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Protein aggregation is associated with neurodegenerative disorders such as 
Alzheimer’s and Parkinson’s diseases. The poorly understood pathogenic mechanism of 
amyloid diseases makes early-stage diagnostics or therapeutic intervention a challenge. 
Seeded polymerisation that reduces the duration of the lag phase and accelerates fibril 
growth is a widespread model to study amyloid formation. Seeding effects are 
hypothesised to be important in the ‘infectivity’ of amyloids and are linked to the 
development of systemic amyloidosis in vivo. The exact mechanism of seeding is unclear 
yet critical to illuminating the propagation of amyloids. Here we report on the lateral 
and axial fragmentation of seed fibrils in the presence of lysozyme monomers at short 
timescales, followed by the generation of oligomers and growth of fibrils. These results 
may form the basis for future studies of therapeutic intervention. 

 

  



Peptides and proteins have the propensity to convert from their soluble forms into highly 
organised aggregates called amyloids, fibrillar quaternary structures ordered into β-sheets, 
rich in intermolecular hydrogen bonds.1 Amyloids are associated with diseases such as 
Alzheimer’s and Parkinson’s. Nevertheless, amyloid materials are now also known to have 
important functional roles in organisms.2-3 

Protein aggregation is a complex multi-pathway process and the precise mechanism of 
amyloid assembly is specific for each protein, but there are common characteristics for all 
amyloids.4 Certain types of intermediates are typically formed on the way to amyloid fibrils, 
some of which are able to spread and cause nucleation elsewhere.5-7 It is believed that small 
intermediates are the most cytotoxic species and that they are highly related to the 
propagation of amyloids.8-12 Such species are usually short-lived, and their presence at low 
concentration could be masked in bulk measurements based on ensemble average.6, 13-14 The 
mechanism of how these species are generated, how they propagate and catalyse further 
formation of aggregates is still poorly understood. 

A typical aggregation pathway occurs as follows (Figure 1a): under certain conditions, a 
monomeric protein misfolds and starts assembling with other monomers to form oligomers. 
These small soluble oligomers act as nuclei for the formation of larger species - protofibrils 
and mature fibrils; this process is called primary nucleation. In the next stage, the protofibrils 
and fibrils grow and elongate, but this may also be accompanied by a degree of 
fragmentation.6 Fragmentation of fibrils is believed to be one of the most critical propagation 
pathways for amyloid fibrils.6-7, 11, 14-19 Previous studies have revealed that mature fibrils can 
break into small intermediates, which provide additional growth surface and enhance 
toxicity.11, 14, 20 The study of such microscopic processes not only elucidates the pathogenic 
mechanism, but also provides potential targets for therapeutic intervention.21  

To date there is no direct evidence that amyloids are infectious in the same manner as 
prions, but an increasing number of studies contend that the pathogenesis of amyloidosis is 
carried out through templated corruption of particular amyloidogenic proteins.22 For this 
reason, seeded polymerisation is an important model for studying protein aggregation. It is 
well established that amyloid fibril formation from monomeric proteins is greatly enhanced 
by the introduction of preformed ‘seed’ fibrils.23-24 Seeding effects appear to be important in 
the ‘infectivity’ of amyloids, similar to prion transmission, and are linked to the development 
of systemic amyloidosis in vivo.23-25 Studies of seeded aggregation have focused mainly on 
the effect of seeding on the kinetics of fibril formation in vitro, e.g. reporting the 
disappearance of a slow lag phase corresponding to primary nucleation.26 However, the 
mechanism of seed intervention is still unclear with no mechanistic studies reported to date. 
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study the aggregation pathway of -synuclein, lysozyme and amyloid.29, 31, 33 

In our experiments, aliquots were periodically taken out of aggregating solution, diluted 
and examined by these two modalities of single molecule detection: AFM reporting on the 
changing morphology of species over the course of aggregation; electrical measurements 
through nanopores, sensitive to size and charge of translocating species.  

Together these two methods provide important new insight into the complex and dynamic 
process of seeded lysozyme aggregation and reveal new features and timescales of crucial 
stages of this process. Most notably, both lateral and axial fragmentation of lysozyme seed 
fibrils was observed at a short time scale not previously considered possible, followed by the 
formation of small species capable of propagation. 
 

Results 

The disassembly and reassembly of seed fibrils studied via atomic force microscopy 

 The unique advantage of AFM lies in the high-resolution structural detail in 3D and the 
ability to noninvasively detect individual biomolecules through the tapping mode, in which 
the probe tip oscillates and gently taps the sample surface. In our experiments, aliquots were 
extracted from the aggregating protein solution at different time points of incubation, diluted, 
applied to freshly cleaved mica and dried. We note that in our analysis we make the 
assumption that the distributions of species are representative of the solution composition, i. 
e. that immobilisation is comparable for all species in solution. 

 In our study we were particularly interested in processes occurring directly after seeding. In 
freshly seeded samples (T = 0 min), AFM revealed the presence of relatively thick short 
fibrils (Figures 2a, b), often organised in clusters. The diameter of these species (determined 
as the height) had a broad distribution with a peak value of 2.4 ± 0.9 nm (Figure 2b), similar 
to the distribution in a pure seed sample (Figure S1). Lysozyme monomers could not be 
detected directly by AFM under the conditions used here. Within the first 5 minutes of 
incubation, the height decreased, Figure 2b, as the seed fibrils laterally disassembled into thin 
rigid fibrils with mean thickness of 1.3 ± 0.1 nm (Figure S2), from here on referred to as 
filaments. In addition to the decreasing height, we noted a significant decrease in contour 
length of the species during the first 10 minutes (Figure 2c). From qualitative analysis of the 
AFM images it appears that seeds tend to fragment at junctions between individual rigid 
sections and disassemble into basic units of 50-100 nm in length (Figure S3). At T = 15 min, 
the prevalence of filament fibrils remained, but the appearance of thicker species (not 
exceeding 3 nm) is clear from the histogram. Moreover, the sample had a significantly higher 
proportion of species with 100-200 nm contour length, compared to T = 0 min and T = 5 min. 
Between 5 and 15 minutes of incubation there is a decrease of contour length, largely due to 
the sudden appearance of small spherical oligomers (Figure S4c), but simultaneously there is 
evidence for increasing height (Figure S5). After T = 15 min there was a clear increase of 
contour lengths and a broader distribution of lengths (Figure S6). 



 To confirm that the unexpected disassembly of seeds was caused by the addition of 
monomers, rather than by the change in temperature and pH during sample preparation, 
control experiments were carried out with sonicated seeds, but without monomers, at the 
same buffer conditions and temperature. Without the addition of monomers (Figure S7), 
neither fragmentation or fibril growth was observed even after 60 minutes, with little change 
in the contour length and thickness. These results verified the monomer-assisted secondary 
nucleation during the aggregation process. 

At T = 60 min, the concentration of elongated fibrils increased, often including branch 
formation, which was reflected in the increasing population of long contour lengths (Figure 
2c). We also observed significant broadening of the height distribution, as a heterogeneous 
population of thick fibrils was formed (Figure 2b). Further thickening and elongation of 
fibrils was evident at later time points, and the fibrils became highly branched and 
intertwined (Figure S4e). These results were complemented with nanopore measurements, as 
detailed below. In control experiments, where the monomeric lysozyme solution was not 
seeded, only small non-fibrillar species were observed at T = 30 min and T = 60 min (Figure 
S8). The absence of long fibrils at this time point in non-seeded experiments demonstrates a 
significantly slower growth rate compared to seeded protein aggregation, where long fibrils 
started to appear within the first hour of sample incubation (Figure 2a). 

Over the course of aggregation, the thinnest observed unit with filamentous organisation 
were flexible aggregates with an apparent mean height of 0.6 ± 0.2 nm (Figure 2d), from here 
on referred to as protofibrils. The length of these species was extremely short, not exceeding 
200 nm (Figure S2). In contrast to rigid segments of mature fibrils (Figure S9), the 
protofibrils did not have straight segments; they had flexible and coiling structure. A large 
population of protofibrils was present even at T = 42 h alongside thick mature fibrils.  
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260% compared to T = 15 min (Figure S6). Importantly, as incubation time increased, the 
number of events with current blockade decreased in the nanopore experiments, and the 
number of events with current enhancement increased (Figure 3b,c). Translocation events 
with current enhancement (rather than blockade) became dominant at late time points, as can 
be seen in Figure 3b,c and Figure 4c, the latter shows the ratio of the number of events 
exhibiting current enhancement to total events is plotted. The median dwell time of the events 
with current enhancement (Figure 4b) showed similar trend as that of the events with current 
blockade (Figure 4a).  

We attributed the current enhancement to mature fibrils, with an increase in current being 
caused by differences of the surface charge due to the twisting of two or more filaments and 
displacement of charged amino acid side chains from the surface. During nanopore 
translocation, the biomolecule displaces the ions inside the pore, which results in a decrease 
of the current (current blockade). However, due to accumulation of counterions shielding the 
biomolecule in the nanopore, it is also possible to have current enhancement. In this work, the 
accumulation of negative counterions on the surface of the twisted fibrils may contribute to 
the increased conductance and to the current enhancement,45-46 which is consistent with zeta 
potential measurements (Figure S13) and charge distribution calculated from the nanopore 
data (Figure S14). We note that to rule out the effect of pH changes on the observed charge 
variation, we confirmed that the pH of the solution is stable during the aggregation process 
(data not shown). The proportion of mature fibrils decreased from 7% at 0 min to 0% at 5 
min and 10 min, increased again to 1% at 15 min, 49% at 12 h and 76% at 26 h (Figure 4c).  

 

Discussion 

 One of the most important insights that the combination of two single-molecule methods 
has revealed in this study was the fragmentation of seed fibrils on a short timescale, at least in 
the in vitro experiments. Previously, fluorescence lifetime detection of an environmentally 
sensitive fluorophore (a so called molecular rotor) DiSC2(3) using conventional confocal 
microscopy has revealed unexpected reduction in microscopic viscosity in the early stages of 
the seeded aggregation of lysozyme.47  However, in this study that used fluorescence 
detection from the ‘bulk’ of the sample, the mechanistic details behind the reduction of 
viscosity were not possible to identify. In our present experiments at the single molecule 
level, within the first 10 minutes of seeded aggregation of lysozyme, axial and lateral 
disassembly of seeds was reported by AFM and nanopore measurements. We account the 
initial decrease of height and length to monomer-assisted fragmentation of seed fibrils, linked 
with secondary nucleation. Our hypothesis is supported by a combination of facts. Between 0 
to 5 minutes, the shortening of linear species was apparent from AFM images and 
histograms, as well as from the nanopore dwell time. At 5-10 minutes of incubation, upwards 
events with current enhancement, assigned to mature fibrils, completely disappeared from 
nanopore measurements. The disassembly of seeds was also apparent from the AFM data. 
Our experiments demonstrated that neither fragmentation nor secondary nucleation happen in 
the absence of lysozyme monomers under the studied conditions. 



 A large number of oligomeric species was detected by AFM at T = 15 min following 
seeding. We performed incubation experiments in which either (1) lysozyme monomers were 
present and seed fibrils were absent, or (2) seed fibrils were present and monomers were 
absent; neither of these cases resulted in an upsurge of oligomers at T = 15 min. Thus, we 
hypothesise that the oligomers observed under the ‘standard’ incubation conditions were 
generated via secondary nucleation, which was induced by the disassembly of seed fibrils 
into thin short filaments. Previous research has shown that the twisted thick mature fibril 
cannot serve as a lateral binding site for monomers.20 We believe that the disassembly of seed 
fibrils provides binding sites for monomers, leading to secondary nucleation. These processes 
lead to a large number of fibril fragments and oligomers, species known to be easily 
diffusible and highly cytotoxic,7, 25 implicating deleterious effects in disease. 

Studies of fibril fragmentation have found that fragmentation rates are dependent on the 
length and concentration of seed fibrils, the solution pH, temperature and agitation.9, 48 In the 
conditions of our experiments the fragmenting seed fibrils were relatively short, yet the 
fragmentation occurred on a strikingly short time scale not observed by other researchers.6, 11, 

14-15 Prior to our work, compared to fibril elongation rates, fragmentation rates are considered 
to be slow.49 

In addition to fibrils and oligomers, we observed short flexible protofibrils with previously 
unreported extremely small mean height of ca 0.6 nm; likely formed by stacking addition of 
monomeric or oligomeric units.50 The observed height is below the size expected for 
lysozyme,39, 51 as the monomeric dimensions of lysozyme are 3·3·4.5 nm52 and the smallest 
filamentous aggregate reported in literature had a height of 2 nm.39, 41, 51 We cannot tell with 
certainty at this stage whether the small dimensions of protofibrils detected by AFM reflect 
the true state in solution, or are affected by protein-surface/probe-surface interactions or are 
the result of the clustering of lysozyme monomers on the mica surface.42 While the 
observation of extremely thin protofibrils is intriguing, according to literature, they are not 
capable of acting as seeds40  and thus are not likely to play roles in propagation of disease. 

For the assembly of filaments and mature fibrils, AFM and nanopore data suggest that 
small lysozyme species can add on axially or laterally through various pathways: a) axial 
elongation through the addition of monomeric, oligomeric or protofibril units), b) lateral 
addition of monomers onto filaments, which results in branching and secondary nucleation, c) 
lateral stacking of two protofibrils or lateral addition of a protofibril to existing filaments, d) 
twisting of filaments into mature fibrils40 and twisting between mature fibrils, as sensed by 
current enhancement events in the nanopore sensing.  

During the growth phase, lysozyme fibrils undergo a remarkable change of surface charge, 
as reported by nanopore and zeta potential measurements. Since the electrostatics of the 
protein depends on the accessibility of amino acids that can ionise, the change of surface 
charge possibly results from charged amino acid side chains becoming buried during the 
lateral growth and twisting of lysozyme fibrils.  

 



Conclusions 

We present evidence that upon seeding of a monomeric lysozyme solution with fibril 
fragments, the seeds undergo structural reforming on short time scales that were not 
considered previously. We collect mechanistic and structural data on the role of the seeding 
process in the formation of oligomers, which may be an important stage in spreading of the 
disease in vivo.  We reveal the details of changes to structure, charge and packing of 
lysozyme, during the process of aggregation. Since it is believed that the replication and 
propagation of amyloids in vivo may occur through the seeding-nucleation pathway, these 
new insights on seeded protein aggregation could be an important element in understanding 
the mechanism of spreading of amyloids during diseases, which may form the basis for future 
biomedical studies of therapeutic intervention in amyloid diseases. 
 

Methods 

Lysozyme aggregation preparation. Hen egg white lysozyme (HEWL, 14307 Da, 129 amino acids, product 
code L6786) and all solvents (spectroscopic grade) were purchased from Sigma-Aldrich. The protein was left to 
defrost for 5 minutes at room temperature. 1 mL of fresh solution of HEWL was prepared in a glass vial at 4 
mg/mL with 50 mM HCl, 100 mM NaCl, first letting the protein dissolve in 50 mM HCl solution, gently 
shaking and consequently adding salt. The monomer solution was passed through a syringe driven filter of 
0.22 μm pore size. The solution was seeded with 1 % v/v sonicated preformed fibrils and allowed to aggregate 
at 57C. The seeds were prepared by incubating a solution of 60 mg/mL HEWL in 50 mM HCl, 200 mM NaCl 
at 60°C for 12 hours and subsequent sonication to obtain short seed fibrils. Higher salt concentration (200 mM 
vs 100 mM) was used to accelerate fibril formation 47. The relatively low temperature of 57-60C for 
aggregation reactions was intentionally chosen in order to minimize the formation of amorphous aggregates. 53 
 
Atomic force microscopy. Aliquots from the aggregating protein solution were diluted 200 or 400 times with 
filtered water; 2 μL of this mixture was applied to freshly cleaved mica (Agar Scientific) and incubated at room 
temperature for 5 min. Images were obtained in tapping mode in air at room temperature from at least three 
independently prepared samples using an Agilent Technologies 5500 and 9500 AFM/SPM microscopes and 
commercial “Super Sharp Silicon” AFM probes (Windsor Scientific). To prevent artefacts from tip wear, each 
image was acquired using a new tip at 0.1-0.2 lines/s with 512 × 512 pixels and scan areas of 5 × 5 μm2. Images 
were processed in Gwyddion software with a third order “flatten filter”, grains were marked using watershed 
segmentation. 
 
Nanopore fabrication and functionalisation. The quartz capillaries (Intracel Ltd, UK) exhibit an outer 
diameter of 1.0 mm and an inner diameter of 0.5 mm including inner filament. After being cleaned in the plasma 
cleaner, the capillaries were pulled by a laser-based pipette puller (Sutter Instrument, P-2000) through a two-line 
protocol: (1) HEAT, 575; FIL, 3; VEL, 35; DEL, 145; PUL, 75; (2) HEAT, 700; FIL, 0; VEL, 15; DEL, 128; 
PUL, 200. It should be noted that the parameters are instrument specific, and were optimized to yield a nanopore 
of approximately 30 nm. The functionalisation of the nanopore was obtained by immersing the capillaries (both 
inside and outside) in a 7.5% polybrene solution for 15 min and subsequently rinsing them with the 
translocation buffer. Newly functionalised nanopores were used for each time point. 
 
Single molecule detection with nanopore. The translocation buffer contains 10 mM Tris, 1 mM EDTA, 100 
mM KCl, pH 7.4; 2-4 μL of each sample collected at different time points of aggregation was added to a 
reservoir for the single molecule translocation studies. All the current traces were recorded at an applied voltage 
of 600 mV. For translocation experiments, electrodes (Ag/AgCl) were inserted into the external bath (patch 
electrode) and the capillary (ground electrode), respectively. The ion currents of protein translocations through 
the nanopore were measured with AxoPatch 200B patch clamp amplifier (Molecular Devices, US), filtered with 
a 10 kHz Bessel filter and recorded by the software pClamp 10 (Molecular Devices). The data was analysed 
using a custom-written MATLAB code.  



Zeta potential measurement. 2 μL of the sample was diluted in 1 mL H2O and the zeta potential was 
determined using a Zetasizer Nano (Malvern Instruments Ltd.). All measurements were repeated at least three 
times. 

Data availability. The datasets generated during and analysed during the current study are available from the 
corresponding author on request. 
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