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First evidence of denitrification vis-
à-vis monsoon in the Arabian Sea 
since Late Miocene
Shubham Tripathi1, Manish Tiwari1, Jongmin Lee2, Boo-Keun Khim2 & IODP Expedition 355 
Scientists†

In the Arabian Sea, South Asian monsoon (SAM)-induced high surface water productivity coupled with 
poor ventilation of intermediate water results in strong denitrification within the oxygen minimum zone 
(OMZ). Despite the significance of denitrification in the Arabian Sea, we have no long-term record of 
its evolution spanning the past several million years. Here, we present the first record of denitrification 
evolution since Late Miocene (~10.2 Ma) in the Eastern Arabian Sea, where the SAM generates 
moderate surface water productivity, based on the samples retrieved during the International Ocean 
Discovery Program (IODP) Expedition 355. We find that (i) the SAM was persistently weaker from ~10.2 
to 3.1 Ma; it did not intensify at ~8 Ma in contrast to a few previous studies, (ii) on tectonic timescale, 
both the SAM and the East Asian Monsoon (EAM) varied synchronously, (iii) the first evidence of 
denitrification and productivity/SAM intensification was at ~3.2–2.8 Ma that coincided with Mid-
Pliocene Warm Period (MPWP), and (iv) the modern strength of the OMZ where denitrification is a 
permanent feature was attained at ~1.0 Ma.

Oxygen minimum zones (OMZs) - the regions of dissolved oxygen deficient (O2 <​ 20 μ​M) water located in the 
tropical oceans - have been proposed to expand in the present scenario of global warming1,2. OMZs play a sig-
nificant role in producing N2O - a powerful greenhouse gas through the process of denitrification (a process by 
which nitrate and nitrite are reduced to nitrogen gas) when the dissolved O2 levels fall below 1 μ​Μ​3. A perennial 
OMZ develops between 150 and 1000 m water depth in the Arabian Sea due to various natural factors such as 
high surface water productivity and reduced ventilation of intermediate water4. The anoxic zones of these OMZs 
occupy only ~0.8% of the world ocean but are responsible for the highest production of N2 through denitrifica-
tion (~35% of the global production) out of which the Arabian Sea contributes the largest proportion (~17% of 
global N2 production)5. The balance between nitrogen fixation and its removal through N2 production is a key to 
carbon assimilation by primary production and CO2 regulation in the atmosphere3,6. In the Arabian Sea, most of 
the studies have examined denitrification variability over the past 100 kyr or younger; the longest record available 
goes back to 1 Ma in the Western Arabian Sea7. Hence, there is a lack of information regarding the long-term evo-
lution of denitrification spanning the past several million years, especially from the Eastern Arabian Sea. Here, we 
examine samples from Site U1456 in the Eastern Arabian Sea retrieved during the IODP Expedition 3558 (Fig. 1).

To reveal the long-term OMZ variability and its coupling with surface water productivity, we analyzed multi-
ple isotopic and geochemical proxies viz. nitrogen and carbon isotopic ratios (δ​15N and δ​13C), total organic carbon 
and total nitrogen (TOC and TN) concentrations, and carbon to nitrogen (C/N) weight ratio of sedimentary 
organic matter (SOM).

Study Area
Site U1456 is located at 16°37.28′​N, 68°50.33′​E in the Eastern Arabian Sea (EAS) (Fig. 1), ~475 km away from 
the Indian coast, and ~820 km from the modern mouth of the Indus River, and within the Laxmi Basin which is 
flanked by the Laxmi Ridge to the west and the Indian continental shelf to the east. The Laxmi Basin is charac-
terized by a 200–250 km wide depression that runs in a northwest–southeast direction parallel to the west coast 
of India8. The site is situated at a water depth of 3640 m, which lies well above the modern lysocline (~3800 m) 
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in the Arabian Sea8. Three distinct water masses identified by Rochford9 in the Arabian Sea are Arabian Sea 
High Salinity Water (~50 m to 75 m) (ASHSW), Persian Gulf Water (~25 m to 70 m) (PGW), and Red Sea Water 
(~600 m to 900 m) (RSW)10. ASHSW shows greater seasonal variability than PGW and RSW and is considered 
as the main source of oxygen in the Western Arabian Sea (WAS)9,11. Thus, the subsurface denitrification intensity 
in the WAS is controlled by the surface productivity as well as the supply of oxygen from the water masses11. 
However, in the EAS, the subsurface denitrification is expected to be controlled mainly by the extent of surface 
productivity12. An Argo float-based study in the Arabian Sea revealed the presence of high salinity water with 
inter-seasonal to inter-annual variability13. The vertical mixing of PGW and RSW between ~250 m to ~800 m 
result in the formation of the Arabian Sea Intermediate Water14. The deep water masses of the Indian Ocean com-
prise Antarctic Bottom Water (AABW), Circumpolar Deep Water (CDW), and Indian Deep Water (IDW). IDW 
forms in the Indian Ocean itself by the process of diffusion and upwelling and is characterised by low oxygen 
content and relatively enriched nutrients because of its aging15. The present-day bottom water in the Arabian Sea 
flows northward and upwells into the layer of North Indian Deep Water (~1500–3500 m)16.

Results and Discussion
The drilled section at Site U1456 is divided into four lithologic units based on a variety of sediment properties 
(Fig. 2a); Unit I (~121 m thick and Pleistocene nannofossil ooze interbedded with very thin turbidites), Unit II 
(~240 m thick and late Pliocene to early Pleistocene sand and silt), Unit III (~370 m thick and late Miocene to late 
Pliocene clay/claystone, sand/sandstone, nannofossil chalk, and nannofossil-rich claystone), and Unit IV (~380 m 
thick and older than late Miocene claystone, calcarenite, calcilutite, and conglomerate/breccia). These lithologies 
are characterized by different mineralogical and geochemical properties8.

Since the drilled core is very long (1109.4 m) and the site is quite deep (3640 m)8, the isotopic ratios of the SOM 
should be evaluated for the diagenetic alterations related to the lithology. Diagenesis of the organic matter begins 
within the photic zone of the water column, which continues during sinking. It further maintains unceasingly 
within the bioturbated mixed layer of sediment (a few cm to ~10 cm depth) and only a few percent (1 to 0.01%) of 
organic matter is finally buried/preserved in the sediment17. Although microbial activity has been found even up 
to several hundred meters deep into the sedimentary sequence18, diagenesis reduces significantly with increasing 
depth. Popp et al.19 suggested that despite the loss of organic matter due to remineralization, the δ​13C of SOM 
remains almost unchanged with increasing depth. Similarly, a very small δ​15N offset was found between core top 
sediments and sinking particles in the equatorial Pacific region; the loss of organic matter due to diagenesis in the 
upper section of the core top shows no corresponding δ​15N change11. Core top studies from the Western Arabian 
Sea reported no correlation between TN and δ​15N, which indicates that diagenesis does not affect δ​15N variation7. 
We also obtain no relationship between TN and δ​15N (r2 =​ 0.19; Supplementary Fig. 1). Thus, diagenesis appears 
to cause no significant alteration in δ​13C and δ​15N values of SOM at Site U1456.

The C/N ratio of marine organic matter generally ranges from 8 to 1020. Terrestrial organic matter predom-
inantly consists of compounds like cellulose and lignin with much low nitrogen content. The C/N ratios of 
land-derived organic matter, therefore, are much high in the range between 20 and 10020. The mean δ​13C values 

Figure 1.  Locations of the IODP Expedition 355 Site U1456 in the Eastern Arabian Sea (3640 m of water 
depth, 16°37.28′N, 68°50.33′E) denoted by pink star8. The red circles represent ODP and IODP sites in the 
Arabian Sea7,27,28,29,32, Bay of Bengal33,34 and South China Sea38,41, which have been discussed in the present 
study. The white patch represents Potwar plateau31. The thin dotted curves in the Arabian Sea and the Bay of 
Bengal show modern anoxia1 based on WOA2005 climatology. The thick black dotted curve in the Arabian 
Sea represents the approximate extent of denitrification zone42 (Figure created using GeoMapApp3.6.0, www.
geomapapp.org).
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of the marine organic matter, C4, and C3 plants are about −​21‰, −​13‰, and −​27‰, respectively21. The C/N 
ratio together with δ​13C of SOM has been widely used to determine the origin of organic matter20. At Site U1456, 
the δ​13C values vary from −​18‰ to −​25‰ and most of the C/N ratios range from 6 to 10, indicating that SOM is 
mostly of marine origin (Fig. 2e,f and Supplementary Fig. 2).

Based on surface sediment analysis of more than 100 locations in the Central and Eastern Arabian Sea (most 
of them are located in the Eastern Arabian Sea), the δ​15N values of SOM have been found to vary from 6‰ to 
11‰22. In most of the oxygenated basins, the δ​15N values do not exceed 6‰ while those from the oxygen deficient 
basins are highly enriched with mostly higher than 6‰7,22,23,24. Thus, the periods with δ​15N values higher than 
6‰ may signify denitrification associated with strong OMZ. At Site U1456, the δ​15N values of SOM vary between 
2.4‰ to 8.2‰ (Fig. 2b). The maximum TOC and TN values are 2.42% and 0.17%, respectively (Fig. 2c,d). The 
Mid-to Late Pliocene (~3.2 to 2.7 Ma) is characterized by high δ​15N values (>​6‰) along with high TOC and 
TN values, indicating denitrification/strong OMZ (Fig. 2). Another period of denitrification/OMZ intensifica-
tion (δ​15N >​ 6‰) takes place from ~1.0 Ma to the core top (0.03 Ma) (Fig. 2b). During these periods of intense 
denitrification, the surface water productivity indicators viz. TOC and TN contents also represent an increasing 
trend (Fig. 2c,d). Intense wind-induced productivity and particle flux occur in the Arabian Sea during the mon-
soon seasons25. Modern climatological chlorophyll a data show that the surface water productivity in the Eastern 
Arabian Sea is driven by both the summer and the winter monsoons26. Thus, surface water productivity variability 
in the Eastern Arabian Sea is a manifestation of the SAM variability, which can be linked to denitrification/OMZ 
intensification.

The origin and evolution of the SAM are still a topic of debate. According to the previous hypothesis based 
on a study from the Western Arabian Sea (Ocean Drilling Program (ODP) Site 722), the initiation/intensifica-
tion of the SAM occurred at around 8.5 Ma and continued until 6 Ma27 (Fig. 3g). Another study from the same 
ODP Site 722 shows that the onset of the SAM took place at ~12.9 Ma and a major intensification occurred at 
~7 Ma28. In contrast, a decrease in G. bulloides abundance was found at 8.5 Ma (Fig. 3f) from the ODP Site 722 
implying reducing SAM29. A recent study from the inner seas of the Maldives (IODP sites U1465-71) postulates 
a proto-monsoon from 25–12.9 Ma and an abrupt increase in the monsoon at ~12.9 Ma30 (Fig. 3d). The δ​13C  
values of paleosols from the Siwalik Group sediments in the northern Pakistan spanning the past 18 Myr showed 
a marked shift from C-3 to C-4 dominated plants at ~7.4 Ma, which may be associated with SAM inception 
and again the flood plains were mostly occupied by C-4 grassland in Plio-Pleistocene31 indicating monsoon 

Figure 2.  Record of denitrification, surface water productivity, and provenance of the Sedimentary 
Organic Matter (SOM) in the Eastern Arabian Sea since Late Miocene. (a) Lithostratigraphy of site U1456, 
(b) denitrification variability (δ​15N of SOM), (c,d) paleoproductivity variability (weight percent total organic 
carbon [TOC] and total nitrogen [TN] of SOM), (e,f) SOM provenance indicators (δ​13C and C/N ratio). 
The coloured, rectangular boxes show the intensified OMZ coupled with surface water productivity when 
denitrification occurred in the basin. The horizontal dotted lines indicate the position of the hiatuses. The 
vertical dashed line over panel ‘b’ show denitrification threshold and horizontal brown lines separates different 
lithological units. The age data (in Ma) at Site U1456, shown by the Indo-Arabic numerals in ‘panel b’, are based 
on calcareous nannofossil and planktonic foraminifera biostratigraphy, together with magnetostratigraphy8.
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intensification (Fig. 3h). Recent records of Himalayan weathering represented by the chemical index of alteration 
(CIA) and K/Al ratios (Fig. 3c) demonstrated that SAM attained the maximum strength at 15 Ma, remained high 
until 10.5 Ma, gradually weakened until ~3.5 Ma, and again increased from the Late Pliocene to Pleistocene32. The 
Sr isotope and clay mineral data also suggested weaker SAM after 8 Ma33. Our record from Site U1456 spans ~10.2 
to 0.03 Ma, but includes several hiatuses dated to ~8.2–9.2 Ma, ~3.7–5.4 Ma, and ~1.6–2.2 Ma8. Nevertheless, we 
interpret that surface water productivity in the Eastern Arabian Sea was low from 10.15 Ma to 3.2 Ma as evident 
from uniformly low values of TOC and TN (3a and 2b). Additionally, during this period, the δ​15N did not reach 
the threshold value (~6‰) indicative of denitrification (Fig. 3a). This implies that neither the surface water pro-
ductivity (TOC, TN) nor the OMZ intensity supports any major intensification in SAM strength from ~10 to 
~3.2 Ma, which is also documented in the different regions (the South China Sea, the Northern Arabian Sea and 
the Bay of Bengal)32,34. These studies32,34 reported that SAM and EAM were reduced more or less in parallel albeit 
with a time-lag; the EAM started declining at ~10 Ma while the SAM began decreasing at ~8 Ma. But, we find that 
the SAM was weak at ~10 Ma indicating that EAM and SAM varied in consonance, without any apparent time 
lag, on tectonic timescale. This Late Miocene reduction in monsoon strength could be a result of global cooling 
after the Middle Miocene Climatic Optimum35. At around 8 Ma, δ​15N values vary between 3.7‰ to 5.8‰, i.e., the 
OMZ was not intense enough to cause denitrification and the surface water productivity was diminished (Figs 2 
and 3a), which implies that SAM did not intensify at ~8 Ma.

Figure 3.  Comparative records of the South Asian Monsoon and East Asian Monsoon since Mid-Miocene. 
(a) δ​15N and total organic carbon (TOC) from IODP site U1456, (b) Magnetic susceptibility record37 of Chinese 
loess plateau and Hm/Gt (40 point moving average) from the South China Sea ODP site 114338, (c) Chemical 
Index of Weathering (CIA) from the Indus river fan32, (d) Mn/Ca record from the Maldives inner Sea30 (e) 
Magnetic susceptibility record of the southern Bay of Bengal ODP site 75834, (f) G. bulloides abundance from 
ODP site 72229, (g) G. bulloides abundance from ODP site 72227, and (h) δ​13C of calcretes from the Potwar 
Plateau31. The green arrows represent the strengthening of monsoon and the purple indicate the weakening of 
monsoon. The yellow band marks the arid period when many of the studies including the present study show 
the weakened monsoon while the green bands indicate the periods of strengthened monsoon.
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During the study period, for the first time, the OMZ intensified to the level that denitrification takes place was 
at ~3.2–2.8 Ma (Fig. 2b). During this period, the surface water productivity (Fig. 2c,d) was also enhanced, indi-
cating stronger SAM, which coincides with MPWP36. Earlier studies, based on magnetic susceptibility (Chinese 
Loess Plateau, Fig. 3b; southern Bay of Bengal, Fig. 3e) and hematite to goethite ratio (Hm/Gt, South China 
Sea, Fig. 3b), also reported the enhanced SAM and EAM during ~3.6–2.6 Ma34,37,38. A new magnetostratigraphy 
study from Chinese Loess Plateau spanning from ~8.2 Ma to 2.6 Ma documented long-term East Asian Summer 
Monsoon (EASM) intensification. Both proxy, as well as numerical climate model assessment, show that the 
Antarctic glaciation was an important driver for the long-term trend of late Miocene-Pliocene EASM intensifica-
tion39. To examine the responsible mechanisms, a modeling experiment, using the NCAR climate model CCM3, 
with idealized Himalayan-Tibetan Plateau elevations explains the observed increase of the EAM as a result that 
the Himalayan-Tibetan Plateau attained modern extension along its eastern and northern margins34. It was spec-
ulated that it might not have affected the SAM circulation pattern34. The present study, based on the multi-proxy 
records, suggests that the SAM was also enhanced in parallel with the EAM and therefore the intensification can 
be ascribed to the same mechanism. A recent review40 investigated the role of the Tibet Plateau in affecting SAM, 
and found that it simply acts as a physical barrier for northerly cool, dry winds. Its role as an elevated heat source 
is of secondary importance in affecting the SAM. EAM dynamics is also affected by the Tibet Plateau, which is 
located in the path of subtropical jet streams40. The increase in both the EAM and SAM during ~3.6–2.6 Ma could 
have resulted in the increased weathering and organic carbon burial, as evident by higher TOC (Fig. 2c), leading 
to atmospheric CO2 drawdown that would have possibly contributed to Northern Hemisphere Glaciation (NHG) 
at 2.7 Ma40. Thereafter, from 2.8 Ma to ~1.0 Ma, δ​15N values as well as the surface water productivity declined in 
parallel, indicating relatively weaker SAM. Previous studies also reported the weakened EAM and SAM after 
~2.6 Ma34,36,37, confirming our results, which coincides with the onset of NHG. Finally, the OMZ reached its mod-
ern strength, i.e., denitrification became a permanent feature, at about ~1.0 Ma closely following the enhanced 
surface water productivity. It implies that SAM intensified from ~1.0 Ma as reported in earlier studies viz. the 
enhanced sedimentation rate in the Indus Fan32, the increased chemical weathering from the Bengal Fan33 and the 
South China Sea41, the rise of magnetic susceptibility (Fig. 3b) and mean sediment flux from the Indian Ocean38.

Methods
The samples used in the present study were obtained onboard the JOIDES Resolution. 5–15 cm long whole-round 
core sections at the interval of every core or every alternate core were squeezed using titanium steel squeezing 
device to obtain the interstitial water. The remaining sediments are named ‘squeeze cake’. The samples were dried 
to remove the moisture at 45 °C before processing. Around 10 to 20 g of sediment aliquots were taken for further 
analysis. Dried samples were finely grounded for homogenization. Homogeneous samples were divided into two 
batches for geochemical and isotopic analyses - (i) 2 N HCl treatment for total organic carbon (TOC) and δ13C 
measurement and (ii) untreated for determination of total nitrogen (TN) content and δ15N values. 20 ml of 2 N 
HCl solution was added to 5–10 g of fine sediment powder. The mixture was shaken mechanically and allowed to 
stand for ~12 hours. The sample was then washed with ultrapure demineralized water and approximately 25 mg 
of treated sample was used for TOC and δ13C analysis. For TN and δ15N measurement, approximately 40 mg of 
bulk ground sediment was used. The δ​15N and δ​13C values were determined using isotope ratio mass spectrom-
eter coupled with an element analyzer at Marine Stable Isotope Lab, National Centre for Antarctic and Ocean 
Research, Goa, India and Department of Oceanography, Pusan National University, Busan, Korea. The standard 
used was ammonium sulfate (IAEA-N-1) and cellulose (IAEA-CH-3). The analytical precision for δ​15N and δ​13C is 
±​0.12‰ and ±​0.06‰, respectively. Similarly, TN and TOC were determined using sulfanilamide as the standard. 
The analytical precision for TN and TOC is ±​0.63% and ±​0.84%, respectively.

Data Availability.  The data used in this study are included in the supplementary information files.
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