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Abstract. This work presents successful infiltration of Ni-YSZ-based catalysts for dry reforming 

of biogas over a temperature range of 600–800°C. Ni catalysts over YSZ support are commonly 

used as solid oxide fuel cell (SOFC) anode material to catalyse the fuel, normally hydrogen, in 

electrochemical oxidation reaction to generate electricity. The objective of this work is to find 

suitable SOFC anode catalyst materials to enable the SOFCs to operate on biogas as a renewable 

and low cost fuel. There are challenges when biogas is used as fuel; biogas dry reforming is slow 

and deleterious carbon deposition is unavoidable. The slow electrochemical reaction leads to low 

SOFC performance. While accumulation of carbon deposits may reduce the catalytic activity, 

decrease the SOFC performance and can lead to a complete failure of the SOFC operation. In 

this work, tin salt was used as a dopant in careful infiltration of Ni-YSZ catalysts. 

Characterisations of the catalysts were performed using SEM, XRF and XPS. Dry reforming 

reactions were carried out in a quartz tube reactor attached to a quadrupole mass spectrometer to 

monitor the product gases. Various compositions of CO2:CH4 mixtures were used to simulate 

biogas. It was observed that at small quantities of less than 1 weight % Sn/Ni loadings, dry 

reforming of biogas produced much higher level of the desired CO and H2 gas products compared 

to that obtained over non-infiltrated NiYSZ catalyst. The developed Sn-Ni-YSZ catalysts were 

able to operate continuously for more than 48 hours without noticeable performance degradation. 

More work is still in progress; however, this work so far concludes that Sn-doped Ni-YSZ 

catalysts have improved dry reforming of biogas at SOFC operating temperatures and so 

promised successful operations of SOFCs using biogas, a renewable fuel source, to produce 

sustainable electricity with high efficiency. 

Keywords: dry reforming; biogas; SOFC anode infiltration; carbon deposition; NiYSZ 

1. Introduction 

The Fuel cell technology is an attractive alternative to conventional methods of energy generation. 

Several of the attractive points of fuel cell technology are the very low or almost ‘zero’ level of pollutants 

such as NOx, SOx, and particle emissions, potential high efficiency operation, and the highly modular 

nature, which allows for distributed power generation. The solid oxide fuel cell (SOFC), which operates 

at 600-800°C, is one of several types of fuel cell which offers promising clean and efficient energy 

production with added benefit of being fuel flexible. The high operating temperature of SOFC allows 

for direct use of methane and hydrocarbons through internal reforming and is beneficial for recovering 

heat as a by-product for operating as a combined heat and power (CHP) generator [1-4]. The benefit of 

SOFC in being capable of utilising hydrocarbons as fuel is added especially when the hydrocarbons 

mailto:lina.troskialina@polban.ac.id,
mailto:r.steinberger-wilckens@bham.ac.uk
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come from renewable sources such as biogas. Modelling and evaluation of the economic value of 

operating an SOFC system in biogas fuel has shown promising results [5, 6]. Biogas is a methane rich 

gas phase product of anaerobic digestion of hydrocarbons and protein containing wastes. Biogas 

contains mainly CH4 and CO2 in various compositions plus other impurities depending on the source of 

the biomass. 

The challenge for SOFC operation with direct biogas fuel is the low power produced originating 

from the lower heating value of the biogas compared to that of natural gas and the high possibility of 

carbon deposition on the anode catalyst surface which always accompanies hydrocarbon reforming and 

can lead to rapid SOFC performance degradation. Generally, carbon deposition is avoided by adding 

steam to the fuel feed with a ratio of 2 mole water to 1 mole carbon [7, 8]. However, this provision of 

steam in the feed supply adds complexity to the SOFC system and reduces overall efficiency. 

Dry reforming is an endothermic catalytic reaction of methane and carbon dioxide, which produces 

CO and H2. The reaction takes place above 400oC and can be represented by the overall reaction (1): 

CH4 + CO2  2CO + 2H2 Kp800°C=300 (1) 

Two major steps are involved in reaction 1, methane decomposition (reaction 2) which produces 

carbon and hydrogen, followed by carbon oxidation by CO2 (reaction 3) to form CO. Therefore, 

unreacted CH4 and CO2 plus CO, C, H2 and H2O as products are present in the system. In a reactor with 

the presence of CH4, CO2, CO, C, H2 and H2O, carbon accumulation is possible especially when carbon-

forming reactions occur faster than carbon removal (or oxidation) reactions. Other possible reactions in 

the system are CO disproportionation and CO reduction by hydrogen as outlined in reactions 4 and 5 

below. According to their low values of Kp, these two reactions are less likely to take place under normal 

SOFC operating conditions compared to the first three reactions. Another reaction, which may take place 

in an SOFC anode with hydrocarbon fuel, is water gas shift (WGS) reaction (reaction 6). This reaction 

produces H2 from CO interaction with steam at high temperature. 

CH4  C(adsorbed) + 4H(adsorbed) Kp800°C=21.20 (2) 

C(adsorbed) + CO2(absorbed)  2CO(adsorbed) Kp800°C=7.90 (3) 

2CO(adsorbed)  C(adsorbed) + CO2(adsorbed) Kp800°C=0.13 (4) 

CO + H2  C(adsorbed) + H2O(adsorbed) Kp800°C=0.13 (5) 

CO + H2O  CO2 + H2 Kp800°C =1.0 (6) 

Since all of the above reactions are reversible, it is possible to remove carbon in this system by 

promoting the reverse of carbon deposition reactions. Hence, provision of excess steam to the gas feed 

stream is needed during steam reforming to facilitate carbon removal through the reverse of reaction 5. 

Similarly, excess CO2 is needed in dry reforming to facilitate reaction 3, which is the reverse of reaction 

4. However, in practice, provision of excess H2O or CO2 complicates the SOFC system by adding a 

component to the fuel supply sub-system and leads to a consequence of lower electrical and overall 

power output due to dilution of the fuel gas stream. 

The quantity of accumulated carbon is affected not only by the gas composition in the system, which 

is defined by the equilibrium constants, but also by the rate of carbon deposition and carbon removal, 

which are affected by the catalytic activity of the anode surface of the given system. Therefore, it is of 

paramount importance that the anode in an SOFC is designed to facilitate the desired reactions and to 

suppress or inhibit the undesired reactions. It follows that carbon accumulation can be reduced by not 

only adding excess H2O or CO2, but also by modifying anode catalytic properties. Various attempts have 

been made and successes have been achieved in modifying SOFC anode materials to enhance 

hydrocarbon reforming and electrochemical oxidations of the reforming products, and to improve the 

resistance to carbon deposition [9-12]. Hence, formulating and modifying the composition of anode 

material in SOFC can play an important role in minimising carbon deposition. 
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Despite the high activity of nickel towards carbon formation, to date NiYSZ cermets are still the 

most commonly used SOFC anodes. Other anode types, such as Cu-based anodes or mixed ionic-

electronic conductive oxides, have shown better performance towards minimising carbon formation; 

however, they still suffer from several drawbacks such as low catalytic activity towards electrochemical 

oxidation and hydrocarbon reforming, low mechanical strength, or incompatible thermal coefficient of 

expansion with other SOFC components. 

Infiltrating NiYSZ anodes with metals such as Ce, Mg, Mo, Sn and Rh have been reported as one of 

the methods attempted. Especially with Sn infiltration, work based on experiments and density 

functional theory (DFT) calculations have shown that the presence of approximately 1.0 wt% or less 

Sn/Ni in the form of Sn/Ni alloys showed significant effects on reducing carbon deposition during steam 

reforming [9-11]. Further investigations suggested that compared to NiYSZ, Sn/NiYSZ was reported to 

have a lower tendency to form C-C bonding [12-14] which led to Sn/NiYSZ catalysts demonstrating 

lower carbon deposition. The success of using Sn as a dopant for Ni-based catalysts in reducing carbon 

deposition during steam reforming operations such as reported by Trimm [9], Kan et al. [11], Kan and 

Lee [15], Nikolla et al. [10], Nikolla et al. [12], Nikolla et al. [13], Nikolla et al. [14] and Nikolla et al. 

[16] led to this investigation of using Sn as a dopant for direct-biogas SOFC operations in dry reforming 

mode as presented in this paper. Recent reports show that SnNi alloys demonstrated excellent 

performance on SOFC operating in biogas. Sn-infiltration on NiO powders for NiGDC anode and on 

NiYSZ nanoparticles for SOFC anode have been used by Myung et al. [17] and Hua et al. [18] 

respectively. These investigations support the proposition that high efficiency SOFC operation in pure 

biogas is promising. 

As can be predicted from the C-H-O ternary diagram in Fig. 1 [19, 20], to prevent carbon deposition 

an SOFC operating with dry reforming thermodynamically needs a higher excess CO2 or higher molar 

ratio of CO2:CH4 in the system compared to the need for excess H2O in steam reforming operation. This 

paper presents results of investigating the ability of SOFC anode operating in biogas under dry reforming 

mode (without the addition of steam) with a low carbon dioxide to methane ratio of 1:2 CO2:CH4. This 

ratio represents a common biogas composition. This ratio also represents a biogas composition with 

high risk of carbon deposition. 

 

Figure 1. C-H-O ternary diagram at different operating 

temperature. 
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2. Materials and Methods 

Commercially available Nickel Yttria Stabilized Zirconia (NiYSZ)-based pieces of planar SOFC anodes 

(NIMTE–Ningbo Institute of Materials and Energy Technology-China) with YSZ electrolyte layer 

(TOSOH TZ-8YSZ) were used as the catalyst material. The catalyst, weighing 500–785 mg for each 

charge, were placed in a quartz tube reactor. The reactor inlet is fed with simulated biogas at a certain 

ratio of CO2:CH4 with helium gas added as inert and partial pressure reference to enable calculation of 

other gases partial pressures. The SOFC anode outlet gas was fed to a Cirrus quadrupole mass 

spectrometer to allow for continuous monitoring of the anode gas composition. 

Performance of the non-infiltrated and infiltrated catalysts in dry reforming reaction was observed. 

To prepare the Sn-dopant solution, SnCl2 2H2O (Fisher Scientific, UK) was used as the Sn precursor 

and was dissolved in 95% ethanol. Sn-anode infiltration was carried out on sintered anode surface using 

a simple pipette drop method. Each drops of dopant solution contains 1 mg of Sn. The infiltrated anode 

discs were then dried and calcined. Before being used as the dry reforming catalyst, the discs were 

crushed into small pieces of 2-4 mm diameter. Gravimetric analysis and SOFC anode surface 

characterisations using XRF, SEM/EDX, XRD and XPS were used to confirm the presence of Sn in the 

Sn-infiltrated SOFC anodes. 

3. Results and Discussion 

This section presents results of physical properties characterisations of the catalysts using SEM/EDX, 

XRF and XPS analysis and of observing the activity of NiYSZ-based SOFC anode pieces to catalyse 

dry reforming of biogas. The catalytic activity of NiYSZ was measured in terms of the amount of H2 

and CO gases produced and percentage conversion of CH4 and CO2. The effects of operating 

temperature and CO2:CH4 ratio in the feed composition on the H2 and CO gases produced were observed. 

3.1. Gravimetric analyses, SEM/EDX, XRF and XPS 

3.1.1. Gravimetric analysis. As represented in Fig. 2 gravimetric analysis showed that a linier 

relationship is obtained between the number of drops of Sn-salt solution and the anode weight gain. For 

each number of Sn-salt solution 6 sample repeats were used. 

 

Figure 2. Results of gravimetric analyses of SOFC anode weight 

gain at different Sn loads. 

3.1.2. SEM and EDX. SEM/EDX were used to characterise the cell microstructure. Detailed micrographs 

of the porous anode, dense electrolyte and porous cathode are described in [21]. The micrographs show 

that on the anode surface Zr-rich part forms more continuous part compared to Ni-rich part. They also 
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showed that anode pores are of less than 1µm diameter. The EDX map confirms that Sn is present and 

well distributed over the Ni particle sites, and much less on Zr-rich sites. 

3.1.3. XPS and XRF. An SOFC anode disk which had been infiltrated with 28 drops of Sn-salt was used 

as the sample for XRF analysis. The results are presented in table 1 and Fig. 3. The spectra in Fig. 3 

show Ni, Zr, Y and Sn peaks of principal line KA1 accompanied by KB1. Although rhodium is not on 

the list of the SOFC anode component, it appears in these spectra since the XRF detector we used 

contained Rh. 

Table 1. Chemical composition of 28D-Sn-infiltrated SOFC 

anode obtained from XRF. 

Atomic symbol Atomic Number Weight % Atomic 

Ni 28 48.07  

Zr 40 46.48  

Sn 50 4.80  

Y 39 0.65  

Atomic ratio Ni:Sn   20.3 : 1 

Atomic % Sn   4.71 

Weight % of Sn/Ni  9.99  

 

Figure 3. X-ray fluorescence spectra of 28D-Sn-infiltrated anode. 

Table 2 shows the chemical composition obtained from XPS of the 28-drops 28D-Sn-infiltrated 

SOFC anode. It is shown that as high as 59.72 weight % Sn/Ni is identified by XPS. Since XPS analysis 

measures only a sample surface layer down to 20 nanometres deep, this high value of 59.72 weight % 

Sn/Ni indicates that the Sn content is highest on the anode surface. This is made clear when the value is 

compared to 9.99 weight % obtained from XRF and 4.77% obtained from gravimetric analysis which 

represent the Sn content in the bulk anode. The finding is in accordance with the observation presented 

by Nikolla et al. [13], Nikolla et al. [14]. 
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Table 2. Chemical composition of 28D-Sn-infiltrated NiYSZ anode surface 

obtained from XPS. 

Ni 2p % O 1s % Sn 3d % Zr 3d % At Ni:Sn At % Sn Wt % Sn/Ni 

15.34 38.38 5.13 5.02 2.99 : 1 25 67.61 

3.2. The effects of operating temperature 

Fig. 4a and 4b show mass spectra of methane dry reforming product gases at different operating 

temperatures for non-infiltrated and Sn-infiltrated catalysts respectively. The biogas feed composition 

was 1:2:2 volume ratio of CO2: CH4: He which was the composition intended to be used for the SOFC 

operation. The spectra in Fig. 4a show almost equimolar H2 and CO produced at 800°C but slightly 

higher CO produced at 750°C and 700°C. A similar trend is observed in Fig. 4a and 4b; that is the 

unreacted CO2 and CH4 are lowest at 800°C, and that the unreacted gas feed gradually increased and 

showed the highest values at 650°C. Both Fig. 4a and 4b also show that a decrease of 50°C resulted in 

the decrease of H2 and CO produced by approximately 50%. The lower the temperature the less CO and 

H2 were produced. At 650°C very little (less than 3%) CO and H2 were produced which means that the 

activity of this NiYSZ catalyst at 650°C is very low hence this may not provide sufficient CO and H2 

for SOFC operation. At 750°C, the planned temperature to operate the fuel cell, approximately 5 vol.% 

H2 and 7 vol.% CO are produced. These results show that at 750°C H2 and CO are present as the dry 

reforming products and thus available for electrochemical reactions under fuel cell operation. It is 

interesting to compare the level of H2 and CO partial pressures represented by the blue and yellow 

coloured curves in Fig. 4a and 4b. The results of dry reforming over Sn-infiltrated NiYSZ shows twice 

or higher H2 and CO produced than that of non-infiltrated NiYSZ. This shows that Sn-infiltration 

improves dry reforming of CH4 and increases the H2 and CO production. Even at 650°C more CO and 

H2 (between 5-7%) were produced over Sn-infiltrated catalyst than that over non-infiltrated catalyst. 

 

Figure 4a. Mass spectra of outlet gases from dry reforming over non-

infiltrated NiYSZ anode at 650-800°C. 
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Figure 4b. Mass spectra of outlet gases during dry reforming over 

(6-drops) Sn-infiltrated NiYSZ anode at 650-800°C. 

Fig. 5 shows % conversion of CO2 and CH4over non-infiltrated catalyst at different temperatures 

while Fig. 6 shows partial pressures of CO and H2 produced. Fig. 5 and 6 clearly show that dry reforming 

of CH4 is significantly affected by temperature; increasing temperature from 750°C to 800°C resulted 

in two folds of increase of CO2 and CH4 conversion and twice the amount of CO and H2 produced. The 

very low CO and H2 produced at 700°C and especially at 650°C indicate dry reforming on this NiYSZ 

anode at 700°C and 650°C are not efficient. This finding is an important input in selecting suitable SOFC 

operating temperature for direct biogas reforming. In Fig. 5 it is shown that CO2 conversion was higher 

than CH4 conversion. At 800°C, CO2 conversion was 40% while CH4 conversion was only 20%. This 

phenomenon is in agreement with that observed by Stagg et al. [22]. Stagg and co-workers reported that 

ZrO2 as a Pt catalyst support for dry reforming of CH4 plays a good role in promoting CO2 dissociation, 

compared to SiO2. In this work the ZrO2 in NiYSZ may have acted as a promoter for CO2 dissociation. 

 

Figure 5. Percent conversion of CO2 and CH4 over non-infiltrated 

NiYSZ anode at 650-800°C. 
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Figure 6. Partial pressure of CO and H2 produced over non-infiltrated 

NiYSZ anode at 650-800°C. 

3.3. The effects of different feed composition 

Fig. 7 shows effect of different feed compositions on the outlet gas composition. The spectra were 

obtained from 500 mg Sn-infiltrated anode. The total volume of gas feed was kept at 50 ml min-1 with 

constant 5 ml min-1 helium flow and varied flow rates of CO2 and CH4. Fig. 7 shows that the highest 

level of H2 and CO produced is at 1:1 ratio of CO2:CH4 feed which is expected from stoichiometry, but 

this is also in agreement with literature [22]. Fig. 7 also shows that at CO2:CH4 =1:2 H2 produced is 

slightly higher than that from CO2:CH4=1:1, and CO produced is only slightly lower. This is a good 

indication for the planned SOFC operation; in that the SOFC is feasible to operate at 750°C and with 

CO2:CH4=1:2 to produce sufficient amount of CO and H2 for electrochemical oxidation. 

 

Figure 7. Mass spectra of outlet gases during dry reforming over (4-drops) 

Sn-infiltrated NiYSZ anode at 800°C and varied CO2:CH4 ratio. 

Fig. 8 and 9 are the same experimental results with those in Fig. 7 but presented in bar charts to make 

comparisons of all gas partial pressures easier. Fig. 8 and 9 also show that it is the amount of CO 

produced which linearly corresponds to the different CO2:CH4 ratio in the feed; while H2 produced was 

not linearly affected by CO2:CH4 ratio. The amount of CO produced decreases as the CO2 concentration 

in the feed was decreased. This can be explained by the general understanding that dry reforming 

reaction, represented by equation 1, occurs via at least two reactions namely methane cracking, equation 
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2 which produces C and H2, and oxidation of C by CO2 to form CO which is also known as reverse 

Boudouard reaction (equation 3). Considering these three reactions it is clear that in a closed system, 

the amount of CO produced is directly affected by the available CO2. 

 

Figure 8. Dry reforming product gas fraction over 4-drops Sn-

infiltrated NiYSZ anode at 800°C at varied CO2:CH4 ratio. 

 

Figure 9. Ratio of CO:H2 over 4-drops Sn-infiltrated NiYSZ anode 

at 800°C and varied CO2:CH4 ratio. 

For an equilibrium dry reforming reaction without steam, the ratio of CO to H2 present in the product 

stream is expected to be 1. Fig. 8 and 9 show that the ratio of CO:H2 produced being less than 1 and the 

less CO2 in the feed results in the less CO produced; this may indicate that carbon is formed during the 

dry reforming reaction and that the presence of CO2 is essential to reduce carbon accumulation. The 

most important and promising result is that the Sn-infiltrated catalyst is able to catalyse methane dry 

reforming at 650–800°C with conversion at 750°C producing sufficient amount of CO and H2 for 

electrochemical oxidation. 

3.4. Overall discussion 

Pieces of non-infiltrated SOFC and Sn-infiltrated SOFC anodes were tested as catalysts for dry 

reforming reactions. It was shown that at the observed temperature range (650°C to 800°C) Sn-infiltrated 

SOFC anodes converted more CO2 and CH4 and produced more H2 and CO compared to non-infiltrated 
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ones. On both non-infiltrated and Sn-infiltrated anodes, more H2 is produced at higher temperature 

(800°C) than at the lower temperatures of 650–750°C. It was observed that at 750°C and 1:2:2 ratio of 

CO2: CH4: He approximately 5 vol.% H2 and 7 vol.% CO were produced on non-infiltrated NiYSZ 

SOFC anode while 15 vol.% H2 and 13 vol.% CO were produced on Sn-infiltrated NiYSZ SOFC anode. 

These differences on the level of H2 and CO produced from the dry reforming reaction and the fact that 

Sn-infiltrated anodes produced 2 to 3 times CO and H2 compared to uninfiltrated anodes are considered 

sufficient for further investigation of the non-infiltrated and Sn-infiltrated SOFC anode electrochemical 

performance in the SOFC operation. 

As expected from stoichiometry, observation of dry reforming at different CO2:CH4 ratios shows that 

equimolar feed of CO2:CH4 produced the highest amount of CO and H2 compared to other feed 

compositions. The amount of CO produced is much affected by the composition of CO2 in the feed. 

Rough comparison of dry reforming on 6-drops and 4-drops Sn-infiltrated SOFC anodes (Fig.s 4b and 

7 respectively) shows that the Sn loading is another determining factors (other than temperature and gas 

composition) for the amount of H2 and CO produced with 4-drops Sn-infiltrated anode showing better 

CO2 conversion. This means that a very small quantity of Sn in NiYSZ anode makes a significant 

difference in the catalytic performance. 

4. Conclusion 

It was shown that Sn infiltration on anode surface significantly improved dry reforming of CH4 over 

650–800°C and methane to carbon dioxide ratio of 1:1 to all methane (90% CH4 and 10% Helium) 

conditions. As a base for evaluation of SOFC operation with direct biogas feed, these results of dry 

reforming on SOFC anode pieces have shown that infiltration of SOFC anode with Sn dopant increased 

the yield of dry reforming products, namely CO and H2, therefore Sn-infiltration is very promising to be 

used in improving electrochemical performance of SOFC operating on biogas. The Sn-infiltrated NiYSZ 

catalysts are expected to give higher electrochemical performance and less carbon accumulation when 

employed as SOFC anode. 
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