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Abstract. Deep learning approaches such as convolutional neural net-
works (CNN) have achieved state-of-the-art performance in cardiac MR
(CMR) image segmentation. However, it is non-trivial to introduce shape
prior knowledge to CNN-based approaches. In this paper, we combine a
CNN-based method with image registration to develop a shape-based
bi-ventricular segmentation tool for short-axis CMR volumetric images.
The method first employs a fully convolutional network (FCN) to learn
the segmentation task from manually labelled ground truth CMR vol-
umes. However, due to existing image artefacts in the training dataset,
the resulting FCN segmentation results are often imperfect. As such, we
propose a second step to refine the FCN segmentation. This step in-
volves performing a non-rigid registration with multiple high-resolution
bi-ventricular atlases, allowing the explicit shape priors to be inferred.
We validate the proposed approach on 1831 healthy subjects and 200
subjects with pulmonary hypertension. Numerical experiments on the
two datasets demonstrate that our approach is capable of producing ac-
curate, high-resolution and anatomically smooth bi-ventricular models,
despite the artefacts in the input CMR volumes.

1 Introduction

Cardiac MR (CMR) imaging is a non-invasive and non-ionising imaging tech-
nique that produces high image quality and excellent soft tissue contrast. Among
existing imaging techniques, it has established itself as the gold standard for as-
sessing cardiac chamber volume and mass for a wide range of cardiovascular
diseases [1]. CMR imaging techniques, together with semi-automated or auto-
mated CMR segmentation algorithms [2,3,4,5,6,7,8,9,10,11], have shown a great
impact on studying, understanding and diagnosing cardiovascular diseases. How-
ever, there are drawbacks in current CMR segmentation methods.

Anatomically, a human heart is composed of the left ventricle (LV) and the
right ventricle (RV). Each ventricle can be subdivided into the cavity region (left
ventricular cavity [LVC] and right ventricular cavity [RVC]) and the wall region
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(left ventricular wall [LVW] and right ventricular wall [RVW]). Most of the seg-
mentation techniques have only focused on the LVC and LVW [3,4] (or at most
the LVC, LVW and RVC [2,5,6,7,8,9,10]). Few studies have attempted a full
bi-ventricular segmentation (i.e. LVC+LVW+RVC+RVW) due to the narrow
structure of RVW (sometimes less than one millimetre in thickness). This pro-
hibits accurate cardiac assessments involving coupled bi-ventricular cardiac mo-
tion. In addition, due to the limitations of standard clinical acquisition protocols,
the raw volumetric CMR images acquired often contain several artefacts [12],
including intensity inhomogeneity, inter-slice shift (i.e. respiratory motion), large
slice thickness, lack of slice coverage, etc. Most existing segmentation methods
[3,4,5,6,7,8,9,10,11] deal with CMR volumes directly without taking the artefacts
into account. As such, the resulting segmentation inevitably inherit these arte-
facts. Building an accurate, motion-free, automatically meaningful bi-ventricular
segmentation model therefore remains an open problem.

To overcome the aforementioned limitations of current approaches, in this
paper we propose a novel approach that addresses the problem of bi-ventricular
segmentation of short-axis CMR volumetric images. We make the following three
distinct contributions. First, the proposed approach segments an input cardiac
volume into LVC, LVW, RVC and RVW. The technique introduced herein is
the first one capable of producing a full high-resolution bi-ventricular segmenta-
tion in 3D. Second, we introduce anatomical shape prior knowledge (via image
registration techniques) to a deep learning approach by using a cohort of high-
resolution atlas shapes. As such, the proposed approach is capable to produce
an accurate, motion-free and clinically meaningful bi-ventricular segmentation
model, despite the existing artefacts in the input volume. Third, we thoroughly
assess the effectiveness and robustness of proposed method using two datasets,
including high- and low-resolution cardiac volumes from 1831 healthy subjects
and 200 pathological subjects, respectively. To our knowledge, this is one of the
first CMR segmentation studies utilising datasets of this scale. To quantitatively
evaluate our proposed segmentation algorithm, we also develop a method that
is able to simulate the artefacts in CMR volumes.

2 Methodology

Fully convolutional network: We treat the problem of predicting segmen-
tation maps as the multi-class classification problem. First, let us formulate
the learning problem as follows: we denote the input training dataset by S =
{(Ui, Ri), i = 1, ..., Nt}, where Nt is the number of training data, Ui = {uij , j =

1, ..., |Ui|} is the raw input CMR volume,Ri = {rij , j = 1, ..., |Ri|}, rij ∈ {1, ..., Nr}
is the ground truth region labels for volume Ui (Nr = 5 representing the LVC,
LVW, RVC, RVW and background regions). Note that |Ui| = |Ri| stands for
the total number of voxels in a CMR volume. We then define all network layer
parameters as W. In a supervised setting, we propose to minimise the following
objective function via standard (back-propagation) stochastic gradient descent
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(SGD)
W∗ = argmin(LS(W) + αLD(W) + β‖W‖2F ), (1)

where α and β are weight coefficients balancing the three terms. LS(W) and
LD(W) are the region associated losses that enable the network to predict seg-
mentation maps. ‖W‖2F , known as the weight decay term, represents the Frobe-
nius norm on the weights W. This term is used to prevent over-fitting of the
network. The training problem is to estimate the parameters W associated with
all the convolutional layers and by minimising (1) the network is able to predict
segmentation maps. The definitions of LS(W) and LD(W) are given separately
as follows:

LS(W) = −
∑
i

∑
k

∑
j∈Xi

k

logP (rij = k|Ui,W), (2)

where i, k and j respectively denote the training sample index, the region label
index and the voxel index. Xi

k represents the voxels in training sample i that
fall in the region for which the label value is k. P (rij = k|Ui,W) corresponds to
the softmax probability estimated by the network for a specific voxel j (subject
to the restriction rij = k), given the training volume Ui and network weights
W. Note that (2) is known as the categorical cross-entropy loss or multi-class
logistic loss, in which the summations are carried out over all voxels, labels and
training samples.

Fully Convolutional Network

C14b (2x up)

C14c (4x up)
C14d (8x up)

C14e (16x up)

C14a (0x up)

C1 C2C3C4C5 C6   C7     C8       C9       C10 C11         C12          C13 C15         C16   C17

Fig. 1: The architecture of a fully convolutional network with 17 convolutional
layers. The network takes the CMR volume as input, applies a branch of convo-
lutions, learns image features from fine to coarse levels, concatenates multi-scale
features and finally segments the image into 5 disjoint regions.

Along with (2) for predicting segmentation maps, we use the Dice loss that
evaluates spatial overlap with ground truth region labels. More specifically, we
use a differentiable approximation of Dice loss, defined as follows:

LD(W) = −
∑
i

2
∑
k

∑
j

1{rij=k} · P (rij = k|Ui,W)

∑
k

∑
j

(
12{rij=k} + P 2(rij = k|Ui,W)

) , (3)

where 1{·} is the indicator function and other notations in (3) have the same
meanings as those in (2).
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In Fig 1, we show the proposed network architecture for automatic CMR
segmentation, which is a fully convolutional network (FCN). It is adapted from
[10] and similar to the U-net architecture [13]. Batch-normalisation (BN) is used
after each convolutional layer, and before a rectified linear unit (ReLU) acti-
vation. The last layer is followed by the channel-wise softmax function. In the
FCN, input images have pixel dimensions of 192× 192. Every layer whose label
is prefixed with ‘C’ performs the operation: convolution→ BN→ ReLU, except
C17. The (filter size/stride) is (3×3/1) for layers from C1 to C16, excluding
layers C3, C5, C8 and C11 which are (3×3/2). The arrows represent (3×3/1)
convolutional layers (C14a−e) followed by a transpose convolutional (up) layer
with a factor necessary to achieve feature map volumes with size 160 × 160 ×
32, all of which are concatenated into the red feature map volume. Finally, C17
applies a (1×1/1) convolution with a softmax activation, producing the blue
feature map volume with a depth 5, corresponding to 5 segmented regions of an
input volume.

Output
Warping

Deformation

Fusion

Multi-atlas Registration

Fig. 2: Incorporation of shape constraints by multi-atlas registration. l1, l2 and
l3 are high-resolution bi-ventricular atlas shape models. They are warped to l′1,
l′2 and l′3 using the transform between the FCN result S and each atlas. The
warped results are finally fused together to generate a smooth high-resolution
output.

Multi-atlas registration: As Fig 1 shows, the segmentation produced by FCN
is influenced by respiratory motion artefact. Moreover, as the CMR volume are
low-resolution in the long-axis, the 3D segmentation model is not smooth. Fur-
ther, due to the narrow structure of the RVW, the segmentation model is in-
complete. By incorporating shape prior knowledge with the following image reg-
istration, these drawbacks can be resolved.

Since the correspondences of structures across both target and atlas volumes
are explicitly encoded in their segmentations, we only use segmentations for
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the following non-rigid registration. Let S and ln (n = 1, ..., L) be the network
segmentation and the nth atlas segmentation (i.e. shape, respectively. Note that
here we use a cohort of high-resolution atlases, each of which has an image
resolution of 1.25 × 1.25 × 2.0 mm. Let PS,ln(i, j) be the joint probability of
labels i and j in S and ln, respectively. It is estimated as the number of voxels
with label i in S and label j in ln divided by the total number of voxels in the
overlap region of both segmentations. We then maximise the overlap of structures
denoted by the same label in both S and ln by minimising the following objective
function

Φ∗n = arg min C (S, ln(Φn)) (4)

where Φn is the transformation between S and ln, which is modelled by a free-
form deformation (FFD) based on B-splines [14]. C(S, ln) =

∑Nr

i=1 PS,ln(i, i),
representing the label consistency [15]. C in (4) is a similarity measure of how
many labels of all the labels in the atlas segmentation are correctly mapped into
the target segmentation. The measure is zero when none of the atlas labels has
been correctly mapped into the target segmentation. The measure is one when all
reference labels are correctly matched. Gradient descent is then used to minimise
the objective function (4). After the optimal Φ∗n is found, the segmentation in the
nth atlas is warped to the target space (i.e. l′n). The process is repeated several
times until after all the pre-selected atlases are warped. Lastly, the resulting label
at each voxel in the target volume can be calculated by finding the maximum
label of all the warped atlas segmentations at that voxel.

3 Experimental results

For the training and evaluation of the proposed method, we use the UK Digital
Heart Project Dataset1, which is composed of 1831 cine high-resolution CMR
volumetric images and the corresponding dense segmentation annotations at the
end-diastolic (ED) and end-systolic (ES) frames. These volumes are derived from
healthy subjects, scanned at Hammersmith Hospital, Imperial College London
using a 3D cine balanced steady-state free precession (b-SSFP) sequence [16] and
has a resolution of 1.25 × 1.25 × 2 mm. The high-resolution imaging technique
enables us to characterise the cardiac shape in great detail. Moreover, it requires
only one single breath-hold of a subject during each scan and thereby does not
produce the artefacts (i.e. inter-slice shift, large slice thickness, lack of slice cover-
age, etc) [16], which are commonly seen when low-resolution imaging techniques
[12] are used. Fig 5 a shows a long-axis view of a high-resolution volume at the
ED frame, and the corresponding ground truth 2D and 3D segmentation labels
are given in c and d, respectively.

To quantitatively study our proposed segmentation algorithm, we develop a
method to simulate the artefacts in low-resolution cardiac volumes. Specifically,
the original high-resolution volume and its segmentation are first downsampled
from 1.25 × 1.25 × 2 mm to 1.25 × 1.25 × 10 mm, as shown in the second

1 https://digital-heart.org/
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row of Fig 5. As evident, after this step the segmentation shape takes on the
staircase artefacts as now the downsampled versions have a relatively low long-
axis resolution. Moreover, the segmentation around the apical region becomes
incomplete due to the lack of slice coverage of the whole heart. We further
simulate inter-slice shift artefact by randomly translating each 2D short-axis slice
independently. After this step the cardiac volume and its segmentation become
misaligned, as shown in the last row of Fig 5. Next, for training the network
the low-resolution volume g and its segmentation h are used as inputs. Note
that our method is capable of producing a high-resolution smooth segmentation
model even through the input volume is like g. Since we have the smooth ground
truth c for g, we can quantitatively compare the output of our method with the
ground truth c.

3D SAX Acquisition

1.2x1.2x2mm

3D SAX Labels

1.2x1.2x2mm

2D SAX Simulation

1.2x1.2x10mm

2D SAX Labels 

1.2x1.2x10mm

2D SAX Simulation

1.2x1.2x10mm

2D SAX Labels 

1.2x1.2x10mm

a b

c

d e

f

g h

i

Fig. 3: Simulating cardiac artefacts in real scenarios. 1st row: artefact-free high-
resolution cardiac volume and ground truth labels. 2nd row: downsampled ver-
sions of volumes in the 1st row. 3rd row: inter-slice shift is added to the down-
sampled volumes in the 2nd row.

We then randomly split the 1831 dataset into three sets of 1000/600/231.
The first two sets are then corrupted with the simulated artefacts introduced
above, which are respectively used for training the neural network in Fig 1 and
evaluating the proposed segmentation algorithm. The last set remains unchanged
and is used as a cohort of high-resolution atlas shapes for refining the network
segmentation. Note that we intend to segment a cardiac volume into the left
ventricular cavity (LVC), right ventricular cavity (RVC), left ventricular wall
(LVW) and right ventricular wall (RVW).

Table 1 reports the Dice metric and Hausdorf distance between automated
and manual segmentations, evaluated on the test set of 600 subjects at ED
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and ES. The mean Dice values of LVC, LVW and RVC demonstrate a good
agreement between automated and manual segmentations for these structures.
However, for RVW its mean Dice values at ED and ES are only 0.557 and 0.608.
This is due to its thin structure (only two or three voxels in thickness) and the
Dice index is more sensitive to errors in this structure. However, in terms of
the Hausdorff distance for RVW, the mean value is relatively small. Hence, our
method achieves a better performance for all the four structures.

Table 1: The Dice metric and Hausdorf distance (HD) between automated seg-
mentation and manual segmentation for 600 short-axis volumetric images. The
mean ± standard deviation are reported at the ED and ES frames.

Region Dice (ED) HD in mm (ED) Dice (ES) HD in mm (ES)

LVC 0.940±0.024 2.045 ±0.675 0.910±0.028 2.027±0.632
LVW 0.823±0.049 2.394 ±0.841 0.892±0.033 2.431±0.797
RVC 0.914±0.033 3.039 ±1.218 0.901±0.038 2.933±1.253
RVW 0.557±0.121 4.119 ±1.956 0.608±0.123 4.378±2.717

LVESV (ml)LVEDV (ml) LVM (gram)

RVEDV (ml) RVESV (ml) RVM (gram)

Fig. 4: Bland-Altman plots of clinical measures between automated measure-
ment and manual measurement. The LV end-diastolic volume (LVEDV), end-
systolic volume (LVESV), LV myocardial mass (LVM), RV end-diastolic volume
(RVEDV), end-systolic volume (RVESV), and RV myocardial mass (RVM) are
derived from our segmentation method and the manual segmentation.

To further quantitatively evaluate the proposed method, Fig 4 shows the
Bland-Altman plots of the clinical measures. The Bland-Altman plot is com-
monly used for analysing agreement and bias between two measurements. This
figure compares automated measurements to manual measurements on the eval-
uation set, which shows that the mean difference is centred close to zero, indicat-
ing that the automated measurement is almost unbiased relative to the observer.
Also, there is no evidence of bias over hearts of difference sizes or volumes. In
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particular, RVM shows a very good consistency between the two measurements,
validating an accurate segmentation of RVW despite relatively lower Dice values.

Finally, the proposed method was evaluated on a dataset of 200 patients
with pulmonary hypertension. Greyscale volumetric images were acquired at
low resolution (1.38×1.38×10 mm) and segmented into high-resolution smooth
3D models. Results were visually assessed by one clinician with over five years’
experience of CMR imaging and judged satisfactory in all cases. In Fig 5, we
present an exemplary segmentation of a cardiac volume in a pulmonary hyper-
tension patient. We visually compare the proposed method with the vanilla deep
learning method without shape prior knowledge [10]. As the figure shows, the
proposed method gives a better 3D phenotype result which is smooth, accurate
and artefact-free. This is due to the application of shape prior information. Our
method thus outperforms the vanilla FCN in this regard.

Fig. 5: Visual comparison of segmentation results from the vanilla FCN and
the proposed method on a pathological case. 1st column: original short- and
long-axis CMR slices. 2nd column: vanilla FCN results. 3rd column: results by
the proposed method. Last column: FCN results (top) and our results (bottom).
The 5 segmented regions are respectively RVC (yellow), LVC (red), RVW (blue),
LVW (green) and background.

4 Conclusion

In this paper, we developed a shape-based CNN-based method for bi-ventricular
segmentation of cardiac MR volumetric images. The method first employs a
fully convolutional network (FCN) to segment the volume at a low-resolution
level. Based on the FCN results, the method then performs the non-rigid regis-
tration by using multiple high-resolution atlas shapes, thereby imposing shape
constraints explicitly and effectively. Extensive experiments have showed that
the method has capability of producing smooth bi-ventricular segmentation re-
sults that follow the global anatomical properties of the underlying anatomy,
even through the input volumetric images contain several unpleasant artefacts.
In addition, we have also showed that the method has a very good generalisa-
tion ability for segmentation of pathological cases. Future work will focus on
statistical shape analysis using the smooth results produced by the method.
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