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Runtime Analysis of the Univariate Marginal
Distribution Algorithm under Low Selective Pressure

and Prior NoiseI

Per Kristian Lehre & Phan Trung Hai Nguyen

School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K.

Abstract

We perform a rigorous runtime analysis for the Univariate Marginal Distribution
Algorithm on the LeadingOnes function, a well-known benchmark function
in the theory community of evolutionary computation with a high correlation
between decision variables. For a problem instance of size n, the currently best
known upper bound on the expected runtime is O

(
nλ log λ+ n2

)
(Dang and

Lehre, GECCO 2015), while a lower bound necessary to understand how the
algorithm copes with variable dependencies is still missing. Motivated by this,
we show that the algorithm requires a eΩ(µ) runtime with high probability and in
expectation if the selective pressure is low; otherwise, we obtain a lower bound of
Ω( nλ

log(λ−µ) ) on the expected runtime. Furthermore, we for the first time consider

the algorithm on the function under a prior noise model and obtain an O
(
n2
)

expected runtime for the optimal parameter settings. In the end, our theoretical
results are accompanied by empirical findings, not only matching with rigorous
analyses but also providing new insights into the behaviour of the algorithm.

Keywords: Univariate marginal distribution algorithm, leadingones, noisy
optimisation, running time analysis, theory

1. Introduction

Estimation of Distribution Algorithms (EDAs) [1, 2, 3] are black-box opti-
misation methods that search for optimal solutions by building and sampling
from probabilistic models. They are known by various other names, including
probabilistic model-building genetic algorithm or iterated density estimation al-
gorithms. Unlike traditional evolutionary algorithms (EAs), which use standard
genetic operators such as mutation and crossover to create variations, EDAs, on
the other hand, achieve it via model building and model sampling. The workflow
of EDAs is an iterative process. The starting model is a uniform distribution over
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Evolutionary Computation Conference (GECCO 2019), Prague, Czech Republic.

Preprint submitted to Pure May 3, 2019



the search space, from which the initial population of λ individuals is sampled.
The fitness function then scores each individual, and the algorithm selects the
µ < λ fittest individuals to update the model. The procedure is repeated many
times and terminates when a threshold on the number of iterations is exceeded
or a solution of good quality is obtained [4, 5]. We call the value λ the offspring
population size, while the value µ is known as the parent population size of the
algorithms.

Several EDAs have been proposed over the last decades. They differ in how
they learn the variable interactions and build/update the probabilistic models
over iterations. In general, EDAs can be categorised into two classes: univariate
and multivariate. Univariate EDAs, which take advantage of first-order statistics
(i.e. the means while assuming variable independence), usually represent the
model as a probability vector, and individuals are sampled independently and
identically from a product distribution. Typical EDAs in this class are the
Univariate Marginal Distribution Algorithm (UMDA [1]), the compact Genetic
Algorithm (cGA [6]) and the Population-Based Incremental Learning (PBIL
[7]). Some ant colony optimisation algorithms like the λ-MMAS [8] can also
be cast into this framework (also called n-Bernoulli-λ-EDA [9]). In contrast,
multivariate EDAs apply statistics of order two or more to capture the underlying
structures of the addressed problems. This paper focuses on univariate EDAs
on discrete optimisation, and for that reason we refer the interested readers to
[5, 10] for other EDAs on a continuous domain.

In the theory community, researchers perform rigorous analyses to gain
insights into the runtime (synonymously, optimisation time), which is defined as
the number of function evaluations of the algorithm until an optimal solution is
found for the first time. In other words, theoretical work usually addresses the
unlimited case when we consider the run of the algorithm as an infinite process.
Considering function evaluations is motivated by the fact that these are often
the most expensive operations, whereas other operations can usually be executed
very quickly. Steady-state algorithms like the simple (1 + 1) EA have the number
of function evaluations equal the number of iterations, whereas for univariate
EDAs the former is larger by a factor of the offspring population size λ than
the latter. Runtime analyses give performance guarantee of the algorithms
for a wide range of problem instance sizes. Due to the complex interplay of
variables and limitations on the state-of-the-art tools in algorithmics, runtime
analysis is often performed on simple (artificial) problems such as OneMax,
LeadingOnes and BinVal, hoping that this provides valuable insights into the
development of new techniques for analysing search heuristics and the behaviour
of such algorithms on easy parts of more complex problem spaces [11]. By
2015, there had been a handful of runtime results for EDAs [12, 9], since then
this class of algorithms have constantly drawn more attention from the theory
community as evidenced in the increasing number of EDA-related publications
recently [9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Droste [25] in 2006 performed the first rigorous analysis of the cGA, which
works on a population of two individuals and updates the probabilistic model
additively via a parameter K (also referred to as the hypothetical population
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size of a genetic algorithm that the cGA is supposed to model) and obtained
a lower bound Ω(K

√
n) = Ω(n1+ε) on the expected runtime for the cGA on

any pseudo-Boolean function for any small constant ε > 0. Each component in
the probabilistic model (also called marginal) of the cGA considered in [25] is
allowed to reach the extreme values zero and one. Such an algorithm is referred
to as an EDA without margins, since in contrast it is possible to reinforce
the margins [1/n, 1 − 1/n] (sometimes called borders) to keep it away from
the extreme probabilities. Friedrich et al. [9], on consideration of univariate
EDAs (without borders), conjectured that the cGA might not optimise the
LeadingOnes function efficiently (i.e., within an O

(
n2
)

expected runtime)
as the algorithm is balanced but not stable. They then proposed a so-called
stable cGA to overcome this, which requires an O(n log n) expected runtime
on the same function. Motivated by the same work, Doerr et al. [23] recently
developed the significant cGA, which uses memory to determine when the
marginals should be set to a value in the set {1/n, 1/2, 1−1/n}, and surprisingly
the algorithm optimises the OneMax and LeadingOnes functions using an
O(n log n) expected runtime.

The UMDA is probably the most famous univariate EDA. In each so-
called iteration, the algorithm updates each marginal to the corresponding
frequency of 1s among the µ fittest individuals. In 2015, Dang and Lehre [12]
via the level-based theorem [26] obtained an upper bound of O

(
nλ log λ+ n2

)
on the expected runtime for the algorithm (with margins) on the LeadingOnes
function when the offspring population size is λ = Ω(log n) and the selective
pressure µ/λ ≤ 1/(1 + δ)e for any constant δ > 0. For the optimal setting
λ = O(n/ log n), the above bound becomes O

(
n2
)
, which emphasises the need

of borders for the algorithm to optimise the LeadingOnes function efficiently
compared to the findings in [9]. We also note that a generalisation of the UMDA
is the PBIL [7], which updates the marginals using a convex combination with a
smoothing parameter η ∈ [0, 1] between the current marginals and the frequencies
of 1s among the µ fittest individuals in the current population. Wu et al. [15]
performed the first rigorous runtime analysis of the algorithm, where they argued
that for a sufficiently large population size, the algorithm can avoid making
wrong decisions early even when the smoothing parameter is large. They also
showed an upper bound O

(
n2+ε

)
on the expected runtime for the PBIL (with

margins) on the LeadingOnes function for some small constant ε > 0. The
required offspring population size yet still remains large [15]. Very recently, Lehre
and Nguyen [20], via the level-based theorem with some additional arguments,
obtained an upper bound O

(
nλ log λ+ n2

)
on the expected runtime for the

offspring population sizes λ = Ω(log n) and a sufficiently high selective pressure.
This result improves the bound in [15] by a factor of Θ(nε) for the optimal
parameter setting λ = O(n/ log n).

In this paper, we analyse the UMDA in order to, when combining with
previous results [12, 19], completes the picture on the runtime of the algorithm
on the LeadingOnes function, a widely used benchmark function with a high
correlation between variables. We first show that under a low selective pressure
the algorithm fails to optimise the function in polynomial runtime with high

3



probability and in expectation. This result essentially reveals the limitations of
probabilistic models based on probability vectors as the algorithm hardly stays in
promising states when the selective pressure is not high enough, while the global
optimum cannot be sampled with high probability. On the other hand, when the
selective pressure is sufficiently high, we obtain a lower bound of Ω( nλ

log(λ−µ) ) on

the expected runtime for the offspring population sizes λ = Ω(log n). Moreover,
we introduce noise to the LeadingOnes function, where a uniformly chosen bit
is flipped with (constant) probability p < 1 before evaluating the fitness (also
called prior noise). Via the level-based theorem, we show that the expected
runtime of the algorithm on the noisy function is still O

(
n2
)

for an optimal
population size λ = O(n/ log n). To the best of our knowledge, this is the
first time that the UMDA is rigorously studied in a noisy environment, while
the cGA is already considered in [17] under Gaussian posterior noise. Despite
the simplicity of the noise model, this can be viewed as the first step towards
understanding the behaviour of the algorithm in a noisy environment. In the end,
we provide empirical results to support our theoretical analyses and give new
insights into the run of the algorithm which the theoretical results do not cover.
Moreover, many algorithms similar to the UMDA with a fitness proportional
selection are popular in bioinformatics [27], where they relate to the notion of
linkage equilibrium [28, 29] – a popular model assumption in population genetics.
Therefore, studying the UMDA especially in the presence of variable dependence
and mild noise solidifies our understanding of population dynamics.

The paper is structured as follows. Section 2 introduces the studied algorithm.
Section 3 provides a detailed analysis for the algorithm on the LeadingOnes
function in case of low selective pressure, followed by the analysis for a high
selective pressure in Section 4. In Section 5, we introduce the LeadingOnes
function with prior noise and show an upper bound O

(
n2
)

on the expected
runtime. Section 6 presents an empirical study to complement theoretical results
derived earlier. The paper ends in Section 7, where we give our concluding
remarks and speak of potential future work.

2. The algorithm

In this section we describe the studied algorithm. Let X = {0, 1}n be a finite
binary search space with n dimensions, and each individual in X is represented
as x = (x1, x2, . . . , xn). The population of λ individuals in iteration t is denoted

as Pt := (x
(1)
t , . . . , x

(λ)
t ). We consider the maximisation of an objective function

f : X → R.
The UMDA, defined in Algorithm 1, maintains a probabilistic model that is

represented as an n-vector pt := (pt,1, . . . , pt,n), and each marginal pt,i ∈ [0, 1]
for i ∈ [n] (where [n] := [1, n]∩N) is the probability of sampling a one at the i-th
bit position in the offspring. The joint probability distribution of an individual
x ∈ X given the current model pt is formally defined as

Pr(x | pt) =

n∏
i=1

(pt,i)
xi(1− pt,i)1−xi . (1)
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The starting model is the uniform distribution p0 := (1/2, . . . , 1/2). In an
iteration t, the algorithm samples a population Pt of λ individuals, sorts them
in descending order according to fitness and then selects the µ fittest individuals
to update the model (also called the selected population). Let Xt,i denote
the number of 1s sampled at bit position i ∈ [n] in the selected population.
The algorithm updates each marginal using pt+1,i = Xt,i/µ. Each marginal is
also restricted to be within the interval [1/n, 1 − 1/n], where the values 1/n
and 1− 1/n are called lower and upper border, respectively. We call the ratio
γ∗ := µ/λ the selective pressure of the algorithm.

Algorithm 1: UMDA

1 t← 0; initialise pt ← (1/2, 1/2, . . . , 1/2)
2 repeat
3 for j = 1, 2, . . . , λ do

4 sample x
(j)
t,i ∼ Bernoulli(pt,i) for each i ∈ [n]

5 sort Pt ← (x
(1)
t , x

(2)
t , . . . , x

(λ)
t ) such that

f(x(1)) ≥ f(x(2)) ≥ . . . ≥ f(x(λ))
6 for i = 1, 2, . . . , n do
7 pt+1,i ← max{1/n,min{1− 1/n,Xt,i/µ}}
8 t← t+ 1

9 until termination condition is fulfilled

3. Low Selective Pressure

Recall that we consider the problem of maximising the number of leading 1s
in a bitstring, which is defined by

LeadingOnes(x) :=

n∑
i=1

i∏
j=1

xj .

The bits in this particular function are highly correlated, so it is often used
to study the ability of EAs to cope with variable dependency [30]. Previous
studies [12, 19] showed that the UMDA optimises the function within an O

(
n2
)

expected time for the optimal offspring population size λ = O(n/ log n).
Before we get to analysing the function, we introduce some notation. Let

Ct,i for all i ∈ [n] denote the number of individuals having at least i leading
1s in iteration t, and Dt,i is the number of individuals having i− 1 leading 1s,
followed by a 0 at the block i. For the special case of i = 1, Dt,i consists of those
with zero leading 1s. Furthermore, let (Ft)t∈N be a filtration induced from the
population (Pt)t∈N.

Once the population has been sampled, the algorithm invokes truncation
selection to select the µ fittest individuals to update the probability vector. We
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take this µ-cutoff into account by defining a random variable

Zt := max{i ∈ N : Ct,i ≥ µ},

which tells us how many marginals, counting from position one, are set to the
upper border 1 − 1/n in iteration t. Furthermore, we define another random
variable

Z∗t := max{i ∈ N : Ct,i > 0}

to be the number of leading 1s of the fittest individual(s). For readability, we
often leave out the indices of random variables like when we write Ct instead of
Ct,i, if values of the indices are clear from the context.

3.1. On the distributions of Ct,i and Dt,i

In order to analyse the distributions of the random variables Ct,i and Dt,i, we
shall take an alternative view on the sampling process at an arbitrary bit position
i ∈ [n] in iteration t ∈ N via the principle of deferred decisions [31]. We imagine
that the process samples the values of the first bit for λ individuals. Once this
has finished, it moves on to the second bit and so on until the population is
sampled. In the end, we will obtain a population that is sorted in descending
order according to fitness.

We now look at the first bit in iteration t. The number of 1s sampled in
the first bit position follows a binomial distribution with parameters λ and
pt,1, i.e., Ct,1 ∼ Bin(λ, pt,1). Thus, the number of 0s at the first bit position is
Dt,1 = λ− Ct,1.

Having sampled the first bit for λ individuals, and note that the bias due to
selection in the second bit position comes into play only if the first bit is 1. If
this is the case, then a 1 is more preferred to a 0. The probability of sampling a 1
is pt,2; thus, the number of individuals having at least 2 leading 1s is binomially
distributed with parameters Ct,1 and pt,2, that is, Ct,2 ∼ Bin(Ct,1, pt,2), and
the number of 0s equals Dt,2 = Ct,1 − Ct,2. Unlike the first bit position, there
are still Dt,1 remaining individuals, since for these individuals the first bit is a
0, there is no bias between a 1 and a 0. The number of 1s follows a binomial
distribution with parameters Dt,1 (or λ− Ct,1) and pt,2.

We can generalise this result for an arbitrary bit position i ∈ [n]. The
number of individuals having at least i leading 1s follows a binomial distribution
with Ct,i−1 trials and success probability pt,i, i.e., Ct,i ∼ Bin(Ct,i−1, pt,i), and
Dt,i = Ct,i−1−Ct,i. Furthermore, the number of 1s sampled among the λ−Ct,i−1

remaining individuals is binomially distributed with λ−Ct,i−1 trials and success
probability pt,i. If we consider the expectations of these random variables, by
the tower rule [32] and noting that pt,i is Ft−1-measurable, we then get

E[Ct,i | Ft−1] = E[E[Ct,i | Ct,i−1] | Ft−1] = E[Ct,i−1 | Ft−1] · pt,i, (2)

and similarly

E[Dt,i | Ft−1] = E[Ct,i−1 | Ft−1] · (1− pt,i). (3)
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We aim at showing that the UMDA takes exponential time to optimise the
LeadingOnes function when the selective pressure is not sufficiently high, as
required in [19]. Later analyses are concerned with two intermediate values:

α = α(n) := log(γ∗/(1− δ))/ log(1− 1/n) (4)

β = β(n) := log(γ∗/(1 + δ))/ log(1− 1/n) (5)

for any constant δ ∈ (0, 1). Clearly, we always get α ≤ β. We also define a
stopping time τ := min{t ∈ N | Zt ≥ α} to be the first hitting time of the value
α for the random variable Zt. We then consider two phases: (1) until the random
variable Zt hits the value α for the first time (t ≤ τ), and (2) after the random
variable Zt has hit the value α for the first time (t > τ).

3.2. Before Zt hits value α for the first time

The algorithm starts with an initial population P0 sampled from a uniform
distribution p0 = (1/2, . . . , 1/2). An initial observation is that the all-ones
bitstring cannot be sampled in the population P0 with high probability since
the probability of sampling it from the uniform distribution is 2−n, then by
the union bound [31] it appears in the population P0 with probability at most
λ · 2−n = 2−Ω(n) since we only consider the offspring population of size at most
polynomial in the problem instance size n. The following lemma states the
expectations of the random variables Z∗0 and Z0.

Lemma 1. E[Z∗0 ] = O(log λ), and E[Z0] = O(log(λ− µ)).

The proof uses that the random variables Z∗0 and Z0 denote the expected
numbers of leading 1s of the fittest individual in populations of λ and λ − µ
individuals, respectively, sampled from a uniform distribution and by a result
in [33]. We now show that the value of the random variable Zt never decreases
during phase 1 with high probability by noting that its value gets decreased if
the number of individuals with at least Zt leading 1s in iteration t + 1 is less
than µ.

Lemma 2. Pr(∀t ∈ [1, τ ] : Zt ≥ Zt−1) ≥ 1− τe−Ω(µ).

Proof. We will show via strong induction on time step t that the probability
that there exists an iteration t ∈ [1, τ ] such that Zt < Zt−1 is at most τe−Ω(µ).
The base case t = 1 is trivial since Zt−1 = Z0 and the probability of sampling
at most µ individuals having at least Z0 leading 1s is at most e−Ω(µ). This is
because Zt < α for all t < τ , in expectation there are at least (1− 1/n)Ztλ ≥
(1 − 1/n)αλ = µ/(1 − δ) individuals with at least Zt leading 1s sampled in
iteration t+ 1. By a Chernoff bound [31], the probability of sampling at most

(1− δ) · µ/(1− δ) = µ such individuals is at most e−(δ2/2)·µ/(1−δ) = e−Ω(µ) for
any constant δ ∈ (0, 1).

For the inductive step, we assume that the result holds for the first t < τ
iterations, meaning that Pr(∃t′ ≤ t : Zt′ < Zt′−1) ≤ te−Ω(µ). We are left to
show that it also holds for iteration t+ 1, that is, Pr(∃t′ ≤ t+ 1 : Zt′ < Zt′−1) ≤
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(t+ 1)e−Ω(µ). Again, by Chernoff bound, there are at most µ individuals with
at least Zt < α leading 1s in iteration t+ 1 with probability at most e−Ω(µ). By
a union bound, this rare event does not happen during the first t+ 1 iterations
with probability at most (t+ 1)e−Ω(µ), which completes the inductive step, and
the lemma follows.

3.3. After Zt has hit value α for the first time

The preceding section shows that the random variable Zt is non-decreasing
during phase 1 with probability 1− τe−Ω(µ). The following lemma also shows
that its value stays above α afterwards with high probability.

Lemma 3. For any constant k > 0, it holds that

Pr(∀t ∈ [τ, τ + ekµ] : Zt ≥ α(n)) ≥ 1− ekµ · e−Ω(µ).

Recall that we aim at showing an eΩ(µ) lower bound on the runtime, so we
assume that the stopping time τ is at most eΩ(µ). Otherwise, if this assumption
does not hold and the selective pressure is sufficiently low (as chosen below) such
that n − α ≥ n − β = Ω(n), then we are done. The following lemma further
shows that there is also an upper bound on the random variable Zt.

Lemma 4. For any constant k > 0, it holds that

Pr(∀t ∈ [1, ekµ] : Zt ≤ β(n)) ≥ 1− ekµ · e−Ω(µ).

Proof. It suffices to show that Pr(∃t ∈ [1, ekµ] : Zt > β) ≤ ekµ ·e−Ω(µ) via strong
induction on time step t. The base case t = 1 is trivial. For the inductive step, we
assume that the result holds for the first t iterations and need to show that it also
holds for iteration t+ 1, meaning that Pr(∃t′ ≤ t+ 1 : Zt′ > β) ≤ (t+ 1)e−Ω(µ).
With probability te−Ω(µ), we get Zt′ > β in an iteration t′ ≤ t, and if this
rare event does not happen, then we obtain Zt ≤ β, meaning that in the
best case the first β marginals are set to the upper border 1 − 1/n. Then, in
iteration t+ 1, the expected number of individuals with at least β leading 1s is
λ(1− 1/n)β = µ/(1 + δ) for some constant δ ∈ (0, 1). By Chernoff bound, the
probability of sampling at least (1 + δ) ·µ/(1 + δ) = µ such individuals is at most

e−(δ2/3)·µ/(1+δ) = e−Ω(µ). By the union bound, the probability that Zt′ > β
for an iteration t′ ≤ t+ 1 is at most (t+ 1)e−Ω(µ). Thus, the inductive step is
complete, and the lemma itself passes.

Lemma 3 and Lemma 4 together give essential insights about the behaviour
of the algorithm. The random variable Zt will stay well below the threshold β(n)
for eΩ(µ) iterations with probability 1 − e−Ω(µ) for a sufficiently large parent
population size µ. More precisely, the random variable Zt will fluctuate around
an equilibrium value κ = κ(n) := log(γ∗)/ log(1− 1/n). This is because when
Zt = κ, in expectation there are exactly λ(1 − 1/n)κ = λγ∗ = µ individuals
having at least κ leading 1s.

Furthermore, an exponential lower bound on the runtime is obtained if
we can also show that the probability of sampling the n − β remaining bits
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correctly is exponentially small. We now choose the selective pressure γ∗ such
that n− β ≥ εn for any constant ε ∈ (0, 1), that is equivalent to β ≤ n(1− ε).
By (5) and solving for γ∗, we then obtain γ∗/(1 + δ) ≥ [(1− 1/n)

n
]
1−ε

. The
right-hand side is at most 1/e1−ε as (1− 1/n)n ≤ 1/e for all n > 0 [31], so the
above inequality always holds if the selective pressure satisfies γ∗ ≥ (1 + δ)/e1−ε

for any constants δ > 0 and ε ∈ (0, 1).
The remainder of this section shows that the n− (β + 1) = Ω(n) remaining

bits cannot be sampled correctly in any polynomial number of iterations with
high probability. We define (Yt,i)i∈[n] to be an offspring sampled from the
probabilistic model pt. The following lemma shows that the sampling process
among the Ω(n) remaining bits are indeed independent.

Lemma 5. For any t ≤ ekµ for any constant k > 0, with probability 1− ekµ ·
e−Ω(µ) that the random variables (Yt,i)i≥β+2 are pairwise independent.

The proof uses that the number of 1s sampled in the selected population at
any bit position between Zt + 2 ≤ β+ 2 (with high probability by Lemma 4) and
n is binomially distributed with µ trials and its marginal probability. This is
because conditional on the random variable Ct,i for i = Zt + 1 the number of 1s
in the selected population in bit position i+1 can be written as Bin(Ct,i, pt,i+1)+
Bin(µ− Ct,i, pt,i+1) = Bin(µ, pt,i+1), independent of the random variable Ct,i.
The second term in the above sum results from the fact that there is no bias
at bit position i + 1 among the µ − Ct,i remaining individuals in the selected
population.

For any i ≥ β + 1, we always get E[Yt,i | Ft−1] = pt,i, and again by the
tower rule E[Yt,i] = E[E[Yt,i | Ft−1]] = E[pt,i]. For the UMDA without margins,
we obtain E[pt,i] = 1/2 since (pt,i)t∈N is a martingale [9] and the initial value
p0,i = 1/2, resulting that E[Yt,i] = 1/2 for all t ∈ N. However, when borders are
taken into account, E[Yt,i] no longer exactly equals but remains very close to
the value 1/2. The following lemma shows that the expectation of an arbitrary
marginal i ≥ β + 2 stays within (1 ± o(1))(1/2) for any t ≤ eΩ(µ) with high
probability.

Lemma 6. Let µ ≥ c log n for a sufficiently large constant c > 0. Then, it holds
with probability 1− e−Ω(µ) that E[pt,i] = (1± o(1))(1/2) for any t ≤ eΩ(µ) and
any i ≥ β + 2.

Lemma 6 gives us insights into the expectation of the marginal at any time
t ≤ eΩ(µ). One should not confuse the expectation with the actual value of the
marginals. Friedrich et al. [9] showed that even when the expectation stays
at 1/2 (for the UMDA without borders), the actual value of the marginal in
iteration t can fluctuate close to the trivial lower or upper border due to its large
variance.

Lemma 7. Let µ ≥ c log n for some sufficiently large constant c > 0 and γ∗ ≥
(1 + δ)/e1−ε for any constants δ > 0 and ε ∈ (0, 1). Then, the n− (β+ 1) = Ω(n)
remaining bits cannot be sampled as all 1s during any eΩ(µ) iterations with
probability 1− e−Ω(µ).

9



The proof makes use of the observation that the remaining bits are all
sampled correctly if the sum

∑
i≥β+2 Yt,i = n− (β+ 1) = Ω(n), and by Chernoff-

Hoeffding bound [34]. We are ready to show our main result of the UMDA on
the LeadingOnes function.

Theorem 1. The runtime of the UMDA with the parent population size µ ≥
c log n for some sufficiently large constant c > 0 and the offspring population
size λ ≤ µe1−ε/(1 + δ) for any constants δ > 0 and ε ∈ (0, 1) is eΩ(µ) on the
LeadingOnes function with probability 1− e−Ω(µ) and in expectation.

Proof. It suffices to show the high-probability statement as by the law of total
expectation [31] the expected runtime is eΩ(µ)(1 − e−Ω(µ)) = eΩ(µ). Consider
phase 1 and phase 2 as mentioned above. We also assume that phase 1 lasts
for a polynomial number of iterations; otherwise, we are done and the theorem
trivially holds.

During phase 2, we have observed that the random variable Zt always stays
below β for any t ≤ eΩ(µ) with high probability, while the Ω(n) remaining bits
cannot be sampled correctly in any iteration t ≤ eΩ(µ) with probability 1−e−Ω(µ)

by Lemma 7. Thus, the all-ones bitstring will be sampled with probability at
most e−Ω(µ), the runtime of the UMDA on the LeadingOnes function is eΩ(µ)

with probability 1− e−Ω(µ), which completes the proof.

4. High selective pressure

When the selective pressure becomes higher such that the value of α = α(n)
exceeds the problem instance size n, phase 1 would end when the µ fittest
individuals are all-ones bitstrings, i.e., the global optimum has been found. In
order for this to be the case, by (4) we obtain the inequality γ∗/(1 − δ) ≤
(1− 1/n)

n
for any constant δ ∈ (0, 1). The right-hand side is at least (1− δ)/e

for any n ≥ (1 + δ)/δ [35]. If we choose the selective pressure γ∗ ≤ (1− δ)2/e,
the above inequality always holds. In this case, Dang and Lehre [12] have already
shown that the algorithm requires an O

(
nλ log λ+ n2

)
expected runtime on the

function via the level-based theorem. We are now going to show a lower bound
of Ω( nλ

log(λ−µ) ) on the expected runtime.

Lemma 8. For any t ∈ N that E[Z∗t − Zt] = O(logµ).

Proof. Let δt := Z∗t − Zt. We pessimistically assume that the Zt first marginals
are all set to one since we are only interested in a lower bound and this will speed
up the optimisation process. We also define δ′t to be the number of leading 1s of
the fittest individual in a population of µ individuals each of length n− Zt − 1.
By the law of total expectation, we get

E[δt | Zt] = (1 + E[δ′t | Zt, Xt,Zt+1 = µ]) · Pr(Xt,Zt+1 = µ | Zt)
≤ 1 + E[δ′t | Zt, Xt,Zt+1 = µ] = 1 + E[δ′t | Zt].

We are left to calculate the expectation of δ′t, conditional on the random
variable Zt. Let f := LeadingOnes. For simplicity, we also denote (pi)

n′

i=1
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as the marginals of the bit positions from Zt + 2 to n, respectively, where
n′ := n− Zt − 1. The probability of sampling an individual with k leading 1s is
Pr(f(x) = k) = (1− pk+1)

∏k
i=1 pi, then Pr(f(x) ≤ k) =

∑k
j=0 Pr(f(x) = j) =∑k

j=0(1−pj+1)
∏j
i=1 pi. Furthermore, the probability that all µ individuals have

at most k leading 1s is Pr(δ′t ≤ k) =
∏µ
q=1 Pr(f(x(q)) ≤ k), and Pr(δ′t > k) =

1− Pr(δ′t ≤ k). Because E[Y ] ≤
∑∞
i=0 Pr(Y > i) for any bounded integer-valued

random variable Y , we then get

E[δ′t | (pi)i, Zt] ≤
∞∑
k=0

1−
µ∏
q=1

k∑
j=0

(1− pj+1)

j∏
i=1

pi

.
Note that by Lemma 6, each marginal pi has an expectation of (1± o(1))(1/2).
By the tower property of expectation, linearity of expectation and independent
sampling, we then obtain

E[δ′t | Zt] = E[E[δ′t | (pi)i, Zt]]

≤
∞∑
k=0

(1− (1− 2−(k+1))µ) + o(1) = O(logµ).

The final bound follows from [33], which completes the proof.

Lemma 8 gives the important insight that the random variables Zt and Z∗t
only differ by a logarithmic additive term at any point in time in expectation.
Clearly, the global optimum is found when the random variable Z∗t obtains the
value of n. We can therefore alternatively analyse the random variable Zt instead
of Z∗t . In other words, the random variable Zt, starting from an initial value Z0

given in Lemma 1, has to travel an expected distance of n−O(logµ)− Z0 bit
positions before the global optimum is found. We shall make use of the additive
drift theorem (for a lower bound) [36] for a distance function g(x) = n−x on the
stochastic process (Zt)t∈N. Let ∆t := g(Zt)− g(Zt+1) = (n−Zt)− (n−Zt+1) =
Zt+1−Zt be the single-step change (also called drift) in the value of the random
variable Zt. The following lemma provides an upper bound on the expected
drift, which directly leads to a lower bound on the expected runtime.

Lemma 9. For any t ∈ N and Zt ∈ [n − 1] ∪ {0}, it holds that E[∆t | Ft] =
O(log(λ− µ)).

Proof. Consider bit i = Zt+ 1. The random variable Zt does not change in value
if Ct+1,i < µ. Thus, the maximum drift is obtained when Ct+1,i ≥ µ. In this
case, we can express (∆t | Zt) ≤ 1 + (∆′t | Zt), where the non-negative ∆′t | Zt
denotes the difference between the number of leading 1s of the µ-th individual
in iteration t+ 1 and the value Zt + 1. Here, we can take an alternative view
that ∆′t | Zt is stochastically dominated by the number of leading 1s of the
fittest individual in a population of λ− µ individuals each of length n− Zt − 1,
sampled from a product distribution where each marginal has an expectation
of (1 ± o(1))/2 (by Lemma 6). Following [33], the fittest individual in this
population has O(log(λ− µ)) leading 1s in expectation.
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We are ready to show a lower bound on the expected runtime of the UMDA
on the LeadingOnes function.

Theorem 2. The expected runtime of the UMDA with a parent population size
µ ≥ c log n for some sufficiently large constant c > 0 and an offspring population
size λ ≥ µe/(1 + δ)2 where the problem instance size is n ≥ (1 + δ)/δ for any
constant δ ∈ (0, 1) is Ω( nλ

log(λ−µ) ) on the LeadingOnes function.

Proof. Consider the drift ∆t on the value of the random variable Zt. By Lemma 9
we get E[∆t | Ft] = O(log(λ− µ)). Since the random variable Zt has to travel
an expected distance of n−O(log λ)− Z0 before the global optimum is found,
the additive drift theorem shows that the expected number of iterations until
the global optimum is found is E[T | Z0] = O((n− Z0)/ log(λ− µ)), which by
the towel rule and noting that E[Z0] = O(log λ) satisfies E[T ] = E[E[T | Z0]] =
Ω(n/ log(λ − µ)). The proof is complete by noting that there are λ fitness
evaluations in each iteration of the UMDA.

5. LeadingOnes with prior noise

We consider a prior noise model and formally define the problem for any
constant 0 < p < 1 as follows.

F (x1, . . . , xn) =

{
f(x1, . . . , xn), w.p. 1− p, and

f(. . . , 1− xi, . . .), w.p. p, where i ∼ Unif([n]).

We denote F as the noisy fitness and f as the actual fitness. For simplicity, we
also denote Pt as the population prior to noise. The same noise model is studied
in [37, 38, 39] for population-based EAs on the OneMax and LeadingOnes
functions.

We shall make use of the level-based theorem [26, Theorem 1] and first
partition the search space X into n+ 1 disjoint subsets A0, . . . , An, where

Aj = {x ∈ X : LeadingOnes(x) = j}. (6)

We also denote A≥j = {x ∈ X | LeadingOnes(x) ≥ j}. We then need to verify
three conditions (G1), (G2) and (G3) of the level-based theorem [26], where due
to the presence of noise we choose the parameter γ0 = γ∗/((1− ε)(1−p)) for any
constant ε ∈ (0, 1) to leverage the impact of noise in our analysis. The following
lemma tells us the number of individuals in the noisy population in iteration t
which has fitness F (x) = f(x) ≥ j.

Lemma 10. Assume that |Pt ∩ A≥j | ≥ γ0λ, where γ0 := γ∗/((1 − p)(1 − δ))
for some constant δ ∈ (0, 1). Then, there are at least µ individuals with the
fitness F (x) = f(x) ≥ j in the noisy population with probability 1 − e−Ω(µ).
Furthermore, there are at most εµ individuals with actual fitness f(x) ≤ j − 1
and noisy fitness F (x) ≥ j for some small constant ε ∈ (0, 1) with probability
1− e−Ω(µ).

12



Proof. We take an alternative view on the sampling of the population and the
application of noise. More specifically, we first sample the population, sort it
in descending order according to the true fitness, and then noise occurs at an
individual with probability p. Because noise does not occur at an individual
w.p. 1− p, amongst the γ0λ individuals in levels A≥j , in expectation there are
(1−p)γ0λ = γ∗λ/(1−δ) = µ/(1−δ) individuals unaffected by noise. Furthermore,
by a Chernoff bound [31], there are at least (1−δ) ·µ/(1−δ) = µ such individuals

for some constant 0 < δ < 1 with probability at least 1 − e−(δ2/3)·µ/(1−δ) =
1− e−Ω(µ), which proves the first statement.

For the second statement, we only consider individuals with actual fitness
f(x) < j and noisy fitness F (x) ≥ j in the noisy population. If such an individual
is selected when updating the model, it will introduce a 0-bit to the total number
of 0s among the µ fittest individuals for the first j bits. Let B denote the number
of such individuals. There are at most (1− γ0)λ individuals with actual fitness
f(x) < j, the probability that its noisy fitness is at least F (x) ≥ j is at most
p/n because a specific bit must be flipped in the prior noise model. Hence the
expected number of these individuals is upper bounded by

E[B] ≤ (1− γ0)λp/n < λp/n. (7)

We now show by a Chernoff bound that the event B ≥ εµ for a small constant
ε ∈ (0, 1) occurs with probability at most e−Ω(µ). We shall rely on the fact
that λp/n ≤ µε/2 for sufficiently large n, which follows from the assumption
µ/λ = Θ(1). We use the parameter δ := εµ/E[B] − 1, which by (7) and the
assumption λp/n ≤ εµ/2 satisfies δ ≥ εµn/(pλ)− 1 ≥ 1. We also have the lower
bound

δ · E[B] = εµ− E[B] ≥ εµ− λp/n ≥ εµ/2.

A Chernoff bound [31] now gives the desired result

Pr(B ≥ εµ) = Pr(B ≥ (1 + δ)E[B]) ≤ e−δE[B]/3 = e−εµ/6, (8)

which completes the proof.

We now derive upper bounds on the expected runtime of the UMDA on
LeadingOnes in the noisy environment.

Theorem 3. Consider a prior noise model with parameter p < 1. The expected
runtime of the UMDA with a parent population size µ ≥ c log n for some
sufficiently large constant c > 0 where n ≥ 1/(3/4− ε) for some small constant
ε ∈ (0, 3/4) and an offspring population size λ ≥ 4e(1 + δ)µ is O

(
nλ log λ+ n2

)
on the LeadingOnes function.

Proof. We will make use of the level-based analysis, in which we need to verify
the three conditions in the level-based theorem. Each level Aj for j ∈ [n] ∪ {0}
is formally defined as in (6), and there are a total of m := n+ 1 levels.

Condition (G1) assumes that |Pt ∩A≥j | ≥ γ0λ, and we are required to show
that the probability of sampling an offspring in levels A≥j+1 in iteration t+ 1 is
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lower bounded by a value zj . We choose the parameter γ0 = γ∗/((1− δ)(1− p))
for any constant δ ∈ (0, 1) and the selective pressure γ∗ = µ/λ (assumed to be
constant). For convenience, we also partition the noisy population into four
groups:

1. Individuals with the fitness f(x) ≥ j and F (x) ≥ j.
2. Individuals with the fitness f(x) ≥ j and F (x) < j.

3. Individuals with the fitness f(x) < j and F (x) ≥ j.
4. Individuals with the fitness f(x) < j and F (x) < j.

By Lemma 10, there are at least µ individuals in group 1 with probability
1− e−Ω(µ). The algorithm selects the µ fittest individuals according to the noisy
fitness values to update the probabilistic model. Hence, unless the mentioned
event does not happen, no individuals from group 2 or group 4 will be included
when updating the model.

We are now going to analyse how individuals from group 3 impact the
marginal probabilities. Let B denote the number of individuals in group 3. We
pessimistically assume that the algorithm uses all of the B individuals in group
3 and µ − B individuals chosen from group 1 when updating the model. For
all i ∈ [j], let Xi be the number of individuals in group 3 which has a 1-bits
in positions 1 through j, except for one position i where it has a 0-bit. By
definition, we then have

∑j
i=1Xi = B. The marginal probabilities after updating

the model are

pt,i =

{
1−Xi/µ, if Xi > 0,

1−Xi/µ− 1/n, if Xi = 0.
(9)

Following [40, 20, 15], we lower bound the probability of sampling an offspring
x with actual fitness f(x) ≥ j, by

j∏
i=1

pt,i ≥
j∏
i=1

qi, (10)

which holds for any vector q := (q1, . . . , qj) which majorises the vector p :=
(pt,1, . . . , pt,j). Recall (see [41, 40]) that the vector q majorises the vector p if
for all k ∈ [j − 1]

k∑
i=1

qi ≥
k∑
i=1

pt,i, and

j∑
i=1

qi =

j∑
i=1

pt,i.

We construct such a vector q which by the definition majorises the vector p as
follows.

qi =

{
1− 1/n, if i < j,∑j
k=1 pt,k − (1− 1/n)(j − 1), if i = j.

We now show that with high probability, the vector element qj stays within the
interval [1− 1/n− ε, 1− 1/n], i.e., qj is indeed a probability. Since pt,i ≤ 1− 1/n
for all i ≤ j, we have the upper bound qj ≤ (1−1/n)j−(1−1/n)(j−1) = 1−1/n.
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For the lower bound, we note from (9) that pt,i ≥ 1−Xi/µ− 1/n for all i ≤ j
and any Xi ≥ 0, so we also obtain

qj ≥
j∑

k=1

(1−Xi/µ− 1/n)− (1− 1/n)(j − 1)

= 1− 1/n−
j∑

k=1

Xi/µ = 1− 1/n−B/µ.

By Lemma 10, we have B ≤ εµ for some small constant ε ∈ (0, 1) with probability
1−e−Ω(µ). Assume that this high-probability event actually happens, we therefore
have qj ≥ 1− 1/n− ε. From this result, the definition of the vector q and (10),
we can conclude that the probability of sampling in iteration t+ 1 an offspring
x with actual fitness f(x) ≥ j is

j∏
i=1

pt,i ≥
j∏
i=1

qi ≥
(

1− 1

n

)j−1(
1− 1

n
− ε
)
≥ 1

4e
= Ω(1)

since (1−1/n)j−1 ≥ 1/e for any n > 0, and by choosing n ≥ 1/(3/4−ε) for some
positive constant ε < 3/4. Because we also have pt,j+1 ≥ 1/n, the probability of
sampling an offspring in levels A≥j+1 is at least Ω(1) · (1/n) = Ω(1/n). Thus,
the condition (G1) holds with a value of zj = Ω(1/n).

For the condition (G2), we assume further that |Pt ∩A≥j+1| ≥ γλ for some
value γ ∈ (0, γ0), and we are also required to show that the probability of
sampling an offspring in levels A≥j+1 is at least (1 + δ)γ for some small constant
δ ∈ (0, 1). Because the marginal pt,j+1 can be lower bounded by γλ/µ, the above
probability can be written as follows.

j+1∏
i=1

pt,i ≥ pt,j+1 ·
j∏
i=1

pt,i ≥
γλ

µ
· 1

4e
≥ (1 + δ)γ,

where by choosing λ/µ ≥ 4e(1 + δ) for some constant δ ∈ (0, 1). Thus, the
condition (G2) of the level-based theorem is verified.

The condition (G3) requires the offspring population size to satisfy

λ ≥ 4

γ0δ2
ln

(
128m

δ2 ·minj{zj}

)
= Ω

(
1− p
γ∗

log n

)
.

Having fully verified the three conditions (G1), (G2) and (G3), and noting that
ln(δλ/(4 + δzj)) < ln(3δλ/2), the level-based theorem now guarantees an upper
bound of O

(
nλ log λ+ n2

)
on the expected runtime of the UMDA on the noisy

LeadingOnes function.
We note that our proof is not complete since throughout the proof we always

assume the happening of the following two events in each iteration of the UMDA
(see Lemma 10):
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(A) The number of individuals in group 1 is at least µ with probability 1 −
e−Ω(µ).

(B) The number of individuals in group 3 is B ≤ εµ for some small constant
ε ∈ (0, 3/4) with probability 1− e−Ω(µ).

We call an iteration a success if the two events happen simultaneously; otherwise,
we speak of a failure. By the union bound, an iteration is a failure with probability
at most 2e−Ω(µ), and a failure occurs at least once in a polynomial number of
iterations with probability at most poly(n) · 2e−Ω(µ). If we choose the parent
population size µ ≥ c log n for some sufficiently large constant c > 0, then the
above probability becomes poly(n) · 2e−c logn ≤ nc

′
for some other constant

c′ > 0. Actually, the upper bound O
(
nλ log λ+ n2

)
given by the level-based

theorem is conditioned on the event that there is no failure in any iteration. We
can obtain the (unconditionally) expected runtime by splitting the time into
consecutive phases of length t∗ = O

(
nλ log λ+ n2

)
, and by [20, Lemma 5] the

overall expected runtime is at most 4(1 + o(1))t∗ = O
(
nλ log λ+ n2

)
.

As a final remark, we note that the exponential lower bound in Theorem 1
for the LeadingOnes function without noise should also hold for the noisy
LeadingOnes function.

6. Experiments

In this section, we provide an empirical study in order to see how closely
the theoretical results match the experimental results for reasonable problem
sizes, and to investigate a wider range of parameters. Our analysis is focused on
different regimes on the selective pressure in the noise-free setting.

6.1. Low selective pressure

We have shown in Theorem 1 that when the selective pressure γ0 ≥ (1 +
δ)/e1−ε for any constants δ > 0 and ε ∈ (0, 1), the UMDA requires 2Ω(µ) function
evaluations to optimise the LeadingOnes function with high probability. We
now choose δ = 0.2 and ε = 0.1, we then get γ0 ≥ (1 + 0.2)/e1−0.1 ≈ 0.4879.
Thus, the choice γ0 = 0.5 should be sufficient to yield an exponential runtime.
For the population size, we experiment with three different settings: µ = 5 log n
(small), µ =

√
n (medium) and µ = n (large) for a problem instance size n = 100.

Substituting everything into (4) and (5), we then get α ≈ 47 and β ≈ 87. The
numbers of leading 1s of the fittest individual and the µ-th individual in the
sorted population (denoted by random variables Z∗t and Zt respectively) are
shown in Fig. 1 over an epoch of 5000 iterations. The dotted blue lines denote
the constant functions of α = 47 and β = 87. One can see that the random
variable Zt keeps increasing until it reaches the value of α during the early
stage and always stays well under value β afterwards. Furthermore, Z∗t does not
deviate too far from Zt that matches our analysis since the chance of sampling
all ones from the n− β remaining bits is exponentially small.
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Figure 1: Low selective pressure over long-range time.
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Figure 2: High selective pressure.

6.2. High selective pressure

When the selective pressure is sufficiently high, that is, γ0 ≤ (1−o(1))(1−δ)/e
for any constant δ ∈ (0, 1), there is an upper bound O

(
n2 + nλ log λ

)
on the

expected runtime [12]. Theorem 2 yields a lower bound of Ω( nλ
log(λ−µ) ). We start

by looking at how the values of random variable Zt and Z∗t change over time.
Our analysis shows that it never decreases during the whole optimisation course
with overwhelming probability and eventually reaches the value of n. Similarly,
we consider the three different settings for population size and also note that our
result holds for a parent population size µ ≥ c log n, when the constant c > 0
must be tuned carefully; in this experiment, we set c = 5 (an integer larger than 3
should be sufficient). We then get γ∗ ≤ (1−1/100)(1−0.1)/e ≈ 0.1821. Therefore,
the choice of γ0 = 0.1 should be sufficient and we then get α ≈ 160� n = 100.
The experiment outcomes are shown in Fig. 2. The empirical behaviours of the
two random variables match our theoretical analyses.

Furthermore, we are also interested in the average runtime of the algorithm.
We run some experiments using the same settings for the population size where
n ∈ {100, 200, . . . , 1000}. For each value of n, the algorithms are run 100 times,
and the average runtime is computed. The empirical results are shown in Fig. 3.
We then perform non-linear regression to fit the power model y ∼ a · nb to the
empirical data. The fittest model and its corresponding coefficients a and b
are also plotted. As seen in Fig. 3, the fittest models are all in the order of
nλ/ log(λ − µ), which matches the expected runtime given in our theoretical
analysis.

7. Conclusion and Future Work

In this paper, we perform rigorous analyses for the UMDA (with margins) on
the LeadingOnes function in case of low selective pressure. We show that the
algorithm requires a 2Ω(µ) runtime with probability 1−2−Ω(µ) and in expectation
when µ ≥ c log n for a sufficiently large constant c > 0 and µ/λ ≥ (1 + δ)/e1−ε
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Figure 3: Average runtime under high selective pressure.

for any constant δ > 0 and ε ∈ (0, 1). The analyses reveal the limitations of the
probabilistic model based on probability vectors as the algorithm hardly stays
at promising states for a long time. This leads the algorithm into a non-optimal
equilibrium state from which it is exponentially unlikely to sample the optimal
all-ones bitstring. We also obtain the lower bound Ω( nλ

log(λ−µ) ) on the expected

runtime when the selective pressure is sufficiently high. Furthermore, we study
UMDA in noisy optimisation setting for the first time, where noise is introduced
to the LeadingOnes function, causing a uniformly chosen bit is flipped with
probability p < 1. We show that an O

(
n2
)

expected runtime still holds in
this case for the optimal offspring population size λ = O(n/ log n). Despite
the simplicity of the noise model, this can be viewed as the first step towards
broadening our understanding of the UMDA in a noisy environment.

For future work, the UMDA with an optimal offspring population size
λ = O(n/ log n) needs O

(
n2
)

expected time on the LeadingOnes function [12].

In this case, Theorem 2 yields a lower bound Ω(n2/ log2 n). Thus, it remains
open whether this gap of Θ(log2 n) could be closed in order to achieve a tight
bound on the runtime. Another avenue for future work would be to investigate
the UMDA under a posterior noise model.
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