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ABSTRACT 30 

Aim: One of the main applications of the island species–area relationship (SAR) is to predict 31 

species richness in areas of habitat too large to be sampled, but there are few clear guidelines 32 

for choosing an appropriate model for this purpose. We therefore aimed to test whether a 33 

multi-model averaging approach could improve the accuracy of predictions made by 34 

extrapolating the ISAR. Specifically, we compared the performance of multi-model 35 

averaging with that of the default ISAR model of choice, the power model, in predicting 36 

species richness in large habitat islands.     37 

Location: Global 38 

Taxa: Vertebrates, invertebrates and plants 39 

Methods: We removed the largest islands from 120 habitat island datasets, and fitted both 40 

the power model and a multi-model average curve (averaging the predictions of up to 20 41 

ISAR models) to this filtered dataset. We then assessed the accuracy of both approaches in 42 

predicting the species richness of the largest island in the original dataset using the log error 43 

of extrapolation (LEE) metric. A generalized additive regression modelling framework was 44 



used to determine whether any dataset characteristics could explain variation in the LEE 45 

values for the power model (LEE-POW). 46 

Results: The power model gave the more accurate richness predictions for 58% of the 47 

analysed datasets and the multi-model averaged curve gave the more accurate predictions for 48 

the remaining 42%. Both the power models (61% of LEE-POW values were positive) and the 49 

multi-model averaged curve (60% were positive) had a slightly greater tendency to over 50 

predict the observed richness. The confidence intervals were also on average narrower for the 51 

power model predictions (median 95% confidence interval width = 18 species) than for the 52 

multi-model averaged curve predictions (median 95% confidence interval width = 78). The 53 

range in island areas and richness values explained a small amount of the variation in LEE-54 

POW. 55 

Main conclusions: Contrary to expectation, multi-model averaging was less accurate than 56 

the power model in the majority of cases, and thus does not appear to be a panacea for 57 

uncertainty in model choice when extrapolating the ISAR. However, further research is 58 

urgently needed to evaluate the performance of a multi-model averaging approach at larger 59 

spatial scales.  60 

INTRODUCTION 61 

The species–area relationship (SAR) describes the near-universally observed pattern whereby 62 

the number of species increases with the area sampled (Rosenzweig, 1995; Tjørve & Tjørve, 63 

2017). A number of different types of SARs have been described (Scheiner, 2003; Whittaker 64 

& Fernández-Palacios, 2007), and these can be broadly split into island species–area 65 

relationships (ISARs), whereby the number of species occurring within each of a set of 66 

islands is analysed as a function of the area of each island, and species accumulation curves, 67 

which describe the relationship between increasing cumulative species number with 68 

increasing sampling area (see Matthews, Triantis, Rigal, Borregaard, Guilhaumon & 69 

Whittaker, 2016). This paper is focused on ISARs (Type IV SARs in Scheiner’s 2003 70 

typology). Although over twenty ISAR models have been proposed (Tjørve, 2003; Triantis, 71 

Guilhaumon & Whittaker, 2012), the most widely used is the power model, S = c * A
z
, where 72 

S is the number of species on an island, A is the area of an island, and c and z are fitted 73 

constants (Arrhenius, 1921). In comparative analyses, the power model has been found to 74 

provide the best fit to a number of true and habitat island datasets, but it is not universally the 75 

best model (Dengler, 2009; Triantis et al., 2012; Matthews, Guilhaumon, Triantis, Borregaard 76 

& Whittaker, 2016), and the ISAR has been found to exhibit forms that the predominantly 77 

convex power model cannot provide a good fit to, such as sigmoidal shaped relationships 78 

(Lomolino, 2000; Triantis et al., 2012). For example, in an analysis of 182 habitat island 79 

datasets, the power model provided the best fit, out of twenty candidate ISAR models, in only 80 

24% of cases (Matthews, Guilhaumon et al., 2016). Put another way, there is considerable 81 

model uncertainty in regards to the form of the ISAR, and a number of studies have argued 82 

that ISAR analyses should incorporate a wider set of models rather than simply the power 83 

model (Guilhaumon, Gimenez, Gaston & Mouillot, 2008; Guilhaumon, Mouillot & Gimenez, 84 

2010; Triantis et al., 2012; Benchimol & Peres, 2013).   85 



The SAR is a key tool in conservation biogeography and, amongst other things, has been 86 

used to predict the number of extinctions resulting from habitat loss (e.g. Brooks, Pimm & 87 

Collar, 1997; Martins & Pereira, 2017), improve protected area design (e.g. Diamond, 1975), 88 

and predict the number of species occurring in large areas of natural habitat, such as a large 89 

expanse of tropical forest (Palmer, 1990; Rosenzweig, 1995; Plotkin et al., 2000; Desmet & 90 

Cowling, 2004; Santos et al., 2010; Smith, 2010; Basset et al., 2012; Gerstner, Dormann, 91 

Václavík, Kreft & Seppelt, 2014; Kunin et al., 2018). In regards to the latter, the ability to 92 

extrapolate the SAR to accurately predict the number of species occurring in large areas is of 93 

significant importance given the logistical and financial constraints involved in sampling over 94 

large spatial scales (Basset et al., 2012; Kunin et al., 2018). Typically, predicting richness at 95 

large spatial scales using the SAR is achieved by using the power model to predict the 96 

richness of an area (e.g. a large island, biome or region), either by using a set z value 97 

(generally around 0.25; Rosenzweig, 1995) or by estimating z from empirical data. However, 98 

as previously outlined, the power model may not always provide the best characterisation of 99 

the ISAR in empirical systems, and thus previous extrapolation studies based solely on the 100 

power model may have generated inaccurate predictions (this is true for any individual ISAR 101 

model). For example, Dengler (2009) compared the extrapolation ability of 12 ISAR models 102 

(in fact 25 models were compared as the same model was fitted using log-transformed and 103 

untransformed data; one model was applied using three different transformations) to 104 

accurately predict richness on large islands using six island archipelago datasets, and found 105 

that the mean rank of the power model was only 11
th

 out of 25. Figure 1 provides a further 106 

illustration of this issue. Here, we have simulated eight islands of varying size (1, 3, 7, 14, 17, 107 

22, 26, and 30; undefined units) that support reasonable numbers of species (3, 7, 14, 18, 20, 108 

23, 24, and 25). We then fit five ISAR models (linear, logistic, negative exponential, power 109 

and Weibull3; see Table 1 for more details on these models) to these eight data points. Using 110 

these model fits, we estimated the number of species on an island of size 80 (grey dotted line 111 

in Fig.1) for each model and extrapolated each curve to its respective predicted value. It can 112 

be seen that the different models provide a range of predicted richness values for the 113 

hypothetical largest island. 114 

An alternative extrapolation approach to simply using the power model is to use multi-model 115 

inference (MMI; Burnham & Anderson, 2002) and model averaging, whereby a larger 116 

number of n models is fitted to a set of islands, the models ranked according to some criterion 117 

(e.g. Akaike’s information criterion, AIC; Burnham & Anderson, 2002) and the criterion 118 

values converted into model weights (i.e. the conditional probabilities for each of the n 119 

models; Wagenmakers & Farrell, 2004). The n models are then each used to predict the 120 

richness of a larger area and these predictions are multiplied by the respective model weights 121 

and summed to provide a multi-model averaged prediction (Burnham & Anderson, 2002; see 122 

Guilhaumon et al., 2008 for a SAR example).   123 

A MMI approach is arguably much more robust as it provides a framework to deal with the 124 

model uncertainty observed in many SAR studies, and as Burnham & Anderson (2002, p. 125 

198) note, such uncertainty can be much greater outside the range of the observed data. 126 

However, the effectiveness of the MMI framework in ISAR extrapolation is unknown, and 127 



with the exception of the Dengler (2009) study that only analysed six island datasets, the 128 

question of model uncertainty in ISAR extrapolation has not been explored. As Dengler 129 

(2009, p.733) states, “although extrapolation of species richness beyond the largest plot size 130 

is one of the most frequent applications of SARs, there are only few and unsystematic 131 

approaches to testing which model function types are most suitable for this purpose.” 132 

It should be noted that using the ISAR is only one method for predicting the species richness 133 

of larger areas. For example, species accumulation curves, rarefaction methods and various 134 

extrapolation methods based on Hill numbers (Colwell & Coddington, 1994; Hsieh, Ma & 135 

Chao, 2016) are also widely used. However, many of these approaches require abundance 136 

data rather than incidence (i.e. presence-absence) data, although alternative methods are 137 

available for incidence data (see Hsieh et al., 2016). Incidence data are commonly available 138 

from biogeographical studies (e.g. Triantis et al., 2012; Matthews, Guilhaumon et al., 2016), 139 

which likely explains why the ISAR (which only requires incidence data) has often been used 140 

in extrapolation exercises (Dengler, 2009). 141 

In this study, we use a set of 120 habitat island datasets to compare the accuracy of species 142 

richness extrapolation predictions using the power model with predictions using a model 143 

averaging approach based on twenty ISAR models. As such, our study goes beyond previous 144 

ISAR meta-analyses (e.g. Triantis et al., 2012; Matthews, Guilhaumon et al., 2016), which 145 

were focused on ISAR model goodness-of-fit evaluation, to explore ISAR model 146 

extrapolation capability. We focus on habitat islands rather than true islands (see Whittaker & 147 

Fernández-Palacios, 2007) as many applied SAR studies are focused on fragmented and 148 

forested terrestrial landscapes (e.g. Hubbell et al., 2008; Hanski, Zurita, Bellocq & Rybicki, 149 

2013; Matthews, Cottee-Jones & Whittaker, 2014). We hypothesise that, due to the high 150 

degree of model uncertainty observed in many ISAR studies, the MMI framework will 151 

generate more accurate extrapolation predictions than the use of the power model on its own. 152 

The results of this analysis will provide useful information to guide future applications of 153 

ISAR extrapolation in conservation biogeography studies. 154 

 155 

MATERIALS AND METHODS 156 

Data collection 157 

We took a subset of the habitat island datasets collected by Matthews, Cottee-Jones & 158 

Whittaker (2015) and Matthews, Guilhaumon et al. (2016). Habitat islands are defined as 159 

discrete habitat patches surrounded by contrasting matrix habitat. However, as in Matthews, 160 

Guilhaumon et al. (2016), we also included a small number of datasets consisting of protected 161 

areas for which the contrast between the matrix and the island was not so pronounced, and we 162 

included a few datasets of fragments within an aquatic matrix (e.g. rain forest fragment 163 

systems created by the construction of a reservoir), as the dominant assembly processes are 164 

considered to be more similar to those in habitat islands sensu stricto than oceanic islands (cf. 165 

Matthews et al., 2015). The original criteria for dataset collection (see Matthews, 166 

Guilhaumon et al., 2016) were: 1) the area and richness of each island were provided; 2) there 167 



was no overlap between accepted datasets (data for different taxa within the same study 168 

system were accepted); and 3) there were at least four habitat islands. For the present study, 169 

we used datasets with at least eight islands and for which we could both successfully fit the 170 

power model (i.e. the model fit converged) and construct a multi-model averaged ISAR curve 171 

(i.e. at least two ISAR models could be successfully fitted to the dataset). We also manually 172 

(i.e. no explicit scale threshold was applied) filtered out datasets that were focused at very 173 

small spatial scales (e.g. insects on rose bushes or small experimental grassland plots) as 174 

these are not the spatial scale at which ISAR extrapolation is typically undertaken. 175 

A total of 120 habitat island datasets were used, comprising 80 vertebrate, 21 plant, and 19 176 

invertebrate datasets (Table S1 in Appendix S1 provides a summary of the datasets, and the 177 

source paper references are provided in Appendix S1). 178 

Extrapolating the ISAR 179 

To test the extrapolation ability of the various methods, we used the approach of Dengler 180 

(2009) whereby, for each dataset, we removed the largest island and all islands within a 181 

certain size threshold (th) relative to the largest island. For example, if the largest island was 182 

100 ha and th was 0.5, we removed all islands larger than 50 ha. The new version of the 183 

dataset with the largest islands removed is referred to herein as the ‘filtered dataset’. 184 

Removing the largest islands from each dataset allowed us to use the model fits to the filtered 185 

subset of islands to extrapolate and predict richness on larger islands for which we know the 186 

number of species. The value of th used in the main analyses was 0.5, although we 187 

experimented with different values as a sensitivity analysis (discussed below). For each 188 

filtered dataset, we then fitted the power (non-linear) ISAR model using non-linear regression 189 

and the ‘sars’ R package (version 1.1.1; Matthews, Triantis, Whittaker & Guilhaumon, 2019). 190 

With the exception of a model convergence check, the power model was fitted to a dataset 191 

regardless of the results of any model validation checks (the validity of this was tested as part 192 

of a sensitivity test, outlined below). A multi-model averaged ISAR curve was then fitted to 193 

the filtered dataset using the ‘sar_average’ function in the ‘sars’ R package. We attempted to 194 

fit twenty ISAR models (Table 1). A model was excluded if: 1) the model fitting process did 195 

not converge, 2) the model fit generated negative predicted values, 3) the residuals of the 196 

model fit were not normally distributed (using a Shapiro-Wilks test for normality), or 4) the 197 

residuals of the model fit were not homogeneous (assessed by correlating the residuals with 198 

the fitted values). All of these checks were undertaken using the ‘sar_average’ function (see 199 

Matthews et al., 2019). The remaining model fits were used to generate a multi-model 200 

averaged ISAR curve using AIC corrected for small sample size (AICc; Burnham & 201 

Anderson, 2002).  202 

For each dataset, we followed the extrapolation procedure outlined in the introduction where 203 

we used the power model fit and the multi-model averaged curve to predict the species 204 

richness of the largest island in the original dataset (i.e. the largest of the islands that had 205 

been removed; see Dengler, 2009). In regards to the multi-model averaged curve, this worked 206 

by taking the multi-model fit object, using each of the individual model fits to predict the 207 

richness of the largest island, and multiplying these predictions by the respective AICc 208 



weights. As AICc was used, for datasets where the filtered dataset had only six islands (7 209 

cases when th = 0.5) it was not possible to calculate AICc for the 4 parameter ISAR models. 210 

Thus, the model weight was set to zero and the model fit had no bearing on the extrapolation 211 

prediction. As there was no functionality to undertake these extrapolations in the ‘sars’ R 212 

package, we wrote a new function to achieve this. The new function, ‘sar_pred’, takes two 213 

arguments (fit and area) and extrapolates the ‘fit’ object to predict the richness on an island of 214 

size ‘area’. The ‘fit’ argument can be an individual SAR model fit (e.g. the power model) or a 215 

multi-model SAR curve. The new function is available in version 1.1.2 of the ‘sars’ package 216 

which is currently on GitHub (txm676/sars) and will be uploaded to CRAN shortly.  217 

To compare the predictions of the power model and the multi-model averaged curve for a 218 

given dataset, we used the log error of extrapolation (LEE) metric of Dengler (2009) that 219 

addresses extrapolation capability. LEE is simply the log of the model’s predicted richness 220 

minus the log of the observed richness (following Dengler, 2009, log to the base 10 was 221 

used); thus, the closer the LEE value is to zero the more accurate the prediction, and a 222 

positive LEE value means the model has over predicted the observed richness and vice versa. 223 

LEE was calculated for both the power model prediction and the multi-model averaged curve 224 

prediction.  225 

As an important part of model prediction is to generate an estimate of the error of a prediction 226 

(Burnham & Anderson, 2002), the confidence intervals around the predictions were 227 

calculated using bootstrapping (Davison & Hinkley, 1997). For each of the filtered datasets, 228 

the data points (i.e. an individual island area and richness value) were sampled with 229 

replacement until the bootstrap sample was the same size as the original filtered dataset. The 230 

power model and multi-model curve prediction process was then undertaken using this 231 

bootstrap sample and the predictions stored. For the multi-model curve, the same models that 232 

were successfully fitted in the construction of the multi-model curve fit to the filtered dataset 233 

were selected. We did not undertake residual checks (e.g. normality) here to ensure bootstrap 234 

samples could be created, but we did still exclude model fits with negative predicted values. 235 

This process was repeated 100 times for each dataset and a 95% confidence interval 236 

constructed. Occasionally it was not possible to fit some of the relevant models to a bootstrap 237 

sample, or the predicted value was negative; in these cases, the bootstrap sample was 238 

discarded.  239 

The main comparison of interest was the power model with the multi-model averaged curve. 240 

However, we also re-ran the above analysis including the extrapolation predictions of the 241 

additional 19 individual ISAR models. For each dataset, an individual model extrapolation 242 

prediction was included in the comparison only if the fit of the model to the filtered dataset 243 

passed all of the model validation checks.  244 

Modelling variation in prediction accuracy  245 

To determine whether any dataset characteristics could explain variation in the LEE values 246 

for the power model predictions (LEE-POW), we used generalized additive models (GAMs; 247 

Gaussian family) within a model selection framework. GAMs were used as there was evident 248 



non-linear relationships between the predictors and the response. We used LEE-POW as the 249 

response variable. It was not possible to use the LEE values from the multi-model averaged 250 

curve (LEE-MMI) as the values were highly skewed and the residuals of the resultant models 251 

did approximate a normal distribution. For predictor variables, for each dataset (here the 252 

filtered dataset was used) we calculated the area of the smallest and largest islands and the 253 

ratio between them (Amin, Amax and Ascale), the richness of the most species poor and species 254 

rich islands and the ratio between them (Smin, Smax and Sscale), and the number of islands (Ni). 255 

For each dataset, we also took the latitude (Lat.) of the dataset and the sampled taxon (i.e. 256 

vertebrate, invertebrate or plant) from Matthews, Guilhaumon et al. (2016). Multicollinearity 257 

between predictors was tested using variance inflation factors: Amax and Smax were removed 258 

due to high multicollinearity and the remaining variance inflation factors were all below 259 

three. All of the continuous predictors (with the exception of latitude) were log-transformed 260 

to induce normality. The continuous predictors were modelled as penalized regression splines 261 

and the GAMs were fitted using the ‘mgcv’ R package (Wood, 2011). Smoothing parameter 262 

estimation was calculated using the Generalized Cross Validation (GCV) criterion. 263 

A full set of models given all possible combinations of predictors were fitted using the 264 

MuMIn R package (Bartoń, 2012), and models were compared using AICc. The model with 265 

the lowest AICc value was considered the best model, and all models with delta-AICc <= 2 266 

units of the best model were considered as having a similar degree of support (Burnham & 267 

Anderson, 2002). Model fits were validated using histograms of the residuals and plots of the 268 

residuals vs. the fitted values; the residuals of the full and best model roughly approximated a 269 

normal distribution and there were no evident patterns in the residuals. The relative 270 

importance of each predictor was calculated by summing the AICc weights for all models in 271 

which a predictor was included (Giam & Olden, 2016).  272 

To determine whether the relative fit of a model to the filtered dataset explained its 273 

extrapolation performance, for each of the twenty models we calculated the LEE values 274 

across all datasets. For each ISAR model separately, we then fitted a simple generalized 275 

additive regression model (Gaussian family) whereby the absolute LEE values were the 276 

response variable and the AICc weights were the predictor variable, modelled as a penalized 277 

regression spline. Due to multiple testing, the critical P-value used was Bonferroni corrected 278 

(i.e. 0.05 / 20 = 0.0025).  279 

Sensitivity analyses  280 

To ensure our results were robust to the assumptions made during the analyses, we undertook 281 

three sensitivity tests. First, we re-ran the extrapolation analysis using th values of 0.3 and 0.7 282 

(i.e. removing all islands that were 30% or 70% the size of the largest island in the original 283 

dataset). Second, in the main analyses, to ensure we could always compare the prediction of 284 

the power model with the prediction of the multi-model averaged curve we fitted the power 285 

model to all datasets regardless of the results of any model validation checks (with the 286 

exception of model convergence; e.g. no normality of residuals check was undertaken). Thus, 287 

we re-ran the prediction analysis after filtering out all datasets where the power model fit 288 

failed any of the following validation checks: 1) the model fit generated negative predicted 289 



values, 2) the residuals of the model fit were not normally distributed, 3) the residuals of the 290 

model fit were not homogeneous, or 4) the z parameter was not significant. Third, we re-ran 291 

the prediction analysis after removing the linear model from the multi-model averaged curve 292 

fitting process (i.e. fitting of only 19 models was attempted; see Table 1). The reason for this 293 

third check is that previous studies have found that the linear model tends to provide a better 294 

relative fit to datasets with smaller numbers of islands, whereas in larger datasets its relative 295 

performance declines (e.g. Matthews, Guilhaumon et al., 2016). As the removal of larger 296 

islands necessarily generates datasets with fewer numbers of islands, it is possible that the 297 

linear model might provide better fits to the filtered datasets which then leads to inaccurate 298 

predictions if the ISAR of the full dataset is not linear. All analyses were undertaken using R 299 

(version 3.5.2; R Core Team, 2017). Unless stated otherwise, an alpha level of 0.05 was used 300 

in all significance tests. 301 

RESULTS 302 

When a th value of 0.5 was used, the power model provided the best fit to the most (filtered) 303 

datasets (n = 29), followed by the linear model (n = 21), and then the Monod (n = 19) and 304 

logarithmic models (n = 16) (see Table 1), according to AICc.  305 

The full results of the main extrapolation and prediction analysis are provided in Table S2 in 306 

Appendix S2. In contrast to our hypothesis, the power model provided the most accurate 307 

prediction of the richness of the largest island (i.e. the lowest absolute LEE value) in 69 cases 308 

(58%), with the multi-model averaged curve providing the more accurate prediction in the 309 

remaining 51 cases (42%). The median LEE value of the power model was 0.04 (95% 310 

quantiles = -0.32 and 0.31), whilst the median LEE value of the multi-model curve (LEE-311 

MMI) was 0.03 (95% quantiles = -0.35 and 0.74). However, as LEE values could be both 312 

positive and negative, the median of the absolute LEE values provides a better summary of 313 

the extrapolation capability: the median of absolute LEE-POW values was 0.08 (95% 314 

quantiles = 0.01 and 0.34), whilst the median of absolute LEE-MMI values was 0.10 (95% 315 

quantiles = 0.01 and 0.74). Both the power model (61% of LEE-POW values were positive) 316 

and the multi-model averaged curve (60% of LEE-MMI values were positive) had a slightly 317 

greater tendency to over predict the observed richness. The confidence intervals were on 318 

average narrower for the power model predictions (median 95% confidence interval width = 319 

18) than for the multi-model averaged curve predictions (median 95% confidence interval 320 

width = 78) (Table S3 in Appendix S2). The confidence intervals around the multi-model 321 

averaged curve predictions were sometimes very large (i.e. spanning multiple orders of 322 

magnitude; see Table S3). 323 

When the extrapolation predictions from all 20 ISAR models were considered, in addition to 324 

the multi-model averaged curve, the power model provided the most accurate prediction of 325 

the richness of the largest island in 11 cases, with the multi-model averaged curve providing 326 

the most accurate prediction in five cases. The Extended Power 2 (see Table 1) model 327 

provided the best prediction the most times, with 12 cases (the results for all models are 328 

provided in Table 1). 329 



The full GAM (i.e. the GAM with all predictors) had a lower AIC score (-121.9) than an 330 

equivalent standard linear regression model (-115.4); this provides additional justification for 331 

our use of GAMs. When LEE-POW was used as the response variable in a GAM model 332 

selection analysis, the best model contained Ascale, Sscale, Lat. and Smin (Table 2). A plot of the 333 

smoothers for these four variables is provided as Figure 2. The effective degrees of freedom 334 

of the smoothers for Ascale and Lat. were one, indicating that these smoothers were straight 335 

lines; increasing Ascale resulted in decreasing LEE-POW, while the opposite pattern was true 336 

for Lat (Fig. 2). The Sscale and Smin relationships were more complex (Fig. 2), but increasing 337 

Sscale resulted in an approximate increase in LEE-POW. However, there was a reasonable 338 

degree of model uncertainty as the best model had an AICc weight of only 0.20, and there 339 

were two additional models within 2 delta AICc units of the best model (Table 2). In addition, 340 

the adjusted R
2
 value of the best model was low (0.20). Ascale (0.98), Sscale (0.95) and Smin 341 

(0.81) had quite high relative importance values, whilst the values for the remaining 342 

predictors were all lower (Table 2).  343 

For 18 of the ISAR models, the relative fit of a model to the filtered dataset (i.e. the model’s 344 

AICc weight) was a poor predictor of a model’s extrapolation accuracy (measured using the 345 

LEE metric). In only two cases (for the Power Rosenzweig and Extended Power 1 models; 346 

see Table 1 for model descriptions) was the AICc weight a significant predictor of a model’s 347 

absolute LEE value (Table S4 in Appendix S2). 348 

The choice of th value did not change the overall qualitative results. The power model 349 

provided the more accurate prediction in 65 (54%) and 72 (61%; when a th value of 0.7 was 350 

used there was one dataset for which no models could be successfully fitted) cases when th 351 

values of 0.3 and 0.7 were used, respectively (see Table S5 & S6 in Appendix S2). In regards 352 

to the power model validation sensitivity test, there were 23 datasets for which the power 353 

model failed one of the validation checks. However, removing these 23 datasets and re-354 

running the prediction analysis using the remaining 97 datasets did not change the overall 355 

qualitative results: the power model provided the most accurate prediction in 55 cases (57%). 356 

Finally, re-running the prediction analysis after excluding the linear model from the multi-357 

model averaged curve resulted in a slight increase in the number of cases where the multi-358 

model averaged curve provided the more accurate prediction (60 out of 120 cases), but the 359 

general picture remained the same.  360 

DISCUSSION 361 

Using 120 habitat island datasets, we compared the extrapolation capability of the power 362 

ISAR model with that of a multi-model averaged ISAR curve constructed using up to twenty 363 

ISAR models. In contrast to our hypothesis that the multi-model curve would produce more 364 

accurate species richness predictions, we found that the power model provided the more 365 

accurate prediction in a majority of cases. 366 

Model averaging is not a panacea for ISAR extrapolation  367 

It is rarely feasible to produce complete inventories of all species of a given taxonomic group 368 

at large spatial scales (e.g. in a large expanse of tropical forest or on very large islands; 369 



Colwell & Coddington, 1994). The question of how to extrapolate from samples collected at 370 

relatively small scales to accurately predict richness over larger areas is therefore the subject 371 

of considerable research effort (Hsieh et al., 2016). There has been particular focus on the 372 

ISAR (in addition to SARs constructed using continuous habitat data) as it only requires 373 

incidence data; yet a statistically rigorous ISAR extrapolation method, required for accurate 374 

richness predictions, has proven elusive. The present study represents a formative step in the 375 

development of such a method.  376 

Based on the results and arguments presented in many recent SAR studies and other model 377 

prediction exercises (Burnham & Anderson, 2002; Wagenmakers & Farrell, 2004; 378 

Guilhaumon et al., 2008, 2010; Triantis et al., 2012; Benchimol & Peres, 2013; Matthews, 379 

Guilhaumon et al., 2016), we hypothesised that a model averaging framework would result in 380 

more accurate extrapolation predictions than simply using the power model in isolation. 381 

Model averaging based on a set of competing candidate models has been proposed for 382 

improving predictions in cases where model uncertainty is prevalent (as seems to be the case 383 

with the ISAR; e.g. Triantis et al., 2012). For example, Burnham & Anderson (2002, p.150) 384 

state that “prediction is an ideal way to view model averaging, because each model in a set, 385 

regardless of its parameterisation, can be used to make a predicted value.” However, in 386 

contrast to our hypothesis we found that the power model provided the best prediction in the 387 

most cases, regardless of which th value was used (0.3, 0.5 or 0.7). Although our study is the 388 

first comprehensive evaluation of model averaging in ISAR extrapolation, Mazel et al. (2014) 389 

found that the power model on its own provided similar results to a multi-model average 390 

curve when using SARs, and functional diversity- and phylogenetic diversity-area 391 

relationships, to select biodiversity hotspots. Thus, it may be that the power model is 392 

generally a more appropriate tool than multi-model averaged curves in many applied SAR 393 

contexts. More research is needed to examine the performance of multi-model averaging in 394 

other areas of applied SAR research, such as predicting the number of extinctions resulting 395 

from habitat loss. 396 

Analysis of the raw LEE-POW and LEE-MMI values indicates that both the multi-model 397 

averaged curve and the power model had a slightly greater tendency for over-prediction of 398 

species richness. The tendency of the power model to overpredict richness has been 399 

previously documented (Palmer, 1990; Smith, 2010), but the performance of multi-model 400 

averaged ISAR curves when extrapolating richness has not been previously documented. A 401 

tendency for over prediction is arguably preferable as, in a conservation context, 402 

underprediction bias is likely to carry greater risk (for instance when forecasting the impacts 403 

of habitat loss).  404 

In general, the multi-model curve predictions also exhibited wider confidence intervals 405 

(Table S3). In certain cases, these were very wide, reflecting the bootstrap procedure that we 406 

employed, which works by sampling islands (paired area and richness values) with 407 

replacement; this process can result in the same island being chosen multiple times, 408 

particularly in smaller datasets, resulting in some bootstrapped samples having unusually-409 

shaped ISARs which do not bear much resemblance to the ISAR of the original 410 

sample/dataset. As the multi-model curve combines multiple ISAR models it is necessarily 411 



more flexible, allowing it to more accurately characterise the form of the unusually-shaped 412 

bootstrapped ISARs, but which can then result in wayward extrapolation predictions (i.e. 413 

predictions of the largest island in the original dataset).   414 

Interestingly, when the extrapolation predictions from all individual twenty ISAR models 415 

were compared the Extended Power 2 model (EPM2; Table 1) provided the most accurate 416 

predictions the most times (12 times vs. 11 times for the standard power model). The EPM2 417 

model, which is a sigmoidal model, is from within the same family as the standard power 418 

model (i.e. it is defined by adding a single additional parameter to the standard power model; 419 

Tjørve, 2009). The greater flexibility that arises from an additional parameter necessarily 420 

means that the EPM2 model should explain more variation in richness than the standard 421 

power model (i.e. have a larger R
2
); however, this does not mean the model should produce 422 

more accurate extrapolation predictions. For example, the Extended Power 1 model, which is 423 

also in the same model family as the power model, only provided the most accurate 424 

prediction 5 times. In addition, the other sigmoidal models generally performed poorly (Table 425 

1). In contrast to Tjørve (2009), who postulated that extended power models may provide 426 

poor extrapolation predictions, these results call for greater assessment of extended power 427 

models in applied ISAR applications. 428 

Why does the power model provide better predictions on average? 429 

The rationale for the smaller confidence intervals around the extrapolation predictions of the 430 

power model described in the preceding paragraph also provides an explanation for why the 431 

multi-model curve provided less accurate predictions in a majority of cases more generally: 432 

the greater flexibility of the multi-model curve is also its downfall. Regardless of the shape of 433 

the ISAR of the full dataset, unless that shape is characterised by a linear model, the form of 434 

the filtered dataset will differ, often considerably, from that of the full dataset. One of the 435 

advantages of the MMI approach, if the model set contains a range of sensible models given 436 

the situation, is that it often provides a better fit to a set of data than any one model on its own 437 

(Burnham & Anderson, 2002). However, if the shape of the filtered dataset is not 438 

representative of that of the full dataset, this greater flexibility may be a negative feature. For 439 

example, the linear model has been shown to provide a better fit relatively speaking to 440 

datasets with few, relatively smaller, islands (Matthews, Guilhaumon et al., 2016). Thus, it 441 

can be assumed that the relative performance of the linear model is better for the filtered 442 

datasets than for the full datasets; this better performance means it will have a larger 443 

information criterion weight and thus a stronger influence on the multi-model curve. 444 

However, if the full dataset is actually even just somewhat convex the multi-model curve 445 

(with its linear element) will not provide an accurate extrapolation prediction. In addition, it 446 

may be that habitat island datasets contain substantial amounts of noise due to the role of 447 

factors other than area (e.g. human disturbance; Benchimol & Peres, 2013). These factors, 448 

which may have a greater relative effect in small fragments (Matthews et al., 2014), may 449 

result in “messy” ISAR datasets. The more complex models have greater flexibility to fit this 450 

noise, resulting in poor extrapolation behaviour. For example, in a small number of cases, the 451 

largest fragment in the filtered dataset had lower richness than some of the smaller fragments, 452 



resulting in some of the more complex models predicting decreasing richness with increasing 453 

area and thus predicting negative richness when extrapolated! 454 

Explaining variation in extrapolation capability of the power model across datasets 455 

Our generalized additive model selection analysis indicated that the most important variables 456 

in driving variation in LEE-POW across datasets were Ascale, Sscale, Smin and Lat. (Table 2), 457 

with Ascale, Sscale and Smin in particular having relative importance values greater than 0.80. It 458 

should be noted that the amount of variation in LEE-POW explained by the best model was 459 

relatively low (adjusted R
2
 = 0.20). In the best model, the effect of Ascale on LEE-POW was 460 

linear and negative, whilst the effect of Sscale was non-linear but broadly positive and convex 461 

(Fig. 2). These results indicate that increasing Ascale results in lower LEE-POW values while, 462 

in contrast, increasing Sscale results in larger LEE-POW values, although there is a flattening 463 

out of this latter relationship at larger values of Sscale (Fig. 2). The negative effect of Ascale on 464 

LEE-POW values is logical because the full convex shape of the empirical ISAR may only 465 

become apparent when a large range of island sizes is studied (Martin, 1981; Matthews, 466 

Guilhaumon et al., 2016); for a smaller range of island areas the relative performance of the 467 

linear model is conversely greater. Thus, if Ascale is small and, in particular, there are no 468 

relatively large fragments within the dataset, the ISAR is less likely to be characterised by a 469 

power model (and more likely by a linear model) and attendant extrapolation predictions are 470 

likely to over-predict the true richness value. The positive effect of Sscale is more surprising, 471 

as one would expect the range in species richness in a dataset to scale positively with the 472 

range in island area. Indeed, Ascale and Sscale were significantly, albeit weakly, positively 473 

correlated (Spearman’s rho = 0.38; P < 0.001). We speculate that Sscale co-varies with another 474 

variable that was not included in our analysis, such as sample completeness (Hsieh et al., 475 

2016). For example, if Sscale is related to the number of species across all fragments 476 

(information that is not available from ISAR datasets) and more species-rich taxa are more 477 

likely to have been under-sampled, particularly in the larger fragments, then the effect of Sscale 478 

may in fact be evidence of a sampling artefact. Further research is needed to explore this 479 

possibility. 480 

We also found that, generally speaking, a model’s relative fit to the filtered dataset provided a 481 

poor predictor of that model’s extrapolation accuracy. This further complicates providing 482 

general guidelines for extrapolation as it rules out simply selecting the best fitting model 483 

when undertaking ISAR extrapolation. 484 

Conclusions  485 

Our findings show that multi-model averaging is unlikely to provide a universally suitable 486 

method for ISAR extrapolation, even though there is a large amount of model uncertainty 487 

(e.g. see the mean AICc weights of each model in Table 1). Taking the specific characteristics 488 

of the studied dataset into account (e.g. island size range, species richness range) could lead 489 

to more informed ISAR model selection, though this requires further investigation. However, 490 

the relevance of our results is likely to be restricted to the spatial scale of the analysed 491 

datasets. Although some of our datasets contain very large islands (largest island across all 492 



datasets = 19,604 km
2
), the median island size is much smaller (0.09 km

2
), and our results 493 

may thus not be transferable to i) scenarios requiring the ISAR to be extrapolated to very 494 

large areas (e.g. biotic regions or provinces; Rosenzweig, 1995; Gerstner et al., 2014), or ii) 495 

other types of SARs (e.g. species accumulation curves; Bassett et al., 2012; Kunin et al., 496 

2018). It is also possible that habitat island datasets are particularly noisy and that we may 497 

find different results when looking at true islands, for example. 498 

Although the power model provided more accurate predictions in a majority of cases, it is 499 

hard to advocate blanket use of the power model in future ISAR extrapolation analyses, as in 500 

approximately 40% of cases the multi-model averaged curve provided a better prediction. 501 

Depending on the aim of the study, a comparative selection of techniques (e.g. multiple 502 

individual ISAR models and the multi-model averaged curve) may be useful, yielding a range 503 

of predictions with confidence intervals that can be assessed together. In situations where a 504 

single point estimate is required, our results would support judicious use of the power model. 505 

However, further research at larger spatial scales is urgently needed to validate these 506 

recommendations for ISAR extrapolation in a wider context.  507 

 508 

ACKNOWLEDGEMENTS 509 

The recently published ‘sars’ R package, which was used to run the analyses in the paper, 510 

was written in collaboration with François Guilhaumon. François Rigal provided modelling 511 

advice. Two anonymous reviewers provided comments that improved the paper.  512 

 513 

 514 

DATA ACCESSIBILITY 515 

All datasets are publicly available and the full source citations are provided in the Supporting 516 

Information.  517 

 518 

REFERENCES 519 

Arrhenius, O. (1921). Species and area. Journal of Ecology, 9, 95-99. 520 

Bartoń, K. (2012). MuMIn: multi-model inference (R package version 1.40.4). Retrieved 521 

from https://cran.r-project.org/web/packages/MuMIn/index.html 522 

Basset, Y., Cizek, L., Cuénoud, P., Didham, R. K., Guilhaumon, F., Missa, O., . . . Leponce, 523 

M. (2012). Arthropod diversity in a tropical forest. Science, 338, 1481-1484. 524 

Benchimol, M., & Peres, C. A. (2013). Anthropogenic modulators of species–area 525 

relationships in Neotropical primates: a continental-scale analysis of fragmented 526 

forest landscapes. Diversity and Distributions, 19, 1339-1352. 527 



Brooks, T.M., Pimm, S.L. & Collar, N.J. (1997). Deforestation predicts the number of 528 

threatened birds in insular Southeast Asia. Conservation Biology, 11, 382-394. 529 

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model inference: a 530 

practical information-theoretic approach (2nd ed.). New-York: Springer. 531 

Colwell, R. K., & Coddington, J. A. (1994). Estimating terrestrial biodiversity through 532 

extrapolation. Philosophical Transactions: Biological Sciences, 345, 101-118. 533 

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. 534 

Cambridge: Cambridge University Press. 535 

Dengler, J. (2009). Which function describes the species–area relationship best? A review 536 

and empirical evaluation. Journal of Biogeography, 36, 728-744. 537 

Desmet, P., & Cowling, R. (2004). Using the species-area relationship to set baseline targets 538 

for conservation. Ecology and Society, 9, 11-33. 539 

Diamond, J.M. (1975) The island dilemma: lessons of modern biogeographic studies for the 540 

design of natural reserves. Biological Conservation, 7, 129-146. 541 

Gerstner, K., Dormann, C. F., Václavík, T., Kreft, H., & Seppelt, R. (2014). Accounting for 542 

geographical variation in species–area relationships improves the prediction of plant 543 

species richness at the global scale. Journal of Biogeography, 41, 261-273. 544 

Giam, X., & Olden, J. D. (2016). Quantifying variable importance in a multimodel inference 545 

framework. Methods in Ecology and Evolution, 7, 388-397. 546 

Guilhaumon, F., Gimenez, O., Gaston, K. J., & Mouillot, D. (2008). Taxonomic and regional 547 

uncertainty in species-area relationships and the identification of richness hotspots. 548 

Proceedings of the National Academy of Sciences USA, 105, 15458-15463. 549 

Guilhaumon, F., Mouillot, D., & Gimenez, O. (2010). mmSAR: an R-package for multimodel 550 

species–area relationship inference. Ecography, 33, 420-424. 551 

Hanski, I., Zurita, G. A., Bellocq, M. I., & Rybicki, J. (2013). Species–fragmented area 552 

relationship. Proceedings of the National Academy of Sciences USA, 110, 12715-553 

12720. 554 

He, F. & Legendre, P. (1996). On species-area relations. The American Naturalist, 148, 719-555 

737. 556 

Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: an R package for rarefaction and 557 

extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 558 

7, 1451-1456. 559 

Hubbell, S. P., He, F., Condit, R., Borda-de-Água, L., Kellner, J., & ter Steege, H. (2008). 560 

How many tree species are there in the Amazon and how many of them will go 561 

extinct? Proceedings of the National Academy of Sciences USA, 105, 11498-11504. 562 



Kunin, W. E., Harte, J., He, F., Hui, C., Jobe, R. T., Ostling, A., . . . Varma, V. (2018). 563 

Upscaling biodiversity: estimating the species–area relationship from small samples. 564 

Ecological Monographs, 88, 170-187. 565 

Lomolino, M. V. (2000). Ecology's most general, yet protean pattern: the species-area 566 

relationship. Journal of Biogeography, 27, 17-26. 567 

Martin, T.E. (1981). Species-area slopes and coefficients: a caution on their interpretation. 568 

The American Naturalist, 118, 823-837. 569 

Martins, I. S., & Pereira, H. M. (2017). Improving extinction projections across scales and 570 

habitats using the countryside species-area relationship. Scientific Reports, 7, 12899. 571 

Matthews, T. J., Cottee-Jones, H. E., & Whittaker, R. J. (2014). Habitat fragmentation and 572 

the species–area relationship: a focus on total species richness obscures the impact of 573 

habitat loss on habitat specialists. Diversity and Distributions, 20, 1136-1146. 574 

Matthews, T.J., Cottee-Jones, H.E.W. & Whittaker, R.J. (2015). Quantifying and interpreting 575 

nestedness in habitat islands: a synthetic analysis of multiple datasets. Diversity and 576 

Distributions, 21, 392-404. 577 

Matthews, T. J., Guilhaumon, F., Triantis, K. A., Borregaard, M. K., & Whittaker, R. J. 578 

(2016). On the form of species–area relationships in habitat islands and true islands. 579 

Global Ecology and Biogeography, 25, 847–858.  580 

Matthews, T. J., Triantis, K. A., Rigal, F., Borregaard, M. K., Guilhaumon, F., & Whittaker, 581 

R. J. (2016). Island species–area relationships and species accumulation curves are 582 

not equivalent: an analysis of habitat island datasets. Global Ecology and 583 

Biogeography, 25, 607-618. 584 

Matthews, T. J., Triantis, K. A., Whittaker, R. J., & Guilhaumon, F. (2019). sars: an R 585 

package for fitting, evaluating and comparing species–area relationship models. 586 

Ecography, In press. 587 

Mazel, F., Guilhaumon, F., Mouquet, N., Devictor, V., Gravel, D., Renaud, J., . . . Thuiller, 588 

W. (2014). Multifaceted diversity–area relationships reveal global hotspots of 589 

mammalian species, trait and lineage diversity. Global Ecology and Biogeography, 590 

23, 836-847. 591 

Palmer, M. W. (1990). The estimation of species richness by extrapolation. Ecology, 71, 592 

1195-1198. 593 

Plotkin, J. B., Potts, M. D., Yu, D. W., Bunyavejchewin, S., Condit, R., Foster, R., . . . 594 

Ashton, P. S. (2000). Predicting species diversity in tropical forests. Proceedings of 595 

the National Academy of Sciences USA, 97, 10850-10854. 596 



R Core Team. (2017). R: a language and environment for statistical computing (Version 597 

3.5.1). Vienna, Austria: R foundation for statistical computing. Retrieved from 598 

https://www.R-project.org/ 599 

Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge: Cambridge 600 

University Press. 601 

Santos, A.M.C., Whittaker, R.J., Triantis, K.A., Borges, P.A.V., Jones, O.R., Quicke, D.L.J. 602 

& Hortal, J. (2010). Are species–area relationships from entire archipelagos congruent 603 

with those of their constituent islands? Global Ecology and Biogeography, 19, 527-604 

540. 605 

Scheiner, S. M. (2003). Six types of species-area curves. Global Ecology and Biogeography, 606 

12, 441-447. 607 

Smith, A. B. (2010). Caution with curves: caveats for using the species-area relationship in 608 

conservation. Biological Conservation, 143, 555-564. 609 

Tjørve, E. (2003). Shapes and functions of species–area curves: a review of possible models. 610 

Journal of Biogeography, 30, 827-835. 611 

Tjørve, E. (2009). Shapes and functions of species–area curves (II): a review of new models 612 

and parameterizations. Journal of Biogeography, 36, 1435-1445. 613 

Tjørve, E., & Tjørve, K. M. C. (2017). Species-area relationship. eLS (Encyclopedia of Life 614 

Sciences Online). Chichester: John Wiley & Sons. 615 

Triantis, K. A., Guilhaumon, F., & Whittaker, R. J. (2012). The island species–area 616 

relationship: biology and statistics. Journal of Biogeography, 39, 215-231. 617 

Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. 618 

Psychonomic Bulletin & Review, 11, 192-196. 619 

Whittaker, R. J., & Fernández-Palacios, J. M. (2007). Island biogeography: ecology, 620 

evolution, and conservation (2nd ed.). Oxford: Oxford University Press. 621 

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood 622 

estimation of semiparametric generalized linear models. Journal of the Royal 623 

Statistical Society: Series B (Statistical Methodology), 73, 3-36. 624 

 625 

BIOSKETCH 626 

Tom Matthews is a macroecologist and biogeographer at the University of Birmingham, 627 

UK. He is interested in the application of macroecological methods to global environmental 628 

change questions, and his previous work has focused on the impacts of habitat fragmentation 629 

and the form of the species–area relationship in fragmented landscapes.  630 



Thomas Aspin is a disturbance ecologist affiliated with the University of Birmingham. His 631 

research broadly centres on the interface of disturbance ecology, macroecology and 632 

conservation ecology, with particular emphasis on climate change and habitat loss.  633 

Author Contributions: TJM designed the study and collected the data; TJM ran the analyses 634 

with input from TWHA; TJM and TWHA wrote the paper.  635 

 636 

SUPPORTING INFORMATION 637 

Additional Supporting Information may be found online in the supporting information tab for 638 

this article. 639 

 640 

 641 

  642 



TABLES 643 

 644 
Table 1 The twenty models that were fitted to generate the multi-model averaged ISAR 645 

curve. The model shape is the general model shape, as in Triantis et al. (2012); the observed 646 

shape can deviate from the general model shape in cases when fitting certain models. For the 647 

model equation, A = sample area, and d, c, z and f are free parameters. Each equation is 648 

calculating the number of species. Mean weight is the mean AICc weight for a given model 649 

across all fits to the filtered datasets (excluding non-satisfactory fits). Best fit corresponds the 650 

number of times a model provided the best fit to a filtered dataset (i.e. had the lowest AICc 651 

value). Best prediction corresponds to the number of times a model provided the best 652 

extrapolated prediction in the all model comparison; these values do not sum to 120 (the 653 

number of datasets) as the multi-model averaged curve provided the best extrapolation 654 

prediction in five cases. 655 

 656 

Model 
No. 

parameters 
Model shape Equation 

Mean 

weight 
Best fit 

Best 

Prediction 

Asymptotic 3 Convex d - c*z^A 0.04 0 6 

Beta-P 4 Sigmoid d*(1-(1+(A/c)^z)^-f) <0.01 0 4 

Chapman–Richards 3 Sigmoid d * (1 - exp(-z*A)^c) 0.01 0 6 

Logarithmic 2 Convex c+z*log(A) 0.14 16 10 

Extended Power 1 3 Convex/Sigmoid c*A^(z*A^-d) 0.04 0 5 

Extended Power 2 3 Sigmoid c*A^(z-(d/A)) 0.03 1 12 

Gompertz 3 Sigmoid d*exp(-exp(-z*(A-c))) 0.04 2 4 

Kobayashi  2 Convex c*log(1 + A/z) 0.15 13 5 

Linear 2 Linear c + z*A 0.12 21 9 

Logistic 3 Sigmoid c/(f + A^(-z)) 0.03 0 7 

Monod 2 Convex d/(1+c*A^(-1)) 0.10 19 7 

Morgan–Mercer–Flodin 3 Sigmoid d/(1+c*A^(-z)) 0.03 0 1 

Negative Exponential 2 Convex d*(1-exp(-z*A)) 0.10 11 4 

Persistence Function 1 3 Convex c*A^z * exp(-d*A) 0.03 2 2 

Persistence Function 2 3 Sigmoid c*A^z * exp(-d/A) 0.04 2 6 

Power 2 Convex c*A^z 0.16 29 11 

Power Rosenzweig 3 Convex f + c*A^z 0.03 1 6 

Rational 3 Convex (c + z*A)/(1+d*A) 0.03 1 3 

Weibull-3 3 Sigmoid d*(1 - exp(-c*A^z)) 0.04 1 4 

Weibull-4 4 Sigmoid d * (1 - exp(-c*A^z))^f 0.01 1 3 

 657 

 658 

 659 

 660 

 661 

 662 

 663 



Table 2 The results of the generalized additive model selection. The response variable was 664 

the LEE values from 120 habitat island datasets for the power model curve (see the main 665 

text), which provides an assessment of the extrapolation accuracy of the power ISAR model. 666 

The predictor variables were the smallest island area in a dataset (Amin) and the ratio between 667 

the largest and the smallest island area (Ascale), the same two variables but for species richness 668 

(Smin and Sscale), the number of islands in a dataset (Ni), the latitude of the dataset (Lat.) and 669 

the taxon sampled (Taxon). Amin, Ascale, Lat, Ni, Smin and Sscale were all modelled as ‘penalized 670 

regression splines’, while taxon was modelled as a standard linear variable (as it was 671 

categorical). A ‘+’ indicates that a variable was included within a model. Models were ranked 672 

using AICc and all models with delta AICc values less than two are shown. The AICc weight 673 

of each model is also provided. The relative importance (RI) of each predictor is shown on 674 

the bottom row.  675 

Model Amin Ascale Lat. Ni Smin Sscale Taxon Delta Weight 

1 - + + - + + - 0.00 0.20 

2 - + - - + + - 0.48 0.16 

3 + + + - + + - 1.89 0.08 

          

RI 0.27 0.98 0.55 0.25 0.81 0.95 0.15   

 676 
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FIGURES 679 

 680 

Figure 1 The varying species richness predictions of five ISAR models. Each of the five 681 

models (see Table 1) was fitted to a simulated archipelago consisting of eight islands of 682 

varying size (1, 3, 7, 14, 17, 22, 26, and 30; undefined units) and richness (3, 7, 14, 18, 20, 683 

23, 24, and 25). These model fits were then used to predict the richness of an island of size 80 684 

(grey dotted line).  685 

  686 



 687 

Figure 2 Fitted smoothers from the best fit generalized additive model showing the partial 688 

effects of Ascale, Latitude, Smin and Sscale on the LEE-POW values. The fitted values have been 689 

shifted in each plot by adding the model intercept (0.04) value (using the shift argument in 690 

the plot.gam R function). The effective degrees of freedom for each smoother are: Ascale 691 

(1.00), Latitude (1.00), Smin (3.53) and Sscale (2.70). The dashed lines represent the standard 692 

error curves (two SE above and below). Each LEE-POW value relates to the accuracy of a 693 

prediction of the number of species on a habitat island using the power model. For each of 694 

120 habitat island datasets, the largest island and all islands larger than half the size of the 695 

largest island were removed and the power model fitted to the filtered dataset and 696 

extrapolated. 697 
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