt < 0
to travel from finite x0 to δx in the unstable potential
V ¼ − 1

2
kx2 similarly diverges logarithmically with δx.

A perturbative analysis of nearly aligned configurations
[41] can identify that perturbations can oscillate at
complex frequencies (indicating an instability) in the same
region rud− < r < rudþ found here, but such analysis
cannot predict the amplitude of these perturbations or their
response to precession-averaged radiation reaction.
Radiation reaction.—We have shown that for

rud− < r < rudþ, spin configurations with J and ξ infini-
tesimally close to the up-down configuration can experi-
ence finite-amplitude oscillations in S and the angles θ1, θ2,

and ΔΦ. We now investigate how these configurations
evolve on the longer radiation-reaction time tRR. Since ξ is
conserved throughout the inspiral and L monotonically
decreases at 2.5PN order, the only challenge is to evolve J.
In Refs. [35,36] we derived a precession-averaged expres-
sion for dJ=dL, a contour plot of which is shown in Fig. 3.
The shaded region shows the allowed values of J and ξ for
this mass ratio, spin magnitudes, and binary separation. The
spin-orbit resonances, being extrema of ξ�ðSÞ, constitute

FIG. 2 (color online). The angles cos θi ¼ Ŝi · L̂ for spin-orbit
resonances [extrema of ξ�ðSÞ] for BHs with q ¼ 0.95, χ1 ¼ 0.3,
and χ2 ¼ 1. The solid (dashed) curves indicate the ΔΦ ¼ 0ðπÞ
family and the five curves for each family correspond to binary
separations r=M ¼ 3000; 720; 170; 40, and 10. The up-down
configuration (bottom right corner) belongs to the ΔΦ ¼ 0 family
for r> rudþ≃2149M, to theΔΦ ¼ π family for r < rud− ≃ 13M,
and is unstable for intermediate values rud− < r < rudþ. An ani-
mated version of this figure is available online at Ref. [40].

FIG. 1 (color online). Effective-potential loops ξ�ðSÞ for binary BHs with mass ratio q ¼ 0.9, dimensionless spins χ1 ¼ 1, χ2 ¼ 0.14,
and total angular momentum J ¼ jLþ S1 − S2j, corresponding to the up-down configuration. For binary separations r > rudþ ≃ 337M
(left panel), the up-down configuration at Smin marked by a red circle is also a minimum (marked by the lower triangle). At intermediate
separations rudþ > r > rud− ≃ 17M (middle panels), misaligned binaries with the same value of the conserved ξ exist along the dashed
red line. Perturbations δJ, δξ will cause S to oscillate between the points S� where this line intersects the loop, making the up-down
configuration unstable. For r < rud− (right panel), the up-down configuration is again a stable extremum, now a maximum (marked by
the upper triangle). An animated version of this figure is available online at Ref. [40].
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the boundaries of this region. The up-up, down-down, and
down-up configurations, being spin-orbit resonances, lie
on these boundaries. At rudþ, the up-down configuration
detaches from the right boundary of this region [it stops
being a minimum of ξ�ðSÞ] and begins to migrate leftwards
through the allowed region, eventually reattaching to the
left boundary at rud− [where it becomes a maximum of
ξ�ðSÞ]. This is just an alternative visualization of the four
panels of Fig. 1.
For all four aligned configurations, J and L are aligned

so dJ=dL ¼ 1 is maximized. However, the nature of
these maxima is very different for the stable and unstable
configurations. For the stable configurations, the partial
derivatives of dJ=dL with respect to J and ξ remain finite,
implying that neighboring points separated by (δJ; δξ)
slowly drift away at a rate that scales linearly with these
infinitesimal quantities. The unstable configuration how-
ever is a cusp where these partial derivatives approach�∞,
depending on whether this point in the Jξ plane is appro-
ached from below or above. Neighboring points (experi-
encing large-amplitude oscillations in S, as seen in the
middle panels of Fig. 1) rapidly deviate from the up-down
configuration as it sweeps across the allowed region. This
is an essential point: even if the stability of the up-down
configuration is restored in the PN regime (rud− > 10M),
radiation reaction during the inspiral between rud� will
drive BHs initially in this configuration to large misalign-
ments prior to merger. The migration of the up-down
configuration through the Jξ plane also reconciles the
instability with the empirical result that isotropic spin

distributions remain isotropic during the inspiral [19,20]:
although nearby binaries may indeed be left behind, the
unstable configuration will always encounter a fresh
supply, until it is restored to stability at the left edge of
the allowed region.
GW astronomy.—Binaries with separations in the

unstable region between rud� emit GWs with freque-
ncies in the range fud�≃6.4×104HzðM=M⊙Þ−1ð1−qÞ3=
ð ffiffiffiffiffi

χ1
p � ffiffiffiffiffiffiffi

qχ2
p Þ6, within or below the sensitivity band of

existing and planned GW detectors [8–15]. In Fig. 4, we
show the waveform of one such binary initially near the
up-down configuration before entering the unstable region.
Once the binary crosses the threshold at rudþ, its waveform
develops large-amplitude precessional modulation on the
precession time tpre. The amplitude of this modulation is
independent of the initial deviation from the up-down
configuration: it is set by the finite-amplitude oscillations
in S seen in the middle panels of Fig. 1. Modulation occurs
on two distinct time scales associated with the precession
of L in a frame aligned with J. In this frame the direction
of L is specified by the polar angle cos θL ¼ L̂ · Ĵ and the
azimuthal angle ΦL in the plane perpendicular to J. The
longer of these time scales is τ (the period of oscillations in
θL), while the shorter time scale is ð2π=αÞτ (the precession-
averaged time for ΦL to change by 2π) [35,36]. Measuring
this modulation could yield insights into the astrophysical
origins of binary BHs [18,36]. Spin precession could
also affect the electromagnetic counterparts to BH mergers
[42,43] and the probability of ejecting a supermassive BH

FIG. 3 (color online). Precession-averaged radiation reaction
dJ=dL as a function of J and ξ for binaries with q ¼ 0.8,
χ1 ¼ χ2 ¼ 1, and separation r ¼ 10M in the unstable region
rud− < r < rudþ. Spin-orbit resonances including the up-up,
down-down, and down-up configurations are extrema of ξ�ðSÞ
and constitute the boundary of the allowed region. All four
aligned configurations are maxima where dJ=dL ¼ 1, but the
unstable up-down configuration (shown in the inset) is a cusp. An
animated version of this figure is available online at Ref. [40].

FIG. 4 (color online). Normalized GW Fourier amplitude ~h
(cf. Ref. [41]) as a function of orbital frequency f and binary
separation r during the inspiral of BHs with q ¼ 0.75 and
χ1 ¼ χ2 ¼ 0.9. At the initial separation r ¼ 1000M, the spins
are nearly in the up-down configuration, but this configuration
becomes unstable below rudþ ≃ 157M, after which large pre-
cession-induced modulations occur at frequencies accessible to
GW detectors.
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from its host galaxy [30–32,44]. We look forward to
confronting these predictions with observations in the
dawning age of GW astronomy.
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